
Int. J. Math. And Appl., 8(1)(2020), 69–75

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

Some Results on Intersection Graphs of Ideals of

Commutative Rings

Pravin Vadhel1,∗

1 Department of Mathematics, V.V.P. Engineering College, Rajkot, Gujarat, India.

Abstract: The rings considered in this article are commutative with identity which admit at least one nonzero proper ideal. Let R
be a ring. Recall that the intersection graph of ideals of R, denoted by G(R), is an undirected simple graph whose vertex

set is the set of all nontrivial ideals of R (an ideal I of R is said to be nontrivial if I /∈ {(0), R}) and distinct vertices I, J

are joined by an edge in G(R) if and only if I ∩ J 6= (0). Let r ∈ N. The aim of this article is to characterize rings R
such that G(R) is either bipartite or 3-partite.

MSC: 13A15.

Keywords: Bipartite graph, Quasilocal ring, Special principal ideal ring(SPIR).

c© JS Publication.

1. Introduction

The rings considered in this article are commutative with identity 1 6= 0. The concept of associating a graph with a ring

R and investigating the interplay between the ring theoretic properties of R and the graph theoretic properties of a graph

associated with it was initiated by I. Beck in [7]. Subsequently, a lot of research activity has been carried out by several

researchers in this area (see, for example [1–4, 8, 9, 12, 15]). The study of intersection graph of ideals of a ring has begun with

the work of Chakrabarthy, Ghosh, Mukherjee and Sen [9]. Let R be a ring with identity which is not necessarily commutative

and which admits at least one nonzero proper left ideal. Recall from [9] that the intersection graph of ideals of R, denoted by

G(R), is an undirected simple graph whose vertex set is the set of all nonzero proper left ideals of R, and two distinct vertices

I,J are joined by an edge in this graph if and only if I ∩ J 6= (0). The intersection graph of ideals of a ring R was studied

by several other researchers (see, for example [2, 9, 12, 14, 15]). The concept of the zero-divisor graph of a commutative

ring was introduced and investigated by D.F. Anderson and P.S. Livingston in [4] and subsequently, several mathematicians

worked and published research articles in the area of zero-divisor graphs of rings (see for example, [1, 4, 8, 10, 13]). The

graphs considered in this article are undirected and simple. Let G = (V,E) be a graph. Let r ≥ 2. Recall from [11] that G is

said to be r-partite if the vertex set V can be decomposed into r disjoint nonempty subsets V1, V2, . . . , Vr such that no edge

in G joins the vertices in the same subset. A r-partite graph G with vertex partition {V1, V2, . . . , Vr} is said to be complete

r-partite if for any i ∈ {1, 2, . . . , r}, each x ∈ Vi is adjacent in G to all the vertices in Vj for each j ∈ {1, 2, . . . , r}\{i}.

A 2-partite graph ( respectively, a complete 2-partite graph) is referred to as a bipartite graph (respectively, a complete

bipartite graph). The authors of [1, 8] proved several interesting theorems on bipartite (respectively, complete r-partite)
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zero-divisor graphs of rings. Let n ∈ N with n > 1. We denote the ring of integers modulo n by Zn. Let n ∈ N be composite.

Chakraborthy, Ghosh, Mukherjee, and Sen showed in [9, Theorem 3.3] that the intersection graph of ideals of Zn is bipartite

if and only if n = pq or n = p3, where p and q are distinct primes.

Let R be a ring which admits at least one nontrivial ideal. Motivated by the work published in the articles [1, 8, 9], in this

article, we try to classify the rings R such that G(R), the intersection graph of ideals of R is either bipartite or 3-partite.

The main results obtained are presented in Section 2 of this article. Let r ≥ 2. It is shown in Lemma 2.1 that if G(R) is

r-partite, then R can have at most r maximal ideals. With the assumption that R has exactly r maximal ideals, in Lemma

2.2, we classify the rings R such that G(R) is r-partite. In particular, for a ring R with exactly two maximal ideals, we

deduce from Lemma 2.2 that G(R) is bipartite if and only if R ∼= K1 ×K2 as rings, where K1 and K2 are fields. A ring

R which admits a unique maximal ideal is referred to as a quasilocal ring. A Noetherian quasilocal ring is referred to as

a local ring. If M is the unique maximal ideal of a quasilocal ring R, then we denote it using the notation that (R,M) is

a quasilocal ring. Recall that a principal ideal ring R is said to be a special principal ideal ring (SPIR), if R has a unique

prime ideal. If M is the only prime ideal of a SPIR R, then M is necessarily nilpotent. If n ≥ 2 is least with the property

that Mn = (0), then it follows from (iii)⇒ (i) of [5, Proposition 8.8] that {M i : i ∈ {1, . . . , n−1}} is the set of all nontrivial

ideals of R. If R is a special principal ideal ring with M as its only prime ideal, then we denote it by saying that (R,M)

is a SPIR. Let r ≥ 2. In Lemmas 2.3 to 2.5, we derive some necessary conditions in order that a quasilocal ring (R,M) to

be r-partite. With the assumption that M2 = (0), in Lemma 2.6, we are able to describe all the ideals of a quasilocal ring

(R,M) in order that G(R) to be bipartite. In Theorem 2.7, we classify quasilocal rings (R,M) such that G(R) is bipartite.

In Lemma 2.9, for a quasilocal ring (R,M), it is shown that G(R) is 3-partite but not bipartite if and only if (R,M) is a

SPIR with M3 6= (0) but M4 = (0). For a ring R with exactly two maximal ideals, it is proved in Lemma 2.8 that G(R) is

3-partite if and only if R ∼= K × S as rings, where K is a field and (S,M) is a SPIR with M 6= (0) but M2 = (0). Let R be

a ring. We denote the set of all units of R using the notation U(R). Let A be a set. We use |A| to denote the cardinality of

A. We use ⊂ to denote proper inclusion.

2. Main Results

Let R be a ring with atleast one nontrivial ideal. The aim of this section is to classify rings R such that G(R) is either

2-partite or 3-partite.

Lemma 2.1. Let R be a ring and let r ≥ 2. If G(R) is r-partite, then R has at most r maximal ideals.

Proof. Suppose that R has more than r maximal ideals. Let {M1,M2...,Mr+1} be a set consisting of (r + 1) distinct

maximal ideals of R. Let G(R) be r-partite with vertex partition {V1, V2..., Vr}. Observe that Mi ∩Mj 6= (0) for any

distinct i, j ∈ {1, 2, 3, ..., r + 1}. Hence, Mi,Mj cannot be in the same Vk for any k ∈ {1, 2, 3, ..., r} and for any distinct

i, j ∈ {1, 2, 3, ...r + 1}. We can assume without loss of generality that Mi ∈ Vi for each i ∈ {1, 2, ..., r}. Note that,
r⋂
i=1

Mi 6= (0) and
r⋂
i=1

Mi /∈ Vk, for any k ∈ {1, 2, 3, ..., r}. This is a contradiction. Hence, the number of maximal ideals of

R is at most r.

Lemma 2.2. Let R be a ring such that R has exactly r maximal ideals (r ≥ 2). Then the following statements are equivalent:

(1). G(R) is r-partite.

(2). r ≤ 3 and R ∼= K1 × K2× , ...,×Kr, where Ki is a field for each i ∈ {1, 2, ..., r}.
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Proof. (1)⇒ (2) Assume that G(R) is r- partite with vertex partition {V1, V2, ..., Vr}. We are assuming that R has exactly

r maximal ideals. Let {M1,M2...,Mr} be the set of all maximal ideals of R. We claim that M1 ∩M2 ∩ ... ∩Mr = (0).

Suppose that M1 ∩M2 ∩ ... ∩Mr 6= (0). Then Mi ∩Mj 6= (0), for all distinct i, j ∈ {1, 2, 3, ..., r}. Hence, for any distinct

i, j ∈ {1, 2, 3, ..., r} Mi and Mj cannot be in the same Vk, for any k ∈ {1, 2, 3, ..., r}. Without loss of generality, we can

assume that Mi ∈ Vi, for each i ∈ {1, 2, ..., r}. Then the nontrivial ideal M1 ∩M2 ∩ ... ∩Mr /∈ Vk for any k ∈ {1, 2, ..., r}.

This is a contradiction. Therefore, M1 ∩M2 ∩ ... ∩Mr = (0). Since, Mi +Mj = R for any distinct i, j ∈ {1, 2, 3, ..., r}, it

follows from the Chinese remainder theorem,[5,Proposition 1.10(ii)and(iii)] that R ∼= R
M1
× R

M2
×, ...,× R

Mr
as rings. Let

R
Mi

= Ki, for each i ∈ {1, 2, ..., r}. Then Ki is a field, for each i ∈ {1, 2, ..., r} and R ∼= K1 ×K2×, ...,×Kr as rings.

We next verify that r ≤ 3. Suppose that r ≥ 4. Then Mi ∩Mj 6= (0), for any distinct i, j ∈ {1, 2, 3, ..., r}. Note that

no Vk (k ∈ {1, 2, ..., r}) can contain both Mi and Mj . We can assume without loss of generality that Mi ∈ Vi for each

i ∈ {1, 2, ..., r}. Note that M1 ∩M2 6= (0). Observe that M1 ∩M2 /∈ Vi for any i ∈ {1, 2, ..., r}. For if M1 ∩M2 ∈ Vi for

some i ∈ {1, 2, ..., r}, then i ≥ 3 and M1 ∩M2,Mi ∈ Vi. As r ≥ 4, M1 ∩M2 ∩Mi 6= (0). Hence there is an edge of G(R)

joining M1 ∩M2 and Mi. This is impossible. Therefore, r ≤ 3.

(2) ⇒ (1) Now, R ∼= K1 × K2×, ...,×Kr as rings and Ki is a field for each i ∈ {1, 2, ..., r} with 2 ≤ r ≤ 3. Then the

graph G(R) is isomorphic to G(K1 ×K2×, ...,×Kr). Note that,G(K1 ×K2) is bipartite with vertex partition {V1, V2} with

V1 = {(0)×K2} and V2 = {K1 × (0)}. Observe that G(K1 ×K2 ×K3) is 3- partite with vertex partition {V1, V2, V3} with

V1 = {K1 × (0)× (0), (0)×K2 ×K3},V2 = {(0)×K2 × (0), K1 × (0)×K3}, and V3 = {(0)× (0)×K3, K1 ×K2 × (0)}.

Therefore, we obtain that G(R) is 3- partite.

It follows from Lemma 2.2 that for a ring R with exatly two maximal ideals, G(R) is bipartite if and only if R ∼= K1 ×K2

as rings, where K1 and K2 are fields.

Lemma 2.3. Let (R,M) be a quasilocal ring. Let r ≥ 2. If G(R) is r-partite, then Mr+1 = (0).

Proof. Let G(R) be r-partite with vertex partition {V1, V2, ..., Vr}. We claim that Mr+1 = (0). Suppose that Mr+1 6= (0).

Then there exist x1, x2, ..., xr+1 ∈ M such that x1, x2, ..., xr+1 6= 0. Observe that if a, b ∈ M with a 6= 0, then Ra 6= Rab.

For if Ra = Rab, then a = rab for some r ∈ R. This implies that a(1 − rb) = 0. As 1 − rb ∈ U(R), it follows that a = 0.

This is a contradiction. Therefore, Ra 6= Rab. Hence, we obtain that for each i ∈ {1, 2, ..., r + 1}. Rai is a nontrivial

ideal of R, where ai =
i∏

k=1

xk. Moreover, note that for all i, j ∈ {1, 2, ..., r + 1} with i < j, Raj ⊂ Rai. Thus for distinct

i, j ∈ {1, 2, ..., r+1}, Rai and Raj cannot be in the same Vk for any k ∈ {1, 2, ..., r}. As for each i ∈ {1, 2, ..., r+1}, Rai ∈ Vk

for some k ∈ {1, 2, ..., r}, it follows from the Pigeon-hole principle that there exists some i ∈ {1, 2, ..., r + 1} that Rai /∈ Vk

for any k ∈ {1, 2, ..., r}. This is a contradiction. Therefore, Mr+1 = (0).

Lemma 2.4. Let (R,M) be a quasilocal ring with M 6= (0). Let r ≥ 2 and let G(R) be r-partite. If I1 ⊂ I2 ⊂, ...,⊂ Ik = M

is a chain of nontrivial ideals of R then k ≤ r. In particular, if G(R) is bipartite, then any nontrivial ideal I of R with

I 6= M is minimal.

Proof. Let G(R) be r-partite with vertex partition {V1, V2 ..., Vr}. Suppose that k ≥ r+1. Then I1 ⊂ I2 ⊂, ...,⊂ Ir+1 = M

is a chain of (r + 1) nontrivial ideals of R. Observe that, for any distinct i, j ∈ {1, 2, ..., r + 1}, Ii and Ij cannot be in the

same Vk for any k ∈ {1, 2, ..., r}. Without loss of generality, we can assume that Ii ∈ Vi for each i ∈ {1, 2, ..., r}. Now,

Ir+1 /∈ Vk for any k ∈ {1, 2, ..., r}. This is a contradiction. Therefore, k ≤ r. Assume that r = 2. Let I be any nontrivial

ideal of R with I 6= M . Since, G(R) is bipartite, it follows from the previous paragraph that there is no nontrivial ideal J

of R with J ⊂ I. Hence, I is a minimal ideal of R.

Lemma 2.5. Let (R,M) be a quasilocal ring. Let r ≥ 2. Suppose that G(R) is r-partite. If Mr 6= (0), then M is principal.
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Proof. Let G(R) be r-partite with vertex partition {V1, V2, ..., Vr}. As G(R) is r-partite, we know from Lemma 2.3 that,

Mr+1 = (0). By hypothesis, Mr 6= (0). Hence, it follows that M i 6= M j for all distinct i, j ∈ {1, 2, ..., r}. Observe that

given any nontrivial ideal I of R, then I must be in Vk for some k ∈ {1, 2, ..., r}. Note that for distinct i, j ∈ {1, 2, ..., r},

M i and M j cannot be in the same Vk for any k ∈ {1, 2, ..., r}. Without loss of generality, we can assume that M i ∈ Vi for

each i ∈ {1, 2, ..., r}. Let x ∈ M\M2. As M i ⊆ M2 + Rx for each i ∈ {2, ..., r}, it follows that M2 + Rx /∈ Vk for each

k ∈ {2, ..., r}. Hence, M2 + Rx ∈ V1 and so, M2 + Rx = M . Thus, M = M2 + Rx =
(
M2 +Rx

)2
+ Rx = M4 + Rx =(

M2 +Rx
)4

+ Rx = M8 + Rx. Continuing in this way, we get that M = M2k

+ Rx for each k ≥ 1. As Mr+1 = (0), it

follows that M2r+1

= (0) and so , M = Rx. This proves that M is principal.

Lemma 2.6. Let (R,M) be a quasilocal ring with M 6= (0). If G(R) is bipartite and if M2 = (0), then M is not

principal but two generated and moreover, G(R) is bipartite with vertex partition {V1, V2} with V1 = {M = Rx + Ry} and

V2 = {Rx,Ry,R(x− uαy) : α ∈ Λ}, where {uα}α∈Λ is the set of distinct representatives of nonzero elements of R
M

.

Proof. Let G(R) be bipartite with vertex partition {V1, V2}. It is given that M2 = (0). We claim that M is generated by

at most two elements. Suppose not. Then there exist {x, y, z} ⊆ M \ {0} such that {x, y, z} is linearly independent over

R
M

. Note that M,Rx,Rx + Ry are distinct nontrivial ideals of R which are pairwise comparable under inclusion. Hence,

Rx −M − Rx + Ry − Rx is a cycle of length 3 in G(R). This is impossible, since G(R) is bipartite. Thus, M can be

generated by at most two elements. We assert that M is not principal. If M is principal, then it follows from M2 = (0) that

M is the only vertex of G(R). This is impossible, since, |the vertex set of G(R)| = |V1 ∪ V2| ≥ 2. Hence, M is generated by

exactly two elements. Thus, there exist x, y ∈M such that M = Rx+Ry. Let A be any nontrivial ideal of R with A 6= M .

We know from Lemma 2.4, that A is minimal. Let a ∈ A be such that A = Ra. We claim that either {a, x} is linearly

independent over R
M

or {a, y} is linearly independent over R
M

. Suppose that a, x are linearly dependent over R
M

. Now, there

exist λ and µ in R with at least one of which belongs to R\M such that

λa+ µx = 0 (1)

We assert that both λ and µ are units in R. Suppose that λ ∈ U(R) and µ ∈ M . Then µx = 0. Hence, we obtain from

(1) that λa = 0. which implies that a = 0. This is a contradiction. Therefore, µ ∈ U(R). Similarly, if µ ∈ U(R), then

λ ∈ U(R). Thus both λ and µ are units in R. Now, from (1), a = −λ−1µx. This implies that Ra = Rx. Thus, A = Rx.

Similarly, if a, y are linearly dependent over R
M

, then we get that A = Ry. Hence,A = Rx = Ry. This is impossible.

Therefore, either {a, x} is linearly independent over R
M

or {a, y} is linearly independent over R
M

. Suppose that {a, x} is

linearly independent over R
M

. As dim R
M
M = 2, it follows that M = Ra+ Rx. Now, y ∈ M and so, y = r1a+ r2x for some

r1, r2 ∈ R.

We claim that r1 ∈ U(R). If r1 /∈ U(R), then from M2 = (0), we obtain that r1a = 0 and so, y = r2x. This is impossible.

since {x, y} is linearly independent over R
M

. Therefore, r1 is a unit in R. Hence, r1a = y − r2x and so, Ra = R(y − r2x).

Similarly, if {a, y} is linearly independent over R
M

, then we obtain that A = Ra = R(x − sy) for some s ∈ R. It is

clear that for any unit u of R, Rx,Ry,R(x − uy) are distinct. Let u1, u2 ∈ U(R) be such that u1 − u2 ∈ M . Then

x− u1y = x− (u1 − u2 + u2)y = x− u2y, since (u1 − u2)y ∈M2 = (0). Hence, R(x− u1y) = R(x− u2y).

Conversely, if v1, v2 ∈ U(R) be such that R(x − v1y) = R(x − v2y). Now, (x − v2y) − (x − v1y) ∈ R(x − v1y) and

so, (v1 − v2)y ∈ R(x − v1y). As y /∈ R(x − v1y), it follows that v1 − v2 ∈ M . This shows that for units u1, u2 of R,

R(x− u1y) = R(x− u2y) if and only if u1 − u2 ∈M . Let {uα}α∈Λ ⊆ U(R) be such that uα +M 6= uβ +M for all distinct

α, β ∈ Λ. From the above discussion, we obtain that the set of all nontrivial ideals of R equals {Rx,Ry,R(x − uαy),M =

Rx + Ry : α ∈ Λ}. Note that Rx,Ry,R(x − uαy) are distinct minimal ideals of R, where {uα}α∈Λ is the set of distinct
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representatives of nonzero elements of R
M

. Hence, we obtain that G(R) is bipartite with vertex partition V1 = {M = Rx+Ry}

and V2 = {Rx,Ry,R(x− uαy) : α ∈ Λ}.

Theorem 2.7. Let (R,M) be quasilocal. Then the following statements are equivalent:

(1). G(R) is bipartite.

(2). M3 = (0) and if M2 6= (0) then M must be principal and so (R,M) is a SPIR. If M2 = (0), then M is not principal but

there exist x, y ∈M such that M = Rx+Ry and the set of all nontrivial ideals of R = {M,Rx,Ry,R(x−uαy) : α ∈ Λ},

where, {uα}α∈Λ is the set of distinct representatives of nonzero elements of R
M

.

Proof. (1) ⇒ (2) It follows from Lemma 2.3 that M3 = (0). If M2 6= (0), then it follows from Lemma 2.4 that M is

principal. Now, it follows from the proof of (iii)⇒ (i) of [5, Proposition 8.8] that {M,M2} are the only nontrivial ideals of

R. Hence, (R,M) is SPIR. If M2 = (0), then it follows from Lemma 2.6 that M is not principal but there exist x, y ∈ M

such that M = Rx + Ry and moreover, the set of all nontrivial ideals of R = {M,Rx,Ry,R(x − uαy) : α ∈ Λ}, where,

{uα}α∈Λ is the set of distinct representatives of nonzero elements of R
M

.

(2)⇒ (1)

Case 1: M3 = (0) but M2 6= (0). In this case, (R,M) is a SPIR with the set of nontrivial ideals of R equals {M,M2}. It

is then clear that G(R) is bipartite with vertex partition V1 = {M} and V2 = {M2}.

Case 2: M2 = (0). In this case, M is not principal but M is two generated and the set of all nontrivial ideals of

R = {M = Rx+Ry,Rx,Ry,R(x− uαy) : α ∈ Λ}, where, {uα}α∈Λ is the set of distinct representatives of nonzero elements

of R
M

. It is already verified in the proof of Lemma 2.6 that G(R) is bipartite.

Lemma 2.8. Let R be a ring with exactly two maximal ideals. Then the following statements are equivalent:

(1). G(R) is 3- partite.

(2). R ∼= K × S as rings, where K is a field and (S,M) is a SPIR with M 6= (0) but M2 = (0).

Proof. (1)⇒ (2): Let {M1,M2} denote the set of all maximal ideals of R and let G(R) be 3- partite with vertex partition

{V1, V2, V3}. We claim that M1 ∩M2 6= (0). For if M1 ∩M2 = (0), then R ∼= R1
M1
× R2

M2
as rings and in such a case, R

has exactly two nontrivial ideals. However, G(R) is 3- partite implies that R has at least three nontrivial ideals. Therefore,

M1 ∩M2 6= (0). As M1 ∩M2 6= (0), M1, M2 cannot be in the same Vk, for any k ∈ {1, 2, 3}. Without loss of generality we

can assume that M1 ∈ V1 and M2 ∈ V2. Then M1 ∩M2 ∈ V3. Let x ∈ M1 ∩M2, x 6= (0). As Rx /∈ V1 ∪ V2, it follows that

Rx ∈ V3 and hence, Rx = M1 ∩M2. As M1 + M2 = R, it follows that M1 ∩M2 = M1M2. Thus, Rx = M1M2. We assert

that x2 = (0). If x2 6= (0), then Rx2 ∈ V3 and so, Rx2 = Rx. This implies that x = rx2 for some r ∈ R. Hence,

x(1− rx) = 0 (2)

As x ∈M1∩M2 = Jacobson radical of R, 1−rx is a unit in R. Therefore, from (2), we obtain that x = (0). This is impossible.

Therefore, Rx2 = (0). Thus, M1
2M2

2 = (0). From M1
2M2

2 = (0) but M1M2 6= (0), it follows that either M1 6= M1
2 or

M2 6= M2
2. Without loss of generality, we can assume that M2 6= M2

2. We assert that M1M2
2 = (0). Suppose that

M1M2
2 6= (0). As M1 ∈ V1,M1M2

2 /∈ V1. Since,M2 ∈ V2,M1M2
2 /∈ V2. Hence, M1M2

2 ∈ V3 and so M1M2
2 = M1M2. Now,

M2 6= M2
2 and so M2

2 /∈ V2. As M1 ∈ V1, M1M2
2 6= (0), M2

2 /∈ V1. As M1M2
2 ∩M2

2 = M1M2
2 6= (0), M2

2 /∈ V3. This is

a contradiction. Therefore, M1M2
2 = (0). Note that the mapping f : R→ R

M1
× R

M2
2 defined by f(r) = (r +M1, r +M2

2)

is an isomorphism of rings by [5, Proposition 1.10 (ii) and (iii)].
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We claim that there exist a ∈ M1\M2 and b ∈ M2\M1 such that ab 6= 0. Since M1 + M2 = R, there exist x ∈ M1 and

y ∈M2 such that x+ y = 1. Clearly, x /∈M2 and y /∈M1. Let w ∈M1 ∩M2, w 6= 0. Then w = xw + yw. Either xw 6= 0 or

yw 6= 0. Without loss of generality, we can assume that xw 6= 0. If xy 6= 0, then with a = x and b = y, we get that ab 6= 0.

Suppose that xy = 0. Then with a = x and b = y + w, we obtain that a ∈ M1\M2 and b ∈ M2\M1 and ab = xw 6= 0.

Now, ab ∈ M1 ∩M2 and as M1 ∩M2 is a minimal ideal of R, it follows that M1 ∩M2 = Rab. Note that, Ra ∩M2 6= (0),

Rb ∩M1 6= (0). Moreover, Ra 6= Rab and Rb 6= Rab. Now, M1 ∩M2 = Rab ∈ V3. Hence, Ra /∈ V3 and Rb /∈ V3. As

Ra 6= M2, Ra /∈ V2. Therefore, Ra ∈ V1 Hence, M1 = Ra. Similarly, Rb 6= M1 and Rb ∩M1 6= (0). Therefore, Rb /∈ V1

and so, Rb ∈ V2. Thus, M2, Rb ∈ V2. This implies that M2 = Rb. Hence, R
M2

2 is a quasilocal ring with M = M2
M2

2 as its

unique maximal ideal with M 6= (0 + M2
2 ) but M2 = (0 + M2

2). Moreover, as M is principal, it follows from (iii) ⇒ (i)

of [5, Proposition 8.8] that
(

R
M2

2 ,
M2
M2

2

)
is a SPIR. We have already verified that R ∼= R

M1
× R

M2
2 as rings. Let K = R

M1

and S = R
M2

2 . Note that K is a field and
(
S, M = M2

M2
2

)
is SPIR with M 6=

(
0 +M2

2
)

but M2 =
(
0 +M2

2
)
. This proves

(1)⇒ (2).

(2) ⇒ (1): Assume that R ∼= K × S as rings, where K is a field and (S,M) is a SPIR with M 6= (0) but M2 = 0. Let

T = K ×S. Note that G(T ) is a graph on the vertex set {(0)×S, (0)×M,K × (0),K ×M}. Let W1 = {(0)× S,K × (0)},

W2 = {K ×M}, W3 = {(0)×M}. Then it is clear that G(T ) is 3-partite with vertex partition {W1,W2,W3}.

Lemma 2.9. Let (R,M) be a quasilocal ring. Then the following statements are equivalent:

(1). G(R) is 3- partite but not 2-partite.

(2). (R,M) is a SPIR with M3 6= (0) but M4 = (0).

Proof. (1) ⇒ (2): Assume that G(R) is 3-partite but not 2-partite. We know from Lemma 2.3 that M4 = (0). If

M3 6= (0), then we know from Lemma 2.5 and (iii) ⇒ (i) of [5, Proposition 8.8] that (R,M) is a SPIR. Suppose that

M3 = 0. We claim that M can be generated by at most two elements. Otherwise, we can find {x, y, z} ⊆ M such that{
x+M2, y +M2, z +M2

}
is linearly independent over R

M
. The ideals Rx,Rx + Ry,Rx + Ry + Rz are distinct nontrivial

ideals of R. Let G(R) be 3-partite with vertex partition {V1, V2, V3}. Let I1 = Rx + Ry + Rz, I2 = Rx + Ry,I3 = Rx.

Observe that Ii∩ Ij 6= (0), for all distinct i, j ∈ {1, 2, 3}. Hence, no two distinct Ii, Ij (i, j ∈ {1, 2, 3}) can belong to the same

Vk for any k ∈ {1, 2, 3}.

Without loss of generality, we can assume that Rx+ Ry + Rz ∈ V1, Rx+ Ry ∈ V2 and Rx ∈ V3. Observe that Rx+ Rz /∈

{I1, I2, I3}. It is clear that Rx + Rz /∈ V1 ∪ V2 ∪ V3. This is a contradiction. Hence, M can be generated by at most

two elements. We are assuming that M3 = (0). Then either M2 = (0) or M2 6= (0). If M is principal, then M is the

only nontrivial ideal of R in the case M2 = (0) and {M,M2} is the set of all nontrivial ideals of R in the case M2 6= (0).

However, as G(R) is 3-partite but not 2-partite , R has at least three nontrivial ideals. Therefore, M cannot be principal.

Thus, M is two generated but not principal. Let {a, b} ⊆ M be such that M = Ra + Rb. If M2 = (0), then we know

that the set of nontrivial ideals of R equals {M = Ra + Rb,Ra,Rb,R(a − uα) : α ∈ Λ}, where, {uα}α∈Λ is the set of

distinct representatives of nonzero elements of R
M

and in this case, G(R) is a 2-partite with vertex partition W1 = {M} and

W2 = {Ra,Rb,R(a − uα) : α ∈ Λ}. As we are assuming that G(R) is not 2-partite, we obtain that M2 6= (0). We claim

that M2 = Rx for any x ∈ M2, x 6= 0. As M2 6= (0) there exist x1, x2 ∈ M such that x1x2 6= 0. Observe that the ideals

J1 = Rx1, J2 = Rx2 and J3 = Rx1x2 are nontrivial ideals of R. As x1 ∈ M x1 6= 0, it follows that Rx1 6= Rx1x2. As

Rx1 ∩ Rx1x2 = Rx1x2 6= 0, Rx1 and Rx1x2 cannot be in the same Vk for any k ∈ {1, 2, 3}. Without loss of generality we

can assume that M ∈ V1, Rx1 ∈ V2, Rx1x2 ∈ V3. As M2 /∈ V1 ∪ V2, we must have M2 ∈ V3. Hence, M2 = Rx1x2. Let

x ∈ M2, x 6= 0. As M2 = Rx1x2 , Rx /∈ V1 ∪ V2. Therefore, Rx ∈ V3. Hence, M2 = Rx. We next assert that z2 = (0) for
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any z ∈M . Suppose that z2 6= 0 for some z ∈M . Consider the mapping f : M →M2 given by f(m) = zm. It is clear that

f is R- linear. As M2 = Rz2, it follows that f is onto. We claim that kerf = M2. If m ∈M2, then zm ∈M3 = (0). Hence,

M2 ⊆ ker f . Observe that as z2 6= 0, z ∈ M\ ker f . Hence, M2 ⊆ ker f ⊂ M . Now, M ∈ V1 and M2 ∈ V3. Observe that

Rz /∈ V1 ∪ V3. Hence, Rz ∈ V2. Observe that Rz 6= kerf and Rz ∩ ker f ⊇ Rz2. Therefore, Rz ∩ ker f 6= (0). Hence, there is

an edge of G(R) joining Rz and ker f . Therefore,ker f /∈ V2. Thus, ker f ∈ V3. As M2 ∩ ker f = M2 6= (0), it follows that

ker f = M2. Now, f : M → M2 is a surjective R- linear map with ker f = M2. Therefore, by the Fundamental theorem

of homomorphism of modules, we obtain that M
M2
∼= M2 as R - modules. As M2 is a minimal ideal of R, it follows that

M
M2 is generated by any nonzero element of M

M2 . This is impossible. since dim R
M

(
M
M2

)
= 2. Thus, z2 = 0 for any z ∈ M .

Now, M = Ra + Rb. Hence, M2 = Ra2 + Rab + Rb2 = Rab. Observe that Ra 6= Rb. Moreover, Ra ∩ Rb 6= (0). It is clear

that Ra,Rb /∈ V1 ∪ V3. Hence, Ra,Rb ∈ V2. This is impossible as there is an edge of G(R) joining Ra and Rb. This proves

thatM3 6= (0). In such a case (R,M) is a SPIR with {M,M2,M3} as its set of nontrivial ideals.

(2) ⇒ (1): Note that {M,M2,M3} is the set of all nontrivial ideals of R. It is clear that G(R) is 3-partite with vertex

partition {V1, V2, V3} with V1 = {M}, V2 = {M2}, and V3 = {M3}. Clearly, G(R) is not 2-partite.
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