XXYPHAI HAYKOBUI OrNAQ Ne 4(57), 2019

UDC 004.75

LOAD BALANCING EMULATION IN SOFTWARE-DEFINED
NETWORKS USING MININET
Lopushen J. J., Postgraduate student
National Technical University of Ukraine "lgor Sikorsky Kyiv Polytechnic
Institute”, Ukraine, Kyiv

The problem of testing a programmed behavior of the software-
defined network controller has been examined in this article. Since testing
the behavior of the controller is often impossible to test on the real
network, the emulation of software-defined networks has been examined,
as well as compatibility with a real SDN-controller. Possibilities of
extending the functionality of SDN-controller has been analyzed. The
ability of a POX SDN-controller to work with emulated networks has been
utilized to set up load balancing in an emulated software-defined network
with a star topology. An experiment with a strategy of load balancing,
which was defined programmatically, has been conducted using Mininet
emulator together with the Miniedit GUI. The strategy of load balancing in
SDN has been programmed on the controller side without changing the
network configuration. The results of the experiment have been presented.
Conclusions on the future work, which will be dedicated to more complex
algorithms, that can be tested using the suggested approach, has been
made.

Key words: Software Defined Network, Load Balancing, SDN
controller, POX controller, network emulation.

acniipaHm, JlonyweH €. KO. Emynsuia 6anaHcyeaHHs HagaHMaXXeHHs
8 [po2paMHO-KOHGiaypogaHUX Mepexax 3 eukopucmaHHsM Mininet/
HaujoHanbHul ~ mexHiYHUU yHisepcumem YKpaiHu «KuiecbKul
nonimexHiyHud iHcmumym im. l2zopsi Cikopcbko20», YkpaiHa, Kuie

y cmammi rnpoaHariizogeaHo npobnemy mecmyeaHHs
3arpoepamoeaHoi nogediHkU KoHmMporsiepa pogpamMHO-KOHgIiayposaHOi
mepexi. Tak sSK mecmyesaHHsI [M0BeOIHKU KOHmMposiepa 4Yacmo €
HEMOXI/ueUM Ha pearsbHil Mepexi, 6ys nposedeHuUl aHani3s
Moxrnueocmel emynsauii npoapamHo-KOHgIiaypogaHOi Mepexi, a makox
cymicHoCcmi eMyribogaHoi Mepexi 3 KoHmposnepom SDN. Takox, 6ynu
pPO32rIIHYyMi MOXXIIU80OCMI PO3WUPEHHS byHKUiOHany koHmposnepa SDN.
Moxrnueocmi po3wupeHHs ¢yHkuioHany SDN koHmponepa POX 6ynu
gukopucmaHi O0rnsi HanawmyeaHHsi barnaHCyeaHHs1 HaBaHMa)eHHs 8
eMyribeaHil rpogpamMHO-KOHiaypoeaHili Mepexi 3 morosnoaieo mury
"sipka”. bye npoeedeHUlU eKcriepumMeHm 3 3adaHoK [po2pamMHO
cmpameeiero banaHcyeaHHsI HasaHMa)eHHs Ha emyrnsamopi Mininet 3
8UKOPUCMaHHSM Miniedit GUI. Cmpameczis banaHcysaHHs
HasaHmMaxeHHs1 byrna HanawmoeaHa Ha CMOPOHI KOHmMposiepa 6e3 3MiHU

XXYPHAI HAYKOBUI OrNAQ Ne 4(57), 2019

KOH@bicypauii camoi mepexi. Pe3ynbmamu ekcriepumeHmy rpedcmassieHi
y euensoi epagpika. bynu 3pobrieHi eUcHOBKU i rnocmaerieHi 3adadi 0risi
nodanbwoi pobomu 3 mecmygaHHAM O6inbw CKnadHUX anaopummie
pobomu 3 SDN.
Knto4osi crioga: ripoepaMHO-KOHbicyposaHa Mepexa, banaHcysaHHs
HasaHmaxxeHHs1, SDN-koHmpornep, koHmposep POX, eMyrnsuis Mepexi.
acriupadm, JlonyweH E. FO., Omynsauyus 6anaHcuposKku Hazpy3Ku 8
npo2paMmMHO-KOHU2ypupyembiX cemsx C ucriosib3oeaHuem Mininet /
HauuoHarnbHbIi mexHu4yeckul yHusepcumem YKpauHbl «Kueeckul
nonumexHudeckut uHecmumym um. Meopsi Cukopckozo», YkpauHa, Kuee
B cmambe npoaHanu3uposaHa npobriema mecmupogaHusi
3arnpoepamMmmuposaHHo2o rogedeHuUss KoHmporssiepa rnpo2paMMHoO-
KOHgbuaypupyemol cemu. Tak Kak mecmupogaHue nogedeHus
KOHmMporssiepa 4acmo s8/isemcsi He803MOXHbIM Ha peasibHouU cemu, bbis
rnpoeedeH aHarsnu3s 803MOXXHOCMeU amynayuu rnpo2pamMmHo-
KOHgbuaypupyemMbix cemel, a makxe cosMecmumocmu aMyrnupyemou
cemu ¢ KoHmporsinepom SDN. Takxe, 6blriu paccMompeHbl 803MOXHOCMU
pacwupeHusi yHKuuoHansHocmu koHmposinepa SDN. BoamoxHocmu
pacwupeHusi ¢yHkyuoHanbHocmu SDN koHmpornnepa POX 6binu
ucriosib3o8aHsbl 051 Hacmpouku banaHCcupo8KU Hazpy3Ku 8 amyrnupyemou
npoepaMmMHO-KOHgu2ypupyemold cemu ¢ moriosioeuel murna "3ee3da”.
bbin1 nposedéH aKcriepuMeHm ¢ rnpo2paMmMHO 3adaHHoU cmpameauel
banaHcuposku Hazspysku Ha amynsamope Mininet ¢ ucnosib308aHuUem
Miniedit GUI. Cmpamezausi 6anaHcuposku Hacpy3ku bblra 3adaHa Ha
CmMopoHe KoHmpornepa 6e3 uaMeHeHUsi KOHgbuaypayuu camol cemu.
Pe3ynbmambl akcriepumeHma rnpedcmasrieHbl 8 sude 2padghuka. bbinu
cOesnaHbl 8bI800bI U rocmaersieHbl 3adadyu 0ns OasibHeltuwel pabomsbl C
mecmupogaHueM boriee CrioXHbIX arzopummos pabomsi ¢ SDN.
Knoyesbie crosa: rnpo2paMmMHO-KOHguaypupyemas ceme,
banaHcuposka Haepy3ku, SDN-koHmporsnep, KoHmposnnep POX,
IMyAyus cemu.

Introduction

Load balancing is an important task for modern distributed
applications. A piece of software or hardware, that performs balancing the
load between the nodes of a distributed application is called load balancer.
Different types of load balancers are used for various tasks. This article
suggests the implementation of software-based load balancer in a
software-defined network.

Software-defined networks

Software-defined network (SDN) is a new concept of engineering a
computer network [1], which suggests extracting the control layer of the
network to the specialized piece of software, called controller. SDN
controller makes it possible to perform centralized management and

XXYPHAI HAYKOBUI OrNAQ Ne 4(57), 2019

monitoring of the network as well as exposes API for extending the set of
features of the network. SDN controller interacts with the network
hardware via specialized API called Northbound interface. Most of the
switches used in SDN are so-called white-label [2], which means that they
require no proprietary software to be installed and usually run a simple
distribution of Linux operating system. Thus, the control over the network
is fully delegated to the software, so flexible scaling [3] or hybrid cloud [4]
can be implemented on the application level. In this paper, one of such
controllers will be used, which retrieves the information of network
hardware via the APl and performs IP-based load balancing according to
the programmatically-defined policy.

POX controller

Pox controller is one of the most widespread SDN controllers, written
using Python programming language and has an API for managing the
network from the outside [5]. The controller is fully open-source and is
distributed together with Mininet within the same VirtualBox image. POX
controller is convenient for simple topologies and supports Python scripts
as behavior scenarios.

SDN emulator Mininet

The design of computer networks is impossible without the ability to
check the potential result because experimenting on real hardware is often
an expensive or impossible operation. In the case of software-defined
networks, the behavior of the controller is required to be tested before
deploying to the real server. Specialized emulators are used for testing the
SDN controller on the chosen topology. One of the most widespread is an
open source emulator Mininet [6]. The emulator is distributed in a bundle
with Ubuntu Linux within a VirtualBox image.

Virtualbox image with pre-installed Mininet emulator

Mininet emulator

Virtual v \ Remote SON
irtua = R
Wior controller
network € controller <~ : >
hardware - .

e e — S ccmmmee
' \irtual connections between ! |
controller and hardwara

Fig. 1. Interaction between SDN and Mininet emulator

Graphical user interface Miniedit

Mininet emulator by default supports working with terminal only,
however, there is a GUI available. The Miniedit tool lets network engineers
build complex network topologies and conveniently manage the
configuration of any piece of emulated hardware. Also, Miniedit provides

XXYPHAI HAYKOBUI OrNAQ Ne 4(57), 2019

access to the terminal of any host of the network, which facilitates testing
of emulation. For example, it is possible to ping to send requests via ping
or curl utilities within the emulated network Such an advantage is used in
this paper to illustrate the process of load-balancing in SDN.

Building a software-defined network in Mininet emulator

In this paper, a star topology is built in Miniedit to test the controller-
based load balancer. In this configuration, a single switch is used, which is
controlled by an SDN-controller. The switch is connected to 8 hosts, 6 of
them act as clients and 2 have a simple test web-server running to receive
requests from the clients. The curl utility is used to send HTTP requests.

File Edit Run Help

m =
Clientl _\..,_(_:“E”t“ | SDN Controller .
3 [
: Serverl
[[] ~ '
: Clients :
Client2 / Switch .
e | E ! " E I Server2
Client3 ‘ Client6
Run | I
| 4
Stop |r‘-J |

Fig. 2. the network topology for conducting the experiment

Miniedit automatically assigns the IP addresses to hosts and adds an
initial flow table to the SDN controller. Default flow table assumes that all
links are up, and all hosts can reach each other in case they are
connected. The initial configuration is illustrated in the Fig.3.

Conducting the experiment of load balancing in Mininet

The experiment is conducted against the configured topology. The
first server is assumed to be able to accept 2 times more requests than
the second one. This behavior is programmed on the controller side.
Overall 100 requests were made to the load balancer, configured on the
controller from the clients in the network. Each request has been logged
on the controller side. The count of the requests, that reached each server
is illustrated on the Fig.4.

XXYPHAI HAYKOBUI OrNAQ Ne 4(57), 2019

- -

root@mininet-vm: ~/mininet/examples

File Edit View Search Terminal Help

*%% Starting CLI:

mininet> links
[Client4-eth@<->Switch-ethl (0K OK)
Client5-ethO<->Switch-eth2 (OK OK)
Client6-ethB<->Switch-eth3 (OK OK)
Client3-eth@<->Switch-eth4 (0K 0OK)
Client2-eth@<->Switch-eth5 (0K 0OK)
Clientl-ethe<->Switch-eth6 (OK 0K)
Switch-eth7<->Serveri-eth® (OK OK)
Switch-eth8<->Server2-eth® (0K 0K)
mininet> dump

<Host Client3: Client3-eth0:10.0.0.3 pid=5370>
<Host Serveril: Serverl-eth0:10.0.0.7 pid=5373>
<Host Client1: Client1-eth®:10.8.0.1 pid=5376>
<Host Server2: Server2-eth9:10.0.0.8 pid=5379>
<Host Client4: Client4-eth0:10.0.0.6 pid=5382>
<Host Client6: Client6-eth9:10.0.0.4 pid=5396>
<Host Client2: Client2-eth®:10.0.0.2 pid=5399>

<Host Client5: Client5-eth®:10.0.0.5 pid=5402>

<customOvs Switch: 10:127.0.0.1,Switch-eth1:None,Switch-eth2:None,Switch-eth3:No
ne,Switch-eth4:None,Switch-eth5:None,Switch-eth6:None,Switch-eth7:None,Switch-et
h8:None pid=5362>

<Controller SDN Controller: 127.0.0.1:6633 pid=5389>

mininet> JJ

Fig. 3. The network configuration for conducting the experiment

Request count per server

80

60

40

Request count

1 10 19 28 37 46 55 64 73 82 91 100

Time, s

—— Server 1 eeceee Server 2
Fig. 4. Request count sent to servers

Conclusions and future work

This paper is focused on a way of emulation of a software-defined
network in Mininet emulator in a bundle with Miniedit GUI. A software load
balancer was run within the controller against the emulated network. The
result of the experiment shows how the traffic can be redirected by a
switch managed by an SDN controller. To conclude, the approach it is
feasible to apply on different kinds of topologies. Future work will be
dedicated to deploying more complex network topologies and
programming more sophisticated behavior on the controller side.

Jlumepamypa:

XXYPHAI HAYKOBUI OrNAQ Ne 4(57), 2019

1. Monaco, M., Michel, O., & Keller, E. (2013, November). Applying
operating system principles to SDN controller design. In Proceedings of
the Twelfth ACM Workshop on Hot Topics in Networks (p. 2). ACM.

2. Davoli, L., Veltri, L., Ventre, P. L., Siracusano, G., & Salsano, S.
(2015, September). Traffic engineering with segment routing: SDN-based
architectural design and open source implementation. In 2015 Fourth
European Workshop on Software Defined Networks (pp. 111-112). IEEE.

3. Kynakos, (0. A., & JlonyweH, E. F. (2017). Cnocob
MacwmabuposaHusi pacripelOeni€HHbIX TMPUIOXeHUlU 8 po2paMMHO-
KOHgbu2ypupyembix cemsix c ucriosib308aHUeM 2ubpudHozo
obnaka. MixxHapoOHuU HayKkosul xypHan" Haykosuu oarnsd”, 8(40).

4. Kynakos, 1O. O., & JlonyweH, €. 0. (2018). Crnocob duHamu4eckol
banaHcuposku Hazpy3Ku 8 rpo2pamMmMHO-KOHU2ypupyembIX
cemsix. ADanmueHi cucmemu asmomMamuyHo20 yripaesniHHs, 1(32), 87-91.

5. Prete, L. R., Shinoda, A. A., Schweitzer, C. M., & de Oliveira, R. L.
S. (2014, June). Simulation in an SDN network scenario using the POX
Controller. In 2014 IEEE Colombian Conference on Communications and
Computing (COLCOM) (pp. 1-6). IEEE.

6. Gupta, M., Sommers, J., & Barford, P. (2013, August). Fast,
accurate simulation for SDN prototyping. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined
networking (pp. 31-36). ACM.

References:

1. Monaco, M., Michel, O., & Keller, E. (2013, November). Applying
operating system principles to SDN controller design. In Proceedings of
the Twelfth ACM Workshop on Hot Topics in Networks (p. 2). ACM.

2. Davoli, L., Veltri, L., Ventre, P. L., Siracusano, G., & Salsano, S.
(2015, September). Traffic engineering with segment routing: SDN-based
architectural design and open source implementation. In 2015 Fourth
European Workshop on Software Defined Networks (pp. 111-112). IEEE.

3. Kulakov, Y. O., & Lopushen, J. J. (2017). The way of scaling
distributed applications in software-defined networks using hybrid
cloud. Mizhnarodnyi naukovyi zhurnal "Naukovyi ohliad", 8(40).

4. Kulakov, Y. O., & Lopushen, J. J. (2018). The way of dynamic load
balancing in software-defined networks. Adaptyvni systemy
avtomatychnoho upravlinnia, 1(32), 87-91.

5. Prete, L. R., Shinoda, A. A., Schweitzer, C. M., & de Oliveira, R. L.
S. (2014, June). Simulation in an SDN network scenario using the POX
Controller. In 2014 IEEE Colombian Conference on Communications and
Computing (COLCOM) (pp. 1-6). IEEE.

6. Gupta, M., Sommers, J., & Barford, P. (2013, August). Fast,
accurate simulation for SDN prototyping. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined
networking (pp. 31-36). ACM.

