International Journal of Mathematics And its Applications

Some Results on Intersection Graphs of Ideals of Commutative Rings

Pravin Vadhel ${ }^{1, *}$
1 Department of Mathematics, V.V.P. Engineering College, Rajkot, Gujarat, India.

Abstract

The rings considered in this article are commutative with identity which admit at least one nonzero proper ideal. Let R be a ring. Recall that the intersection graph of ideals of R, denoted by $G(R)$, is an undirected simple graph whose vertex set is the set of all nontrivial ideals of R (an ideal I of R is said to be nontrivial if $I \notin\{(0), R\})$ and distinct vertices I, J are joined by an edge in $G(R)$ if and only if $I \cap J \neq(0)$. Let $r \in \mathbb{N}$. The aim of this article is to characterize rings R such that $G(R)$ is either bipartite or 3-partite.

MSC: 13A15.

Keywords: Bipartite graph, Quasilocal ring, Special principal ideal ring(SPIR).
(c) JS Publication.

1. Introduction

The rings considered in this article are commutative with identity $1 \neq 0$. The concept of associating a graph with a ring R and investigating the interplay between the ring theoretic properties of R and the graph theoretic properties of a graph associated with it was initiated by I. Beck in [7]. Subsequently, a lot of research activity has been carried out by several researchers in this area (see, for example $[1-4,8,9,12,15]$). The study of intersection graph of ideals of a ring has begun with the work of Chakrabarthy, Ghosh, Mukherjee and Sen [9]. Let R be a ring with identity which is not necessarily commutative and which admits at least one nonzero proper left ideal. Recall from [9] that the intersection graph of ideals of R, denoted by $G(R)$, is an undirected simple graph whose vertex set is the set of all nonzero proper left ideals of R , and two distinct vertices I, J are joined by an edge in this graph if and only if $I \cap J \neq(0)$. The intersection graph of ideals of a ring R was studied by several other researchers (see, for example [2, 9, 12, 14, 15]). The concept of the zero-divisor graph of a commutative ring was introduced and investigated by D.F. Anderson and P.S. Livingston in [4] and subsequently, several mathematicians worked and published research articles in the area of zero-divisor graphs of rings (see for example, [1, 4, 8, 10, 13]). The graphs considered in this article are undirected and simple. Let $G=(V, E)$ be a graph. Let $r \geq 2$. Recall from [11] that G is said to be r-partite if the vertex set V can be decomposed into r disjoint nonempty subsets $V_{1}, V_{2}, \ldots, V_{r}$ such that no edge in G joins the vertices in the same subset. A r-partite graph G with vertex partition $\left\{V_{1}, V_{2}, \ldots, V_{r}\right\}$ is said to be complete r-partite if for any $i \in\{1,2, \ldots, r\}$, each $x \in V_{i}$ is adjacent in G to all the vertices in V_{j} for each $j \in\{1,2, \ldots, r\} \backslash\{i\}$. A 2-partite graph (respectively, a complete 2-partite graph) is referred to as a bipartite graph (respectively, a complete bipartite graph). The authors of $[1,8]$ proved several interesting theorems on bipartite (respectively, complete r-partite)

[^0]zero-divisor graphs of rings. Let $n \in \mathbb{N}$ with $n>1$. We denote the ring of integers modulo n by \mathbb{Z}_{n}. Let $n \in \mathbb{N}$ be composite. Chakraborthy, Ghosh, Mukherjee, and Sen showed in [9, Theorem 3.3] that the intersection graph of ideals of \mathbb{Z}_{n} is bipartite if and only if $n=p q$ or $n=p^{3}$, where p and q are distinct primes.

Let R be a ring which admits at least one nontrivial ideal. Motivated by the work published in the articles $[1,8,9]$, in this article, we try to classify the rings R such that $G(R)$, the intersection graph of ideals of R is either bipartite or 3-partite. The main results obtained are presented in Section 2 of this article. Let $r \geq 2$. It is shown in Lemma 2.1 that if $G(R)$ is r-partite, then R can have at most r maximal ideals. With the assumption that R has exactly r maximal ideals, in Lemma 2.2, we classify the rings R such that $G(R)$ is r-partite. In particular, for a ring R with exactly two maximal ideals, we deduce from Lemma 2.2 that $G(R)$ is bipartite if and only if $R \cong K_{1} \times K_{2}$ as rings, where K_{1} and K_{2} are fields. A ring R which admits a unique maximal ideal is referred to as a quasilocal ring. A Noetherian quasilocal ring is referred to as a local ring. If M is the unique maximal ideal of a quasilocal ring R, then we denote it using the notation that (R, M) is a quasilocal ring. Recall that a principal ideal ring R is said to be a special principal ideal ring (SPIR), if R has a unique prime ideal. If M is the only prime ideal of a $\operatorname{SPIR} R$, then M is necessarily nilpotent. If $n \geq 2$ is least with the property that $M^{n}=(0)$, then it follows from $($ iii $) \Rightarrow(i)$ of $[5$, Proposition 8.8$]$ that $\left\{M^{i}: i \in\{1, \ldots, n-1\}\right\}$ is the set of all nontrivial ideals of R. If R is a special principal ideal ring with M as its only prime ideal, then we denote it by saying that (R, M) is a SPIR. Let $r \geq 2$. In Lemmas 2.3 to 2.5 , we derive some necessary conditions in order that a quasilocal ring (R, M) to be r-partite. With the assumption that $M^{2}=(0)$, in Lemma 2.6, we are able to describe all the ideals of a quasilocal ring (R, M) in order that $G(R)$ to be bipartite. In Theorem 2.7 , we classify quasilocal rings (R, M) such that $G(R)$ is bipartite. In Lemma 2.9, for a quasilocal ring (R, M), it is shown that $G(R)$ is 3-partite but not bipartite if and only if (R, M) is a SPIR with $M^{3} \neq(0)$ but $M^{4}=(0)$. For a ring R with exactly two maximal ideals, it is proved in Lemma 2.8 that $G(R)$ is 3-partite if and only if $R \cong K \times S$ as rings, where K is a field and (S, M) is a SPIR with $M \neq(0)$ but $M^{2}=(0)$. Let R be a ring. We denote the set of all units of R using the notation $U(R)$. Let A be a set. We use $|A|$ to denote the cardinality of A. We use \subset to denote proper inclusion.

2. Main Results

Let R be a ring with atleast one nontrivial ideal. The aim of this section is to classify rings R such that $G(R)$ is either 2-partite or 3-partite.

Lemma 2.1. Let R be a ring and let $r \geq 2$. If $G(R)$ is r-partite, then R has at most r maximal ideals.

Proof. Suppose that R has more than r maximal ideals. Let $\left\{M_{1}, M_{2} \ldots, M_{r+1}\right\}$ be a set consisting of $(r+1)$ distinct maximal ideals of R. Let $G(R)$ be r-partite with vertex partition $\left\{V_{1}, V_{2} \ldots, V_{r}\right\}$. Observe that $M_{i} \cap M_{j} \neq(0)$ for any distinct $i, j \in\{1,2,3, \ldots, r+1\}$. Hence, M_{i}, M_{j} cannot be in the same V_{k} for any $k \in\{1,2,3, \ldots, r\}$ and for any distinct $i, j \in\{1,2,3, \ldots r+1\}$. We can assume without loss of generality that $M_{i} \in V_{i}$ for each $i \in\{1,2, \ldots, r\}$. Note that, $\bigcap_{i=1}^{r} M_{i} \neq(0)$ and $\bigcap_{i=1}^{r} M_{i} \notin V_{k}$, for any $k \in\{1,2,3, \ldots, r\}$. This is a contradiction. Hence, the number of maximal ideals of R is at most r.

Lemma 2.2. Let R be a ring such that R has exactly r maximal ideals $(r \geq 2)$. Then the following statements are equivalent:
(1). $G(R)$ is r-partite.
(2). $r \leq 3$ and $R \cong K_{1} \times K_{2} \times, \ldots, \times K_{r}$, where K_{i} is a field for each $i \in\{1,2, \ldots, r\}$.

Proof. (1) $\Rightarrow(2)$ Assume that $G(R)$ is r - partite with vertex partition $\left\{V_{1}, V_{2}, \ldots, V_{r}\right\}$. We are assuming that R has exactly r maximal ideals. Let $\left\{M_{1}, M_{2} \ldots, M_{r}\right\}$ be the set of all maximal ideals of R. We claim that $M_{1} \cap M_{2} \cap \ldots \cap M_{r}=(0)$. Suppose that $M_{1} \cap M_{2} \cap \ldots \cap M_{r} \neq(0)$. Then $M_{i} \cap M_{j} \neq(0)$, for all distinct $i, j \in\{1,2,3, \ldots, r\}$. Hence, for any distinct $i, j \in\{1,2,3, \ldots, r\} M_{i}$ and M_{j} cannot be in the same V_{k}, for any $k \in\{1,2,3, \ldots, r\}$. Without loss of generality, we can assume that $M_{i} \in V_{i}$, for each $i \in\{1,2, \ldots, r\}$. Then the nontrivial ideal $M_{1} \cap M_{2} \cap \ldots \cap M_{r} \notin V_{k}$ for any $k \in\{1,2, \ldots, r\}$. This is a contradiction. Therefore, $M_{1} \cap M_{2} \cap \ldots \cap M_{r}=(0)$. Since, $M_{i}+M_{j}=R$ for any distinct $i, j \in\{1,2,3, \ldots, r\}$, it follows from the Chinese remainder theorem, [5,Proposition 1.10 (ii)and(iii)] that $R \cong \frac{R}{M_{1}} \times \frac{R}{M_{2}} \times, \ldots, \times \frac{R}{M_{r}}$ as rings. Let $\frac{R}{M_{i}}=K_{i}$, for each $i \in\{1,2, \ldots, r\}$. Then K_{i} is a field, for each $i \in\{1,2, \ldots, r\}$ and $R \cong K_{1} \times K_{2} \times, \ldots, \times K_{r}$ as rings. We next verify that $r \leq 3$. Suppose that $r \geq 4$. Then $M_{i} \cap M_{j} \neq(0)$, for any distinct $i, j \in\{1,2,3, \ldots, r\}$. Note that no $V_{k}(k \in\{1,2, \ldots, r\})$ can contain both M_{i} and M_{j}. We can assume without loss of generality that $M_{i} \in V_{i}$ for each $i \in\{1,2, \ldots, r\}$. Note that $M_{1} \cap M_{2} \neq(0)$. Observe that $M_{1} \cap M_{2} \notin V_{i}$ for any $i \in\{1,2, \ldots, r\}$. For if $M_{1} \cap M_{2} \in V_{i}$ for some $i \in\{1,2, \ldots, r\}$, then $i \geq 3$ and $M_{1} \cap M_{2}, M_{i} \in V_{i}$. As $r \geq 4, M_{1} \cap M_{2} \cap M_{i} \neq(0)$. Hence there is an edge of $G(R)$ joining $M_{1} \cap M_{2}$ and M_{i}. This is impossible. Therefore, $r \leq 3$.
$(2) \Rightarrow(1)$ Now, $R \cong K_{1} \times K_{2} \times, \ldots, \times K_{r}$ as rings and K_{i} is a field for each $i \in\{1,2, \ldots, r\}$ with $2 \leq r \leq 3$. Then the graph $G(R)$ is isomorphic to $G\left(K_{1} \times K_{2} \times, \ldots, \times K_{r}\right)$. Note that, $G\left(K_{1} \times K_{2}\right)$ is bipartite with vertex partition $\left\{V_{1}, V_{2}\right\}$ with $V_{1}=\left\{(0) \times K_{2}\right\}$ and $V_{2}=\left\{K_{1} \times(0)\right\}$. Observe that $G\left(K_{1} \times K_{2} \times K_{3}\right)$ is 3- partite with vertex partition $\left\{V_{1}, V_{2}, V_{3}\right\}$ with $V_{1}=\left\{K_{1} \times(0) \times(0),(0) \times K_{2} \times K_{3}\right\}, V_{2}=\left\{(0) \times K_{2} \times(0), K_{1} \times(0) \times K_{3}\right\}$, and $V_{3}=\left\{(0) \times(0) \times K_{3}, K_{1} \times K_{2} \times(0)\right\}$. Therefore, we obtain that $G(R)$ is 3 - partite.

It follows from Lemma 2.2 that for a ring R with exatly two maximal ideals, $G(R)$ is bipartite if and only if $R \cong K_{1} \times K_{2}$ as rings, where K_{1} and K_{2} are fields.

Lemma 2.3. Let (R, M) be a quasilocal ring. Let $r \geq 2$. If $G(R)$ is r-partite, then $M^{r+1}=(0)$.
Proof. Let $G(R)$ be r-partite with vertex partition $\left\{V_{1}, V_{2}, \ldots, V_{r}\right\}$. We claim that $M^{r+1}=(0)$. Suppose that $M^{r+1} \neq(0)$. Then there exist $x_{1}, x_{2}, \ldots, x_{r+1} \in M$ such that $x_{1}, x_{2}, \ldots, x_{r+1} \neq 0$. Observe that if $a, b \in M$ with $a \neq 0$, then $R a \neq R a b$. For if $R a=R a b$, then $a=r a b$ for some $r \in R$. This implies that $a(1-r b)=0$. As $1-r b \in U(R)$, it follows that $a=0$. This is a contradiction. Therefore, $R a \neq R a b$. Hence, we obtain that for each $i \in\{1,2, \ldots, r+1\}$. $R a_{i}$ is a nontrivial ideal of R, where $a_{i}=\prod_{k=1}^{i} x_{k}$. Moreover, note that for all $i, j \in\{1,2, \ldots, r+1\}$ with $i<j, R a_{j} \subset R a_{i}$. Thus for distinct $i, j \in\{1,2, \ldots, r+1\}, R a_{i}$ and $R a_{j}$ cannot be in the same V_{k} for any $k \in\{1,2, \ldots, r\}$. As for each $i \in\{1,2, \ldots, r+1\}, R a_{i} \in V_{k}$ for some $k \in\{1,2, \ldots, r\}$, it follows from the Pigeon-hole principle that there exists some $i \in\{1,2, \ldots, r+1\}$ that $R a_{i} \notin V_{k}$ for any $k \in\{1,2, \ldots, r\}$. This is a contradiction. Therefore, $M^{r+1}=(0)$.

Lemma 2.4. Let (R, M) be a quasilocal ring with $M \neq(0)$. Let $r \geq 2$ and let $G(R)$ be r-partite. If $I_{1} \subset I_{2} \subset, \ldots, \subset I_{k}=M$ is a chain of nontrivial ideals of R then $k \leq r$. In particular, if $G(R)$ is bipartite, then any nontrivial ideal I of R with $I \neq M$ is minimal.

Proof. Let $G(R)$ be r-partite with vertex partition $\left\{V_{1}, V_{2} \ldots, V_{r}\right\}$. Suppose that $k \geq r+1$. Then $I_{1} \subset I_{2} \subset, \ldots, \subset I_{r+1}=M$ is a chain of $(r+1)$ nontrivial ideals of R. Observe that, for any distinct $i, j \in\{1,2, \ldots, r+1\}, I_{i}$ and I_{j} cannot be in the same V_{k} for any $k \in\{1,2, \ldots, r\}$. Without loss of generality, we can assume that $I_{i} \in V_{i}$ for each $i \in\{1,2, \ldots, r\}$. Now, $I_{r+1} \notin V_{k}$ for any $k \in\{1,2, \ldots, r\}$. This is a contradiction. Therefore, $k \leq r$. Assume that $r=2$. Let I be any nontrivial ideal of R with $I \neq M$. Since, $G(R)$ is bipartite, it follows from the previous paragraph that there is no nontrivial ideal J of R with $J \subset I$. Hence, I is a minimal ideal of R.

Lemma 2.5. Let (R, M) be a quasilocal ring. Let $r \geq 2$. Suppose that $G(R)$ is r-partite. If $M^{r} \neq(0)$, then M is principal.

Proof. Let $G(R)$ be r-partite with vertex partition $\left\{V_{1}, V_{2}, \ldots, V_{r}\right\}$. As $G(R)$ is r-partite, we know from Lemma 2.3 that, $M^{r+1}=(0)$. By hypothesis, $M^{r} \neq(0)$. Hence, it follows that $M^{i} \neq M^{j}$ for all distinct $i, j \in\{1,2, \ldots, r\}$. Observe that given any nontrivial ideal I of R, then I must be in V_{k} for some $k \in\{1,2, \ldots, r\}$. Note that for distinct $i, j \in\{1,2, \ldots, r\}$, M^{i} and M^{j} cannot be in the same V_{k} for any $k \in\{1,2, \ldots, r\}$. Without loss of generality, we can assume that $M^{i} \in V_{i}$ for each $i \in\{1,2, \ldots, r\}$. Let $x \in M \backslash M^{2}$. As $M^{i} \subseteq M^{2}+R x$ for each $i \in\{2, \ldots, r\}$, it follows that $M^{2}+R x \notin V_{k}$ for each $k \in\{2, \ldots, r\}$. Hence, $M^{2}+R x \in V_{1}$ and so, $M^{2}+R x=M$. Thus, $M=M^{2}+R x=\left(M^{2}+R x\right)^{2}+R x=M^{4}+R x=$ $\left(M^{2}+R x\right)^{4}+R x=M^{8}+R x$. Continuing in this way, we get that $M=M^{2^{k}}+R x$ for each $k \geq 1$. As $M^{r+1}=(0)$, it follows that $M^{2^{r+1}}=(0)$ and so,$M=R x$. This proves that M is principal.

Lemma 2.6. Let (R, M) be a quasilocal ring with $M \neq(0)$. If $G(R)$ is bipartite and if $M^{2}=(0)$, then M is not principal but two generated and moreover, $G(R)$ is bipartite with vertex partition $\left\{V_{1}, V_{2}\right\}$ with $V_{1}=\{M=R x+R y\}$ and $V_{2}=\left\{R x, R y, R\left(x-u_{\alpha} y\right): \alpha \in \Lambda\right\}$, where $\left\{u_{\alpha}\right\}_{\alpha \in \Lambda}$ is the set of distinct representatives of nonzero elements of $\frac{R}{M}$.

Proof. Let $G(R)$ be bipartite with vertex partition $\left\{V_{1}, V_{2}\right\}$. It is given that $M^{2}=(0)$. We claim that M is generated by at most two elements. Suppose not. Then there exist $\{x, y, z\} \subseteq M \backslash\{0\}$ such that $\{x, y, z\}$ is linearly independent over $\frac{R}{M}$. Note that $M, R x, R x+R y$ are distinct nontrivial ideals of R which are pairwise comparable under inclusion. Hence, $R x-M-R x+R y-R x$ is a cycle of length 3 in $G(R)$. This is impossible, since $G(R)$ is bipartite. Thus, M can be generated by at most two elements. We assert that M is not principal. If M is principal, then it follows from $M^{2}=(0)$ that M is the only vertex of $G(R)$. This is impossible, since, \mid the vertex set of $\mathrm{G}(\mathrm{R})\left|=\left|V_{1} \cup V_{2}\right| \geq 2\right.$. Hence, M is generated by exactly two elements. Thus, there exist $x, y \in M$ such that $M=R x+R y$. Let A be any nontrivial ideal of R with $A \neq M$. We know from Lemma 2.4, that A is minimal. Let $a \in A$ be such that $A=R a$. We claim that either $\{a, x\}$ is linearly independent over $\frac{R}{M}$ or $\{a, y\}$ is linearly independent over $\frac{R}{M}$. Suppose that a, x are linearly dependent over $\frac{R}{M}$. Now, there exist λ and μ in R with at least one of which belongs to $R \backslash M$ such that

$$
\begin{equation*}
\lambda a+\mu x=0 \tag{1}
\end{equation*}
$$

We assert that both λ and μ are units in R. Suppose that $\lambda \in U(R)$ and $\mu \in M$. Then $\mu x=0$. Hence, we obtain from (1) that $\lambda a=0$. which implies that $a=0$. This is a contradiction. Therefore, $\mu \in U(R)$. Similarly, if $\mu \in U(R)$, then $\lambda \in U(R)$. Thus both λ and μ are units in R. Now, from (1), $a=-\lambda^{-1} \mu x$. This implies that $R a=R x$. Thus, $A=R x$. Similarly, if a, y are linearly dependent over $\frac{R}{M}$, then we get that $A=R y$. Hence, $A=R x=R y$. This is impossible. Therefore, either $\{a, x\}$ is linearly independent over $\frac{R}{M}$ or $\{a, y\}$ is linearly independent over $\frac{R}{M}$. Suppose that $\{a, x\}$ is linearly independent over $\frac{R}{M}$. As $\operatorname{dim}_{\frac{R}{M}} M=2$, it follows that $M=R a+R x$. Now, $y \in M$ and so, $y=r_{1} a+r_{2} x$ for some $r_{1}, r_{2} \in R$.

We claim that $r_{1} \in U(R)$. If $r_{1} \notin U(R)$, then from $M^{2}=(0)$, we obtain that $r_{1} a=0$ and so, $y=r_{2} x$. This is impossible. since $\{x, y\}$ is linearly independent over $\frac{R}{M}$. Therefore, r_{1} is a unit in R. Hence, $r_{1} a=y-r_{2} x$ and so, $R a=R\left(y-r_{2} x\right)$. Similarly, if $\{a, y\}$ is linearly independent over $\frac{R}{M}$, then we obtain that $A=R a=R(x-s y)$ for some $s \in R$. It is clear that for any unit u of $R, R x, R y, R(x-u y)$ are distinct. Let $u_{1}, u_{2} \in U(R)$ be such that $u_{1}-u_{2} \in M$. Then $x-u_{1} y=x-\left(u_{1}-u_{2}+u_{2}\right) y=x-u_{2} y$, since $\left(u_{1}-u_{2}\right) y \in M^{2}=(0)$. Hence, $R\left(x-u_{1} y\right)=R\left(x-u_{2} y\right)$.
Conversely, if $v_{1}, v_{2} \in U(R)$ be such that $R\left(x-v_{1} y\right)=R\left(x-v_{2} y\right)$. Now, $\left(x-v_{2} y\right)-\left(x-v_{1} y\right) \in R\left(x-v_{1} y\right)$ and so, $\left(v_{1}-v_{2}\right) y \in R\left(x-v_{1} y\right)$. As $y \notin R\left(x-v_{1} y\right)$, it follows that $v_{1}-v_{2} \in M$. This shows that for units u_{1}, u_{2} of R, $R\left(x-u_{1} y\right)=R\left(x-u_{2} y\right)$ if and only if $u_{1}-u_{2} \in M$. Let $\left\{u_{\alpha}\right\}_{\alpha \in \Lambda} \subseteq U(R)$ be such that $u_{\alpha}+M \neq u_{\beta}+M$ for all distinct $\alpha, \beta \in \Lambda$. From the above discussion, we obtain that the set of all nontrivial ideals of R equals $\left\{R x, R y, R\left(x-u_{\alpha} y\right), M=\right.$ $R x+R y: \alpha \in \Lambda\}$. Note that $R x, R y, R\left(x-u_{\alpha} y\right)$ are distinct minimal ideals of R, where $\left\{u_{\alpha}\right\}_{\alpha \in \Lambda}$ is the set of distinct
representatives of nonzero elements of $\frac{R}{M}$. Hence, we obtain that $G(R)$ is bipartite with vertex partition $V_{1}=\{M=R x+R y\}$ and $V_{2}=\left\{R x, R y, R\left(x-u_{\alpha} y\right): \alpha \in \Lambda\right\}$.

Theorem 2.7. Let (R, M) be quasilocal. Then the following statements are equivalent:
(1). $G(R)$ is bipartite.
(2). $M^{3}=(0)$ and if $M^{2} \neq(0)$ then M must be principal and so (R, M) is a SPIR. If $M^{2}=(0)$, then M is not principal but there exist $x, y \in M$ such that $M=R x+R y$ and the set of all nontrivial ideals of $R=\left\{M, R x, R y, R\left(x-u_{\alpha} y\right): \alpha \in \Lambda\right\}$, where, $\left\{u_{\alpha}\right\}_{\alpha \in \Lambda}$ is the set of distinct representatives of nonzero elements of $\frac{R}{M}$.

Proof. (1) $\Rightarrow(2)$ It follows from Lemma 2.3 that $M^{3}=(0)$. If $M^{2} \neq(0)$, then it follows from Lemma 2.4 that M is principal. Now, it follows from the proof of $(i i i) \Rightarrow(i)$ of [5, Proposition 8.8] that $\left\{M, M^{2}\right\}$ are the only nontrivial ideals of R. Hence, (R, M) is SPIR. If $M^{2}=(0)$, then it follows from Lemma 2.6 that M is not principal but there exist $x, y \in M$ such that $M=R x+R y$ and moreover, the set of all nontrivial ideals of $R=\left\{M, R x, R y, R\left(x-u_{\alpha} y\right): \alpha \in \Lambda\right\}$, where, $\left\{u_{\alpha}\right\}_{\alpha \in \Lambda}$ is the set of distinct representatives of nonzero elements of $\frac{R}{M}$.
(2) \Rightarrow (1)

Case 1: $M^{3}=(0)$ but $M^{2} \neq(0)$. In this case, (R, M) is a SPIR with the set of nontrivial ideals of R equals $\left\{M, M^{2}\right\}$. It is then clear that $G(R)$ is bipartite with vertex partition $V_{1}=\{M\}$ and $V_{2}=\left\{M^{2}\right\}$.

Case 2: $M^{2}=(0)$. In this case, M is not principal but M is two generated and the set of all nontrivial ideals of $R=\left\{M=R x+R y, R x, R y, R\left(x-u_{\alpha} y\right): \alpha \in \Lambda\right\}$, where, $\left\{u_{\alpha}\right\}_{\alpha \in \Lambda}$ is the set of distinct representatives of nonzero elements of $\frac{R}{M}$. It is already verified in the proof of Lemma 2.6 that $G(R)$ is bipartite.

Lemma 2.8. Let R be a ring with exactly two maximal ideals. Then the following statements are equivalent:
(1). $G(R)$ is 3- partite.
(2). $R \cong K \times S$ as rings, where K is a field and (S, M) is a SPIR with $M \neq(0)$ but $M^{2}=(0)$.

Proof. (1) \Rightarrow (2): Let $\left\{M_{1}, M_{2}\right\}$ denote the set of all maximal ideals of R and let $G(R)$ be 3- partite with vertex partition $\left\{V_{1}, V_{2}, V_{3}\right\}$. We claim that $M_{1} \cap M_{2} \neq(0)$. For if $M_{1} \cap M_{2}=(0)$, then $R \cong \frac{R_{1}}{M_{1}} \times \frac{R_{2}}{M_{2}}$ as rings and in such a case, R has exactly two nontrivial ideals. However, $G(R)$ is 3 - partite implies that R has at least three nontrivial ideals. Therefore, $M_{1} \cap M_{2} \neq(0)$. As $M_{1} \cap M_{2} \neq(0), M_{1}, M_{2}$ cannot be in the same V_{k}, for any $k \in\{1,2,3\}$. Without loss of generality we can assume that $M_{1} \in V_{1}$ and $M_{2} \in V_{2}$. Then $M_{1} \cap M_{2} \in V_{3}$. Let $x \in M_{1} \cap M_{2}, x \neq(0)$. As $R x \notin V_{1} \cup V_{2}$, it follows that $R x \in V_{3}$ and hence, $R x=M_{1} \cap M_{2}$. As $M_{1}+M_{2}=R$, it follows that $M_{1} \cap M_{2}=M_{1} M_{2}$. Thus, $R x=M_{1} M_{2}$. We assert that $x^{2}=(0)$. If $x^{2} \neq(0)$, then $R x^{2} \in V_{3}$ and so, $R x^{2}=R x$. This implies that $x=r x^{2}$ for some $r \in R$. Hence,

$$
\begin{equation*}
x(1-r x)=0 \tag{2}
\end{equation*}
$$

As $x \in M_{1} \cap M_{2}=$ Jacobson radical of $R, 1-r x$ is a unit in R. Therefore, from (2), we obtain that $x=(0)$. This is impossible. Therefore, $R x^{2}=(0)$. Thus, $M_{1}{ }^{2} M_{2}{ }^{2}=(0)$. From $M_{1}{ }^{2} M_{2}{ }^{2}=(0)$ but $M_{1} M_{2} \neq(0)$, it follows that either $M_{1} \neq M_{1}{ }^{2}$ or $M_{2} \neq M_{2}{ }^{2}$. Without loss of generality, we can assume that $M_{2} \neq M_{2}{ }^{2}$. We assert that $M_{1} M_{2}{ }^{2}=(0)$. Suppose that $M_{1} M_{2}{ }^{2} \neq(0)$. As $M_{1} \in V_{1}, M_{1} M_{2}{ }^{2} \notin V_{1}$. Since, $M_{2} \in V_{2}, M_{1} M_{2}{ }^{2} \notin V_{2}$. Hence, $M_{1} M_{2}{ }^{2} \in V_{3}$ and so $M_{1} M_{2}{ }^{2}=M_{1} M_{2}$. Now, $M_{2} \neq M_{2}{ }^{2}$ and so $M_{2}{ }^{2} \notin V_{2}$. As $M_{1} \in V_{1}, M_{1} M_{2}{ }^{2} \neq(0), M_{2}{ }^{2} \notin V_{1}$. As $M_{1} M_{2}{ }^{2} \cap M_{2}{ }^{2}=M_{1} M_{2}{ }^{2} \neq(0), M_{2}{ }^{2} \notin V_{3}$. This is a contradiction. Therefore, $M_{1} M_{2}{ }^{2}=(0)$. Note that the mapping $f: R \rightarrow \frac{R}{M_{1}} \times \frac{R}{M_{2}{ }^{2}}$ defined by $f(r)=\left(r+M_{1}, r+M_{2}{ }^{2}\right)$ is an isomorphism of rings by [5, Proposition 1.10 (ii) and (iii)].

We claim that there exist $a \in M_{1} \backslash M_{2}$ and $b \in M_{2} \backslash M_{1}$ such that $a b \neq 0$. Since $M_{1}+M_{2}=R$, there exist $x \in M_{1}$ and $y \in M_{2}$ such that $x+y=1$. Clearly, $x \notin M_{2}$ and $y \notin M_{1}$. Let $w \in M_{1} \cap M_{2}, w \neq 0$. Then $w=x w+y w$. Either $x w \neq 0$ or $y w \neq 0$. Without loss of generality, we can assume that $x w \neq 0$. If $x y \neq 0$, then with $a=x$ and $b=y$, we get that $a b \neq 0$. Suppose that $x y=0$. Then with $a=x$ and $b=y+w$, we obtain that $a \in M_{1} \backslash M_{2}$ and $b \in M_{2} \backslash M_{1}$ and $a b=x w \neq 0$. Now, $a b \in M_{1} \cap M_{2}$ and as $M_{1} \cap M_{2}$ is a minimal ideal of R, it follows that $M_{1} \cap M_{2}=R a b$. Note that, $R a \cap M_{2} \neq(0)$, $R b \cap M_{1} \neq(0)$. Moreover, $R a \neq R a b$ and $R b \neq R a b$. Now, $M_{1} \cap M_{2}=R a b \in V_{3}$. Hence, $R a \notin V_{3}$ and $R b \notin V_{3}$. As $R a \neq M_{2}, R a \notin V_{2}$. Therefore, $R a \in V_{1}$ Hence, $M_{1}=R a$. Similarly, $R b \neq M_{1}$ and $R b \cap M_{1} \neq(0)$. Therefore, $R b \notin V_{1}$ and so, $R b \in V_{2}$. Thus, $M_{2}, R b \in V_{2}$. This implies that $M_{2}=R b$. Hence, $\frac{R}{M_{2}{ }^{2}}$ is a quasilocal ring with $M=\frac{M_{2}}{M_{2}{ }^{2}}$ as its unique maximal ideal with $M \neq\left(0+M_{2}{ }^{2}\right)$ but $M^{2}=\left(0+M_{2}{ }^{2}\right)$. Moreover, as M is principal, it follows from (iii) $\Rightarrow(i)$ of [5, Proposition 8.8] that $\left(\frac{R}{M_{2}{ }^{2}}, \frac{M_{2}}{M_{2}{ }^{2}}\right)$ is a SPIR. We have already verified that $R \cong \frac{R}{M_{1}} \times \frac{R}{M_{2}{ }^{2}}$ as rings. Let $K=\frac{R}{M_{1}}$ and $S=\frac{R}{M_{2}{ }^{2}}$. Note that K is a field and $\left(S, M=\frac{M_{2}}{M_{2}{ }^{2}}\right)$ is SPIR with $M \neq\left(0+M_{2}{ }^{2}\right)$ but $M^{2}=\left(0+M_{2}{ }^{2}\right)$. This proves $(1) \Rightarrow(2)$.
(2) \Rightarrow (1): Assume that $R \cong K \times S$ as rings, where K is a field and (S, M) is a SPIR with $M \neq(0)$ but $M^{2}=0$. Let $T=K \times S$. Note that $G(T)$ is a graph on the vertex set $\{(0) \times S,(0) \times M, K \times(0), K \times M\}$. Let $W_{1}=\{(0) \times S, K \times(0)\}$, $W_{2}=\{K \times M\}, W_{3}=\{(0) \times M\}$. Then it is clear that $G(T)$ is 3-partite with vertex partition $\left\{W_{1}, W_{2}, W_{3}\right\}$.

Lemma 2.9. Let (R, M) be a quasilocal ring. Then the following statements are equivalent:
(1). $G(R)$ is 3- partite but not 2-partite.
(2). (R, M) is a SPIR with $M^{3} \neq(0)$ but $M^{4}=(0)$.

Proof. (1) $\Rightarrow(2)$: Assume that $G(R)$ is 3 -partite but not 2-partite. We know from Lemma 2.3 that $M^{4}=(0)$. If $M^{3} \neq(0)$, then we know from Lemma 2.5 and $(i i i) \Rightarrow(i)$ of $[5$, Proposition 8.8] that (R, M) is a SPIR. Suppose that $M^{3}=0$. We claim that M can be generated by at most two elements. Otherwise, we can find $\{x, y, z\} \subseteq M$ such that $\left\{x+M^{2}, y+M^{2}, z+M^{2}\right\}$ is linearly independent over $\frac{R}{M}$. The ideals $R x, R x+R y, R x+R y+R z$ are distinct nontrivial ideals of R. Let $G(R)$ be 3-partite with vertex partition $\left\{V_{1}, V_{2}, V_{3}\right\}$. Let $I_{1}=R x+R y+R z, I_{2}=R x+R y, I_{3}=R x$. Observe that $I_{i} \cap I_{j} \neq(0)$, for all distinct $i, j \in\{1,2,3\}$. Hence, no two distinct $I_{i}, I_{j}(i, j \in\{1,2,3\})$ can belong to the same V_{k} for any $k \in\{1,2,3\}$.

Without loss of generality, we can assume that $R x+R y+R z \in V_{1}, R x+R y \in V_{2}$ and $R x \in V_{3}$. Observe that $R x+R z \notin$ $\left\{I_{1}, I_{2}, I_{3}\right\}$. It is clear that $R x+R z \notin V_{1} \cup V_{2} \cup V_{3}$. This is a contradiction. Hence, M can be generated by at most two elements. We are assuming that $M^{3}=(0)$. Then either $M^{2}=(0)$ or $M^{2} \neq(0)$. If M is principal, then M is the only nontrivial ideal of R in the case $M^{2}=(0)$ and $\left\{M, M^{2}\right\}$ is the set of all nontrivial ideals of R in the case $M^{2} \neq(0)$. However, as $G(R)$ is 3-partite but not 2-partite, R has at least three nontrivial ideals. Therefore, M cannot be principal. Thus, M is two generated but not principal. Let $\{a, b\} \subseteq M$ be such that $M=R a+R b$. If $M^{2}=(0)$, then we know that the set of nontrivial ideals of R equals $\left\{M=R a+R b, R a, R b, R\left(a-u_{\alpha}\right): \alpha \in \Lambda\right\}$, where, $\left\{u_{\alpha}\right\}_{\alpha \in \Lambda}$ is the set of distinct representatives of nonzero elements of $\frac{R}{M}$ and in this case, $G(R)$ is a 2-partite with vertex partition $W_{1}=\{M\}$ and $W_{2}=\left\{R a, R b, R\left(a-u_{\alpha}\right): \alpha \in \Lambda\right\}$. As we are assuming that $G(R)$ is not 2-partite, we obtain that $M^{2} \neq(0)$. We claim that $M^{2}=R x$ for any $x \in M^{2}, x \neq 0$. As $M^{2} \neq(0)$ there exist $x_{1}, x_{2} \in M$ such that $x_{1} x_{2} \neq 0$. Observe that the ideals $J_{1}=R x_{1}, J_{2}=R x_{2}$ and $J_{3}=R x_{1} x_{2}$ are nontrivial ideals of R. As $x_{1} \in M x_{1} \neq 0$, it follows that $R x_{1} \neq R x_{1} x_{2}$. As $R x_{1} \cap R x_{1} x_{2}=R x_{1} x_{2} \neq 0, R x_{1}$ and $R x_{1} x_{2}$ cannot be in the same V_{k} for any $k \in\{1,2,3\}$. Without loss of generality we can assume that $M \in V_{1}, R x_{1} \in V_{2}, R x_{1} x_{2} \in V_{3}$. As $M^{2} \notin V_{1} \cup V_{2}$, we must have $M^{2} \in V_{3}$. Hence, $M^{2}=R x_{1} x_{2}$. Let $x \in M^{2}, x \neq 0$. As $M^{2}=R x_{1} x_{2}, R x \notin V_{1} \cup V_{2}$. Therefore, $R x \in V_{3}$. Hence, $M^{2}=R x$. We next assert that $z^{2}=(0)$ for
any $z \in M$. Suppose that $z^{2} \neq 0$ for some $z \in M$. Consider the mapping $f: M \rightarrow M^{2}$ given by $f(m)=z m$. It is clear that f is R- linear. As $M^{2}=R z^{2}$, it follows that f is onto. We claim that $\operatorname{ker} f=M^{2}$. If $m \in M^{2}$, then $z m \in M^{3}=(0)$. Hence, $M^{2} \subseteq \operatorname{ker} f$. Observe that as $z^{2} \neq 0, z \in M \backslash \operatorname{ker} f$. Hence, $M^{2} \subseteq \operatorname{ker} f \subset M$. Now, $M \in V_{1}$ and $M^{2} \in V_{3}$. Observe that $R z \notin V_{1} \cup V_{3}$. Hence, $R z \in V_{2}$. Observe that $R z \neq \operatorname{ker} f$ and $R z \cap \operatorname{ker} f \supseteq R z^{2}$. Therefore, $R z \cap \operatorname{ker} f \neq(0)$. Hence, there is an edge of $G(R)$ joining $R z$ and ker f. Therefore, ker $f \notin V_{2}$. Thus, ker $f \in V_{3}$. As $M^{2} \cap \operatorname{ker} f=M^{2} \neq(0)$, it follows that ker $f=M^{2}$. Now, $f: M \rightarrow M^{2}$ is a surjective R - linear map with ker $f=M^{2}$. Therefore, by the Fundamental theorem of homomorphism of modules, we obtain that $\frac{M}{M^{2}} \cong M^{2}$ as R - modules. As M^{2} is a minimal ideal of R, it follows that $\frac{M}{M^{2}}$ is generated by any nonzero element of $\frac{M}{M^{2}}$. This is impossible. since $\operatorname{dim}_{\frac{R}{M}}\left(\frac{M}{M^{2}}\right)=2$. Thus, $z^{2}=0$ for any $z \in M$. Now, $M=R a+R b$. Hence, $M^{2}=R a^{2}+R a b+R b^{2}=R a b$. Observe that $R a \neq R b$. Moreover, $R a \cap R b \neq(0)$. It is clear that $R a, R b \notin V_{1} \cup V_{3}$. Hence, $R a, R b \in V_{2}$. This is impossible as there is an edge of $G(R)$ joining $R a$ and $R b$. This proves that $M^{3} \neq(0)$. In such a case (R, M) is a SPIR with $\left\{M, M^{2}, M^{3}\right\}$ as its set of nontrivial ideals.
$(2) \Rightarrow(1)$: Note that $\left\{M, M^{2}, M^{3}\right\}$ is the set of all nontrivial ideals of R. It is clear that $G(R)$ is 3-partite with vertex partition $\left\{V_{1}, V_{2}, V_{3}\right\}$ with $V_{1}=\{M\}, V_{2}=\left\{M^{2}\right\}$, and $V_{3}=\left\{M^{3}\right\}$. Clearly, $G(R)$ is not 2-partite.

References

[1] S. Akbari, H. R. Maimani and S. Yassemi, When a zero-divisor graph is planar or a complete r-partite graph, Journal of Algebra, 270(2003), 169-180.
[2] S. Akbari, R. Nikandish and M. J. Nikmehr, Some results on the intersection graphs of ideals of rings, J. Algebra Appl., 12(4)(2013), Art. ID: 1250200.
[3] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J.Algebra, 159(1993), 500-514.
[4] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(1999), 434-447.
[5] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, (1969).
[6] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, Springer, (2000).
[7] I. Beck, Coloring of commutative rings, J. Algebra, 116(1988), 208-226.
[8] R. Belshoff and J.Chapman, Planar zero-divisor graphs, J. Algebra, 316(2007), 471-480.
[9] I. Chakrabarthy, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection graphs of ideals of rings, Electronic Notes in Disc. Mathematics, 23(2005), 23-32.
[10] L. Dancheng and W. Tongsuo, On bipartite zero-divisor graphs, Discrete Mathematics, 309(2009), 755-762.
[11] N. Deo, Graph theory with applications to Engineering and Computer Science, Prentice Hall of India private limited, New Delhi, (1994).
[12] S. H. Jafari and N. Jafari Rad, Planarity of intersection graph of ideals of rings, Int. Electronic J. Algebra, 8(2010), 161-166.
[13] T. G. Lucas, The diameter of a zero-divisor graph, J. Algebra, 301(2006), 173-193.
[14] Z. S. Pucanovic' and Z. Z. Petrovic', Toroidality of intersection graphs of ideals of commutative rings, Graphs and Combinatorics, 30(2014), 707-716.
[15] Bohdan Zelinka, Intersection graphs of finite abelian groups, Czech. Math. J., 25(100)(2)(1975), 171174.

[^0]: * E-mail: vadhelpravin@gmail.com

