A Generalized Method to Find the Square Root of Matrix Whose Characteristic Equation is Quadratic

Ram Milan Singh ${ }^{1, *}$
1 Department of mathematics, Govt. P. G. College, Tikamgarh, Madhya Pradesh, India.

Abstract

In this paper, we generalized the method to calculating the square root of matrix whose characteristic is quadratic and how to Cayley-Hamilton theorem may be used to determine the formula for all square root of matrix whose order is 2×2.

Keywords: Eigen values, Matrix equation, Square root of matrix.
(C) JS Publication.

1. Introduction

Let $M_{n}(C)$ be the set of all complex matrices whose order is $n \times n$. Matrix Q is said to be a square root of matrix P , if the matrix product $Q \cdot Q=P$. Now, what is the square root of matrix such as $\left[\begin{array}{cc}p & q \\ r & s\end{array}\right]$. It is not, in general $\left[\begin{array}{ll}\sqrt{p} & \sqrt{q} \\ \sqrt{r} & \sqrt{s}\end{array}\right]$. It is easy to see that the upper left entry of its square is $p+\sqrt{q}$ and not p. In recent years, several article have been written about the root of a matrix, and one can refer to [4-6]. A number of method have been proposed to computing the square root of matrix and these are usually based on Newton's method, either directly or the sign function (see e.g., [1-3]).

2. Generalized Method

The set of all matrices which their square is P, denoted by \sqrt{P}, i.e.,

$$
\sqrt{P}=\left\{Y: Y \in M_{n}(C), Y^{2}=P\right\}
$$

This set can be very large .For example, we will see that \sqrt{I} has infinite members. We can define the $\mathrm{n}^{\text {th }}$ root of a matrix P as follows.

$$
\sqrt[n]{P}=\left\{Y: Y \in M_{n}(C), Y^{n}=P\right\}
$$

It is well known to all, if $P=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$, then characteristic equation is

$$
\begin{equation*}
\lambda^{2}-(\text { Trace } P) \lambda+\operatorname{det} P=0 \tag{1}
\end{equation*}
$$

[^0]Apply Cayley - Hamilton theorem, putting $\lambda=P$, then equation (1) is

$$
P^{2}-(\text { Trace } P) P+(\operatorname{det} P) I=0
$$

Thus, we have

$$
\begin{equation*}
P^{2}=(\text { Trace } P) P-(\operatorname{det} P) I \tag{2}
\end{equation*}
$$

Putting, $P^{2}=Q$, then equation (2) is

$$
\begin{align*}
Q & =(\text { Trace } P) P-(\operatorname{det} P) I \\
Q+(\operatorname{det} P) I & =(\text { Trace } P) P \\
\frac{1}{(\text { Trace } P)}[Q+(\operatorname{det} P) I] & =P \tag{3}
\end{align*}
$$

Lemma 2.1. Let P be a 2×2 matrix. Then trace $P^{2}=(\text { trace } P)^{2}-2 \operatorname{det} P$.
Proof. Suppose λ_{1} and λ_{2} are the two Eigen values of the matrix P. Then we can easy to see that λ_{1}^{2} and λ_{2}^{2} are the Eigen values of P^{2}. We know that, trace $P=\lambda_{1}+\lambda_{2}$ and $\operatorname{det} P=\lambda_{1} \lambda_{2}$. Then,

$$
\begin{aligned}
\operatorname{trace} P^{2} & =\lambda_{1}^{2}+\lambda_{2}^{2} \\
& =\left(\lambda_{1}+\lambda_{2}\right)^{2}-2 \lambda_{1} \lambda_{2} \\
& =(\text { trace } P)^{2}-2 \operatorname{det} P
\end{aligned}
$$

Second Proof. In other words, let $P=\left[\begin{array}{cc}p & q \\ r & s\end{array}\right]$. Then,

$$
\begin{aligned}
& P^{2}=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right] \\
& P^{2}=\left[\begin{array}{ll}
p^{2}+r q & p q+q s \\
p r+r s & s^{2}+r q
\end{array}\right] .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& \text { Trace } P^{2}=\left(p^{2}+r q\right)+\left(s^{2}+r q\right) \\
& \text { Trace } P^{2}=p^{2}+s^{2}+2 r q \\
& \text { Trace } P^{2}=p^{2}+s^{2}+2 p s-2 p s+2 r q \\
& \text { Trace } P^{2}=(p+s)^{2}-2(p s-r q) \tag{4}
\end{align*}
$$

But, trace $P=p+s$ and det $P=p s-q r$, then equation (4), Trace P. Let $P, Q \in M_{n}^{2}(C)=(\text { trace } P)^{2}-2$ det P.
Remark 2.2. Let $P, Q \in M_{2}(C)$ and $P^{2}=Q$. Then the following statements are holds:
(1). $\operatorname{det} P=\sqrt{\operatorname{det} Q}$.
(2). $\operatorname{tracet} P=\sqrt{\operatorname{trace} Q+2 \sqrt{\operatorname{det} Q}}$.

Example 2.3. Let $Q=\left[\begin{array}{ll}8 & 5 \\ 3 & 8\end{array}\right]$. So det $Q=64-15=49$, and trace $Q=8+8=16$, therefore if $P^{2}=Q$, then, det $P=\sqrt{\operatorname{det} Q}=\sqrt{49}= \pm 7$, and trace $P=\sqrt{\text { trace } Q+2 \sqrt{\operatorname{det} Q}}=\sqrt{16+2 \sqrt{49}}=\sqrt{16 \pm 14}$, taking positive and negative sign then, trace $P= \pm \sqrt{30}$ or trace $P= \pm \sqrt{2}$, thus, from equation (3),

$$
\begin{aligned}
& P=\frac{1}{(\text { trace } P)}[Q+(\operatorname{det} P) I], \\
& P=\frac{1}{ \pm \sqrt{30}}\left\{\left[\begin{array}{ll}
8 & 5 \\
3 & 8
\end{array}\right]+(\pm 7)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right\} \text { or } \\
& P=\frac{1}{ \pm \sqrt{2}}\left\{\left[\begin{array}{ll}
8 & 5 \\
3 & 8
\end{array}\right]+(\pm 7)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right\}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& P=\frac{1}{ \pm \sqrt{30}}\left\{\left[\begin{array}{ll}
8 & 5 \\
3 & 8
\end{array}\right]+(7)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right\} \text { or } P=\frac{1}{ \pm \sqrt{30}}\left\{\left[\begin{array}{ll}
8 & 5 \\
3 & 8
\end{array}\right]+(-7)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right\} \text { and } \\
& P=\frac{1}{ \pm \sqrt{2}}\left\{\left[\begin{array}{ll}
8 & 5 \\
3 & 8
\end{array}\right]+(7)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right\} \quad \text { or } P=\frac{1}{ \pm \sqrt{2}}\left\{\left[\begin{array}{ll}
8 & 5 \\
3 & 8
\end{array}\right]+(-7)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right\}
\end{aligned}
$$

on calculating then we have,

$$
\begin{aligned}
& P= \pm \frac{1}{\sqrt{30}}\left[\begin{array}{cc}
15 & 5 \\
3 & 15
\end{array}\right] \quad \text { or } P= \pm \frac{1}{\sqrt{30}}\left[\begin{array}{ll}
1 & 5 \\
3 & 1
\end{array}\right], \quad \text { and } \\
& P= \pm \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
15 & 5 \\
3 & 15
\end{array}\right] \quad \text { or } P= \pm \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 5 \\
3 & 1
\end{array}\right]
\end{aligned}
$$

Lemma 2.4. Let $P \in M_{2}(C)$. If trace $P=0$, then $P^{2} \in\langle I\rangle$.
Proof. We will prove this lemma in two ways. In general, we have

$$
\begin{equation*}
P^{2}-(\operatorname{trace} P) P+(\operatorname{det} P) I=0 \tag{5}
\end{equation*}
$$

Therefore, if trace $P=0$, then from (5) we obtain,

$$
\begin{aligned}
P^{2}+(\operatorname{det} P) I & =0 \\
P^{2} & =-(\operatorname{det} P) I \text { and } P^{2} \in\langle I\rangle
\end{aligned}
$$

Second Proof. let $P=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$, and $p+s=0$. Then,

$$
P^{2}=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]
$$

$$
P^{2}=\left[\begin{array}{ll}
p^{2}+r q & p q+q s \\
p r+r s & s^{2}+r q
\end{array}\right]
$$

Putting $p=-s$, then

$$
P^{2}=\left[\begin{array}{cc}
p^{2}+r q & 0 \\
0 & s^{2}+r q
\end{array}\right]
$$

Hence, when $p^{2}=s^{2}$ then $P^{2}=\left(p^{2}+r q\right)$.
Example 2.5. Let $Q=\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]$. Then det $Q=2-6=-4$, and trace $Q=1+2=3$. If $P^{2}=Q$ then $\operatorname{det} P=\sqrt{\operatorname{det} Q}=$ $\sqrt{-4}=2 i$, and

$$
\text { trace } \begin{aligned}
P & =\sqrt{\text { trace } Q+2 \sqrt{\operatorname{det} Q}} \\
& =\sqrt{3+2 \sqrt{-4}} \\
& =\sqrt{3+4 i} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& P=\frac{1}{(\text { trace } P)}[Q+(\operatorname{det} P) I], \\
& P=\frac{1}{ \pm \sqrt{3+4 i}}\left\{\left[\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right]+2 i\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right\} \\
& P=\frac{1}{ \pm \sqrt{3+4 i}}\left\{\left[\begin{array}{cc}
1+2 i & 3 \\
2 & 2+2 i
\end{array}\right]\right\}
\end{aligned}
$$

Lemma 2.6. For each $\beta \in C$ and any matrix $P, \sqrt{\beta P}=\sqrt{\beta} \sqrt{P}$.
Proof. Suppose that $\beta \neq 0$ and $Y \in \sqrt{B P}$. So $Y^{2} \in \beta P$, hence $\frac{Y}{\sqrt{\beta}} \in \sqrt{P}$, which implies that $Y \in \sqrt{\beta} \sqrt{P}$.
Conversely, if $Y \in \sqrt{B P}$, then $\frac{Y^{2}}{\beta}=P$. Hence $Y^{2}=\beta P$ and $Y \in \sqrt{\beta P}$. Now, we try to compute \sqrt{I}. Suppose that $P \in M_{2}(C)$ and $P^{2}=I$. Let $P=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$. Then,

$$
P^{2}=\left[\begin{array}{ll}
p^{2}+r q & p q+q s \\
p r+r s & s^{2}+r q
\end{array}\right]
$$

but $P^{2}=I$, then

$$
\begin{aligned}
I & =\left[\begin{array}{ll}
p^{2}+r q & p q+q s \\
p r+r s & s^{2}+r q
\end{array}\right] \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] } & =\left[\begin{array}{ll}
p^{2}+r q & p q+q s \\
p r+r s & s^{2}+r q
\end{array}\right]
\end{aligned}
$$

Hence we have,

$$
\begin{equation*}
p^{2}+r q=1 \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& p q+q s=0 \tag{7}\\
& p r+r s=0 \tag{8}\\
& s^{2}+r q=1 \tag{9}
\end{align*}
$$

From (7) and (8), $q=0$ or $p+s=0$ and $r=0$ or $p+s=0$. We consider two cases:
(1). If $p+s=0$, then equation (7) and (8) hold. We have $p^{2}+r q=1$ or $p=\sqrt{1-r q}$ and since $a+d=0$ and since $p+s=0$ we have $p=-s=-\sqrt{1-r q}$. Therefore

$$
P=\left\{\left[\begin{array}{cc}
\sqrt{1-r q} & 0 \\
0 & -\sqrt{1-r q}
\end{array}\right]: b, c \in C\right\} .
$$

(2). If $p+s \neq 0$ we must have $q=0$ and $r=0$. Hence $p= \pm 1$ and $s= \pm 1$. Therefore there are two solutions $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$. Hence we can write

$$
\sqrt{I}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \cup\left[\begin{array}{cc}
\sqrt{1-r q} & 0 \\
0 & -\sqrt{1-r q}
\end{array}\right] b, c \in C\right\}
$$

Example 2.7. Let $Q=\left[\begin{array}{cc}16 & 0 \\ 0 & 16\end{array}\right]$. Therefore $Q=16\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=16 I$. Then $\sqrt{Q}=4 \sqrt{I}$, hence we have

$$
\sqrt{I}=\left\{\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right],\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right] \cup\left[\begin{array}{cc}
4 \sqrt{1-r q} & 2 q \\
2 r & -4 \sqrt{1-r q}
\end{array}\right]: b, c \in C\right\}
$$

References

[1] G. Alefeld and N. Schneider, On square roots of M-matrices, Linear. Algebra. Appl., 42(1982), 119-132.
[2] E. D. Denman and A. N. Beavers, The matrix sign function and computations in systems, Appl. Math. Comput., 2(1)(1976), 63-94.
[3] W. D. Hoskins and D. J. Walton, A faster method of computing the square root of a matrix, IEEE Trans. Automat. Control., 23(3)(1978), 494-495.
[4] B. W. Levinger, The square root of a 2×2 matrix, Math. Mag., 53(4)(1980), 222-224.
[5] A. Nazari, H. Fereydooni and M. Bayat, A manual approach for calculating the root of square matrix of dimension, Math. Sci., 7(1)(2013), 1-6.
[6] D. Sullivan, The square roots of 2×2 matrices, Math. Mag., 66(5)(1993), 314-316.

[^0]: * E-mail: rrammilansinghlig@gmail.com

