
COMPRESSION OF
SYNTHETIC .. VEHICULAR ..

TRAFFIC FLOW USING
" COMPLEMENTEn BINARY
REPRESENTATION"

• David Sánchez
david enriqu e@gma i 1 .com

Escuela de lng. Informática

Universidad Catól ica A ndrés Bello

Caracas - Venezuela

Fecha de Recepc ión: 8 de octubre de 2008

Fecha de Aceptac ión: 12 de enero de 2009

Abstract

Vehicle traffic stud ies use Nagei-Schreckenberg
(NaSch) based simulations that produce significant
size information files. In arder to save that information,
common compression techn iques are not enough to
achieve high compression in mini mal time. The present
art icle demonstrates how to compress those synthetic
vehicular-traffic flows using binary representation (data
model ing) and .zip codification (generic data modeling
with entropy-coding) to get a 12:1 compression ratio.

Resumen

El est dio de tráfico vehicular uti liza entre sus mé
todos de análisis la simulación sintética basada en
el modelo original de agei-Schreckenberg (NaSch).
Dichas simulaciones arrojan archivos de información
de gran tamaño que es necesario almacenar. La
aplicación exclusiva de técnicas comunes de com
presión no es suficiente para lograr altas tasas de
compresión en mínimo t iempo. El presente artículo
aborda la compresión de dichos modelos de flujos
de tráfico mediante representación binaría (modelado
de datos) y cod ificación .zip (modelado genérico de
datos y codificación-entrópica) para obtener tasas de
compresión de información de 12:1.

l . lntroduction

This article describes a compression technique that
allows a more efficient database storage of "Com-

·----------------------~------'-~e..Lv......,ista_d.e io_genie.rfa~~----'

David Sánchez

mo Format" 1 synthetic vehicle t raffic simulations. To
accomplish ttle technique, it was assumed that the
pri c ipal cause of the uge "Common Format" file
sizes created by NaSch simulators was information
represented using statistically redunda t data; then,

.aSch-obtained informatio represented using byte
flows without statistically redundant data would be an
optimal compression technique.

The technique was created during the development
of an automatic information tool to analyze synthetic
simulatio s of vehicular traffic[1) . The informat ion tool
was custom made under specific UCAB-CIDI2 requi
rements.

The compression algorithm was created in order
to anímate previously computed data (obtained from
NaSctl simulators) and achieve frame-by-frame analysis
of traffic co ditions.

The information in this article has a limited radio
action to compression of vehicular traffic flow. Never
theless, the technique can be appl ied with few modifi
cations to almost any kind of modeling which involves
particles flow and require sorne kind of compression
to store data about their behavior.

Particle flow modeling problems are common to
gas investigations, biological epidemics, population
migrat ions, fluid research, and many in which, it is
possible to create cellular automata that generate re
presentat ions similar to "Common Format". For all of
them, "Complemented Binary Representation" can be
a useful compression technique.

This paper also includes expla ations about how
the information tool works applying the compression
technique. The tool was an essential instrument for the
experimental demonstration of the capabil it ies of the
compressíon algorithm.

This research is not a definitive solution, but rather
a starting point for further i vestigations.

2. Prevíous w ork and motívatíon

UCAB-CIDI researchers [1) [2) [3) raised a clear
concern about how to automate the processing and
organization of synthetic data of veh icular traffic in

1 There is no standard naming for t his representation techni
que used by researche rs.

2 Universidad Cat ó lica Andrés Be llo Eng ineering and Deve lo
pment Research Center (Centro de Investigació n de Ingenie
ría de la Universidad Católica Andrés Be llo)

order to perform the analysis and deductions of its
behavior.

The former procedure to perform those analysis and
ded uctions consisted in the following:

Sorne synthetica ll y data were considered by va
riations of a model parameters. Data was stored in a
text file.

A Cell ular Automata (NaSch-model program
written in C) was run using the parameters pre
viously stored on the text file. This program is
time consuming dueto a highly iterative code.
Section 2.1 describes the NaSch-model in
detail.

1. Sorne output files were obtained from the pre
vious step. One of them contains processed
data; the others are graphical representations of
the vehicles' movement. These files are printed
and taped together as a continuous-form paper.
This representation, detailed in section 2.2, is
the principal obstacle to achieving animation
and storing. For a 1600 meters two-way street,
there are two graphical representat ion fi les,
each about 60 single-space-letter-size pages,
if opened in Microsoft Word, with a font size of
12 pt (Windows).

Steps 1, 2 and 3 were repeated checking graphical
representation files.

Generated information was analyzed.

Many simulations are required to obtain a useful
representation of a studied problem, in sorne cases
1000 or more. Under the described manual process,
a simple 1 0-simulation problem too k a whole week.

lncreasing the numberof simulations to useful repre
sentation levels quickly turned into an unmanageable
task. The huge amounts of files made the analysis a
cumbersome process since it was almost impossible
to find a particular simulation section.

To solve the problem, a program was developed
that included the following:

• A MySQL database to store all the informa
tion.

• A Java graphical interface to allow access to
processed and unprocessed data. This program
also runs the NaSch-based synthetic simulator
and creates animations with the results.

Compression of Synthetic-Vehicular-Traffic Flow using "Complemented Binary Representation"

('.,nut· .. ·tivn
prh il,·~t.,.

~
T 1Mffil"

~.•lllh.-tic011 1 a

l l npmcC'~~•" rrnfti."
S~nlhrlk llala

.\nim;Uiun~

J):J III

tt'~ tan:hrr

lhl:l.

Figure l. Data Flow Diagram (Leve! 2). Darkest oval shows compres
sien module location.

The synthetic traffic simulator (NaSch simu lator)
created by UeAB-eiDI researchers, was modified to
be loaded as a e Dynamic Library under a JNI interfa
ce. Process intercommunications between e (NaSch
simulator) and Java (Graphical interface) were achieved
through files.

A compression module processed the huge text
files generated by the simulator. Figure 1 shows the

x 1 km J

location of this compression module in the informat ion
tool. The compression module is the central tapie in
the present paper.

Because there is no explicit terminology, those text
fi les generated by NaSch simu lators are referred to in
t e present artic le as "eommo Format" •ext fi les. The
format is described in section 2.2.

2.1. NaSch model

Thro l_1gh cellular automata, researchers create
discrete models of space, time and speed. Space is
discretized in a way each cell of the cellular automata
is occupied by a vehicle only[4]. Time development
follows simple rules using stochastic elements[5].

A simple model based on cellular automata which
can reproduce many of the characteristics observed
in the t raffic is the Nagei-Schreckenberg (NaSch)
model[6]. In this model, a veh icle state n is charac
terized by a position x" and speed v"E{ 0, 1,2, ... vmru}.
The gap between the nth-vehicle and the vehicle in
front of that one is d" =x"_ ,-x, . For each time stamp, the
array of vehicles is updated according to the following
rules[6]:

1. Acceleration

2. Deceleration due to other vehicles

.. !;. -~-. ...
. 1

$. '

·' . . .
. .

.
S .

!> .• • . <1.
. . '· .

. i .. S

' ·· . ~
. . . S. S.. . S ' ·

space

.!:> . . - 00 l. ..

o.

..
·'

('O ~

J .. :..• C l
. . CI. J ':! . :! .
e a e ~ :!
1 (1(\ •.. 3 .
, ~ .OQ . l . J

.) O..' O. . ~· 3 ..
o 001 ' . J .
(J \).) :.
l 0 1 :.:' .

~ 1 01 2 ..
o 1 o ';! -: .. J . .

. \:1. 00 1 . :::!
l .(10 . ~ - :t . :1

.:: . 0.00. 2 .. . -
~-1.00 . J.
-:1 l':lOO
: en;

1 \X:U. 1
O<:CI'I. 1 .

. .
~ - ..)I):,JI,.o, .. ".;. > u (1~ 1 .2

. ' ..
.s.

. S. .!.
!. ..

.. 1 .O JOO :" 2 ..
~ 0. 1 00:1 J

1 (J 0001
: o: .{'\) 1 :: ..

:.<)o 0 1 1 :J. !. .

3
. .

. .

. . ~ S ()J o (.J l 1 .. .¡ $. .. S ... ~ .C'. tV O : ... l .. ~ ..
-. .. S . . .2. 1 1).:>0. 1 .: i . . . -~

. ~ . . . ,. ;: 1)1 :)! ::! .)
. ¿ .01 C\Q z . J. . ,.) ·· " · ·

'·

Figure 2 Traftic jams representation. Left: Empiric data. Right: Computer simulat ion using NaSchmodel. umbers Oto 5
represent vechicle speed [4]

:-----------------------------_,r,_,ffi.'.......,ri""'st..,..a~dejnyenie.rí,a.Era---...~

David Sánchez

3. Random break

lf v">O ,v
11
__,.max(v

11
-1 .0) with probabil ity p

4. Vehicle moving (Driving)

x __,.x + v
11 n n

Rule 1 represents the driver's wish to drive at the
maximum allowed speed. Ru le 2 prevents col lisions
and vehicles' entrance to the circulation lane. Rule 3
adds environmental characteri st ics and incorporates
asymmetric acce leration and deceleration. Rule 4
moves the vehicle with the speed determined in t e
previous steps[4].

O lO 60 80 100 12:0 140

({:-.1

Figure 3 . Traffic Jam represent<Jtion done by Treiterer and Myers in
1974 based on a er ial photography [4].

Using a NaSch model and change lane algorithms,
traffic researchers can generate computer simulations
that match the resul ts acquired through measuring.
Figure 3 shows one of those first representations made
by Treiterer and Myers in 197 4 using aerial photogra
phy [4].

Figure 2 shows a comparison between a model ob
tained through measuring and a synthetic model[4] .

2.2. "Common Format" Text Files and their ln
conveniences

Even though there is no standard representation for
traffic solutions and problems, most researchers have
used techniques similar to Figure 3 to explain vehicular
traffic behavior.

12

11

'

.
• 5

1 •
1

. ..

·.·
5
55

55
5 5

.t S ~ S S
5 . ' 55 •

S ~ " \
5

'

..
'

5'.. 5

' 5

,,
55

5
• 5

S \ ~" \
5

' .
" " ~ -l

5
5'

.: o~ \ S ~
~ J ~ -l

¿ ~ S -l

'', .
5

~ S " ~
~ S 5 S

~ \ 5 S

\ SS
<. ~ S

1 • '

5
1

' .t S J • t t

\ ~S '\

' 1 ' 1

' ,,

' ' '
'

5
5 5

5

' 5

' ',

... 1 ~:
J ~ :

" "..'l J
-l S S ll

S ~01 ;
soa LJ

lúl

Figure 4. UCAB·CI DI aS eh simu lat or sample. Numbers Oto 5 repre
sent speed[l].

As Figure 2 shows, representations obtained through
computer simulations use a similar nomenclature. Figu
re 4 shows the output of one of the UCAB-CIDI NaSch
simulators u sed to analyze vehicular traffic in Caracas
(Venezuela)[1].

Those "Common Format" files use numbers, usually
from O to 5, to indicate vehicle speed and tabulated
positions to show vehicle location. Each row represents
a time step.

As a consequence of th is static representation, the
reader needs to imagine how vehicles move. Training
is required to assess traffic jams, and the poor format
presentation makes it difficult for researchers to analyze
the phenomenon.

To avoid those limitations, it was decided to make
animations with those models. However, dueto simu
lator operation it is very difficult to generate real time
animation (animate at the same time that simulation is
being generated). That is why it was decided to create
the an imation from simulation final resu lts stored in
fi les.

Compression of Synthetic-Vehicular-Traffi c Flow using "Complemented Binary Representation"

As described earlier, each time the simulator is run,
a figure-4- like file is generated. The file includes dozens
of pages for each one of the lanes that can be found
in a route.

A typical text f il e for a 5-Km-one-way route3 has an
approximate size of 248 KB (each lane). For a two-way
route the researcher gets two 248 KB files, which adds
up to 496 KB.

In order to get a qual ity analysis of the problem,
it is necessary to consider at least 100 simulations,
each one obtained after variations of the model pa
rameters.

Analyzing a two-way lane, with those 1 00 simula
tions would req uire a database space of 49,600 KB
(48.44 MB). Because of the finite characterist ics of
today's storage equipment (Databases in personal
comp ters) is essential sorne method to compress the
ínformation.

3. Background

In computer science, compress ion is cod ified
information using less bits (or any other saving infor
mation unit) than the orig inal data representation[7].
Compression's main objective is to minimize the space
required to store data[8]. The main disadvantage of
compression is the need for a t ime consuming decom
pression process[8] .

Compression 's theoretical frame is supplied by
"information theory" (high ly related to "Aigorithm lnfor
mation Theory"). These case studies were essentially
created by Claude Shannon, who published funda
mental papers on the topic in the late 1 940s and early
1 950s [7]. Nevertheless, compression's fundamental
concept is at least asoldas Romans, who realized that
the numeral V needed less space on a stone tablet
than the 11111 representation[9].

Com pression theory establishes differences bet
ween information and data that might not exist in other
contexts.

lnformation is the communication or acquisition of
nowledge that allows to expand or specify what it is

known about a particular subject4
.

3 lt is considered a 1, 600 array to store the ve hieles. lt is
about 5, 600 m, considering 3.5 m average length ve hieles)

4 Definit ion provided by "Diccionario de la Real Academia
Española" (Spanish Royal Academy Dictionary) .

In the traffic study context, the term information
would be related to vehicular-flow intrinsic characte
ristics, which are independent from its representation.
The key word for "information" is meaning.

The term data refers to the way information is repre
sented . The medium in which information is contained.
The Key word for "data" is representation.

For example, the letter "A" has a known meaning
relating to the language context. lt could be the first
letter of the Roman alphabet, the first open vowel, an
article in English, etc. This is information. Data relating
to the letter is font, color, size, form, etc.

Depending on how information is treated, there are
two main compression techniques. Those based in
"lossless" algorithms, wh ich compress data based on
statistical redundancy and "lossy" algorithms, which
compress data losing fid elity[8].

"Lossless" techniques do not lose information and
therefore are preferred to compress critica! data. As
a disadvantage, those compression-decompression
techniques req ui re high level resources in time and
computing capacity[9]. Additionally, it is not possibleto
compress some kind of data and the iterat ive applica
tion of those algorithms does not elevate compression
ratio[9].

"Lossy" compression techniques imply removing
fidel ity. They requ ire a deep understanding of the
perceptual limitations and capabilities of receptors
(Mostly uman senses) to avoid losing relevant infor
mation. These techniques are primarily used in video,
photography and music, where quality losses could
be tolerated by spectators[9]. lterative appl ications of
lossy algorithms over the same data causes a complete
loss of all data[9] .

4. Solution

Compression techniques were analyzed over "Com
mon Format" text files. lt was necessary to compress
the essential information expressed in those files, for
them to have smal ler footprint, no clearness sacrifice
and short decompression time.

"Lossy" techniques were discarded as being unac
ceptable to lose information. Therefore, a "lossless"
technique was applied to the compression problem.

David Sánchez

4.1. Data Analysis

There are two main problems with digital data com
pression while using "lossless" techniques. These are
modeling and data entropy coding. Any representation
of the real world exists in its digital form as a symbol
(bit) sequence. Data Modeli ng problem consists in
choosing the correct symbols to represent that infor
mation and predict occurrence probabi lity of each one
of those symbols. Entropy-coding problem consists in
codifying each one of the symbols in the most possible
compact way [1 0] .

Data modeling is related to the kind of data to be
compressed, while entropy-coding is an abstract pro
blem that does not depend on the kind of data to be
compressed[1 0].

Whi le entropy-coding problems are well known,
model ing problems are st ill unknown for many
applications[1 O].

4.1.1 . "Common Format" Relevant lnformation

"Common Format'' text files most important infor
mation is vehicle position through time in flow lanes.
Dueto space-time discrete assumptions, interspaced
vehicles and their positions are relevant and need to
be preserved to ensure high quality.

4.1.2. "Common Format" Jrrelevant lnformation

The "Common Format", shown in Figure 3, includes
numbers from O to 5 to indicate vehicle speed. These
numbers are included to give the reader something he
can use to imagine vehicles movement, and are used
by the NaSch simulator to create the model frames.

Because the main purpose of compressing the
"Common Format'' is to make a more explicit and com
prehensible animation, it is unnecessary to save speed
information. Vehicle movement is going to be shown
using over positioned frames. Section 4.1 .1 states that
al! frames have to be preserved.

At a glance, it might seem that saving the speed
parameter can provide a smoother animation. However,
the NaSch simulator includes discrete space and t ime
in its functioning theory. This means, time on ly exists
in the given frames. An artificially created smoother
animation is not only intensive computationally but it
would include artifacts to the model. Also, among the
NaSch simulator ru les there is a random component
(Rule 3) wifh unknown behavior in-between the discrete
instants.

The only way to make a smoother and more realistic
animation without including information distortion is

adjust the NaSch simulator so it uses smaller discrete
time units.

In conclusion, there is no need to store 0-to-5 ve
hiele Sf?eed.

4.1.3. "Common Format" lrrelevant Data

"Common Format" files are text files. As such, they
include the following irrelevant data:

• Text Headers

Add itional information about t he operating
system they belong to. This data includes
creation time-stamp, modification time-stamp,
execution permissions, cod ification format, etc.
Al! that inform ation would be contained in the
database table that wi ll store the compressed
objects. Add it ionally, Re lational Database
Manager Systems offer transparency over the
operating system they are running, so headers
can be discarded.

• Break lines or carrier returns

Returns characters at the end of each line that
representa circulation lane. Database includes
a lane length parameter, so this information is
redunda t.

• lnteger number representation

Cod ification conventions for text files are pre
served according to standards and operating
systems. Some of those standards includes
ISO 8859, EUC, Windows, Mac-Roman ... and
even Unicode schemes as UTF-8 or UTF-
16[11].

Most operating systems include a codificat ion
based on ASCI I 5. Every time a 1 ora 2 is writ
ten, this number has to be represented through
an 8 bits codification (a byte).

Continuing the explanation with ISO 8859
convention (formally known as ISO/lEC 8859),
to codify a 1, for example, the code refers to
t he decimal number 49 (31""'), and for a zero,
it refers to number 48(30,".').

In ISO 8859-1, these characters are converted
directly to the binary system[13]:

Character O text document representation is
0011 0000¡,,11
Character 1 text document representation is
00110001¡,1//

S EBCDIC and CDC[l2] representations are not cu rrently used

L..__--1[:;, te.kh,~eJ1~2~------------------------------

Compression of Synthetic-Veh icular-Traffic Flow using "Complemented Binary Representation"

In "Common Format " context, d iscardi ng
speed as relevant information, a "1" represents
a present vehicle and a "O" represents an
absent veh icle. An ideal situation would be to
represent this sing le information as concisely
as possible.

Just using bits of a byte, an on bit would repre
sent a present vehicle (1) and an off bit wou ld
represent an absent vehicle (O). Text files are
representing the same information using a byte
per character ("1" or "O") under a writing file
code.

In other words, each time there is a present
or an absent vehicle in a cel l lane, "Common
Format" Text files are using 8 bits to represent
information that should only require only 1 bit
(Present or absent). There is a high data redun
dancy.

4.2. Proposed solution

The main idea in solving the problem is to model
traffic flow asan array of integer numbers. Those num
bers, when read in binary form, wou ld show the same
information about vehicles position over time that is
printed on the "Common Format" text files.

The solution would be developed in two phases;
the first with the modeling technique (Compression
by modeling) and the second, by complement ing the
modeling technique with a known modeling plus data
entropy coding algorithm.

• Phase 1

1. Build a modeling algorithm that runs as fo
llows:

a. The compression module reads the "Com
mon Format" fi le thrown by a NaSch typical
simulator. A sample of these files can be
appreciated in figure 3.

b. Once in memory, al l characters "0","2","3","4"
and "5" are substituted by "1 ". All " "(white
spaces) characters are substituted by O.
Line-breaks chars are deleted.

c. Create a byte array.

d. Divide t e string previously obtained, the
one that has "1 00000010001 O ... " codifica
tion, in groups of 7 characters and convert
each one toa byte. Add the byte to the byte
array.

e. Store the byte array into BLOB field in a
database.

This algorithm would be referred toas "Binary
representation" (Java code can be seen in
Appendix B).

2. Verify that results from applying "Binary re
presentation" generate a compression ratio of
7:1 .

• Phase 2

3. Modify the "Representation binary" algorithm
to complement it with a .zip compression te
chnique, provided by standard Java libraries.
.zip compression includes simple modeling
(independent from data) and entropy-coding.
This phase-2 algorithm would be referred toas
"Complemented Binary Representation".

4. Measure results obtained from applying "Com
plemented Binary Representation".

The compression module was placed inside a
Java program that would be used for further
condition and parameter traffic analysis.

Appendix A explains how the host program
works. The compression module is part of that
host program and is contained inside a Java
class.

4.2.1. lmportant considerations about into-byte
conversion

Bytes are elements u sed for computer-to-computer
communications and also for storing data as BLOBS
in databases.

The algorithm created basically replaces "O", "2",
"3", "4" and "5" into "1" and white spaces into "O" .
Then it takes this character string formed by "1" and
"O" a d segments them in groups of 7. Then each of
these 7 -elements groups is transformed into a byte. A
question that cou ld be raised about it: lf 8 bits forma
byte, and groups are made of 7 bits. Why is there a bit
wasted in each byte formed?

The answer is intrinsically related to the way most
modern computers operate. Bytes are used to repre
sent positive and negative numbers. To achieve that
representation a "complement by two" convention is
used, in which, given n bits, the number interval that
can be represented in "complement by two", goes to
the interval 2n·1, 2n-1-1] [14]. For an 8-bit representation,

t:e..'llista de ingen.Ler._,í""a-Ail. 1._ _ _ _J

David Sánchez

Java Virtual Machine allows integer numbers in the
range[-128, 127] [15] .

In "complement by two" conventíon there are 7 bits
to represent the numbers from O to 127 and all 7 bits
combinations are valid . 8 bits strings can represent
positive or negative numbers, and thus, not all 8 bits
strings are val id under the convention. For vehicular
traffic representation this means that not all 8 cells (with
mixed vehicles and spaces) have a complement-by-two
representation. Sorne samples:

• Vehicle sequence "1 0001 000" cannot be re
presented as a byte because it represents the
number 136 and is out of the byte representa
tion range (Maximum is 127).

• Vehicle sequence "111 00000" can be represen
tedas a byte, because it represents the number
-31 and is inside the range rep.resentation (Mí
nimum is -128).

As can be seen, there would be a significant over
head on the into-byte conversion algorithm if val id and
not val id sequences have to be considered. Sometimes,
the algorithm cou ld chop 8 cells, and other times, on ly
7 cells.

Although this approach would increase compres
sion ratio, it would also increase algorithm complexity,
time-consumption and computing overhead. Using only
7 -bit sequences compression-decompression speed
is incremented dueto simpler algorithms.

4.2.2. Complemented Binary Representation
Technique

As it was commented on section 4.1 about "Data
Analysis" there are two main problems with digital
data compression using "lossless" techniques. These
are modeling and entropy coding of data. Once the
modeling problem was "acceptably" solved (See sec
tion 5.1 for experimental results), it raised the need for
developing and entropy-coding algorithm. However,
the fo llowing considerations arase:

• Entropy-coding algorithms are well understood
[1 0].

• Ent ropy-coding is an abstract problem weakly
related to the type of data being compressed
[1 0].

• The Java platform has full compression libraries
(ge eric data modeling + entropy coding). Java
platform includes a java.util. zip wh ich allows
instrumenting zip , gzip and PKZip compression
formats [16].

The package java.uti l. zip was selected to comple
ment the "binary representation algorithm". Advantages
of using the pre-made package are:

• The ZLIB compression algorithm and its variants
(zip,gzip, PKZip ...) implemented in the package
are well known by its compression-decompres
sion speed.

• Compression packages are a main feature in the
Java platform libraries and are well optimized to
run in the Java Virtual machine.

• Possibility to specify the compression strategy
(zip, gzip, PKZip ...) and speed/strength com
pression relation.

The resulting algorithm will be referred toas "Com
plemented Binary representation" (Java code can be
seen in appendix C).

5. Experimental results

Tests were conducted on a personal computer
(Laptop) with the following hardware-software confi
guration :

1. Pentium 111 processor al ike (AMD brand).

2. 256 Mb RAM.

3. 5 Gb hard disk space.

4. Xubuntu Linux 6.1 O.

5. Java SDK 1.5

The nature of the binary representation algorithm
offers a constant compression ratio of 7:1 in all per
formed tests, using many different file sizes. Standard
deviation was clase to O.

Other compression techniques that rely on generic
data modeling and entropy coding (zip, gzip, PKZip,
JAR, .tar.bz2, etc.) have variable compression ratios .
Small variations on the files can produce completely
different compression ratios, since algorithms could
better recognize patterns [9] . As a consequence, com
pressing a given file is the only way to exactly know how
high the compression ratio would be, and the results
are usually only val id for that fi le. evertheless, most of
alternative compression techniques tests offered avera
ge similar results for the same kind of data, presumably
because o aSch model intrinsic characteristics and
the intell igence (entropy coding) ofthe algorithms. The
best average compression for most of these techniques
is about 6: 1 [17] [19].

Compression of Synthetic-Vehicular-Traffic Flow sing "Complemented Binary Representation"

As a consequence, and for illustrative purposes,
only one test sample (Phase 1 and 2) was included in
this article.

5.1. Phase 1

After applying the bi ary representation algorithm
in a "Common format" text file of 252,200 bytes a
ratio compression of 7.0727466: 1 (7:1) was obtained.
Database representation was 35.658 bytes size.

Thefollowing results were obtai ed when compres
sing the same text file usi g other techniques:

• .zip

ln it ial file size: 252, 200 bytes = 246.3 KB

Final size: 39, 658 bytes = 38.7 KB

Compression ratio: 6.3593726 : 1

• tar.bz2

lnitial fi le size: 252,200 bytes= 246.3 KB

Final size: 32, 299 bytes = 31 .5 KB.

Compression ratio: 7.80829 13: 1

• tar.gz

lnitial file size: 252,200 bytes = 246.3 KB

Finalsize: 39,668 bytes= 38.7 KB.

Compression ratio: 6.3577695: 1

• .jar

lnitial file size: 252,200 bytes = 246.3 KB

Final size: 39, 658 bytes = 38.7 KB.

Compression ratio: 6.3593726 :1

5.2. Phase 2

Binary representation algorithm (Modeling only) re
turns a 7: 1 compression ratio. Once applied, the .zip
algorithm provided by java.util.zip to the 35,658 bytes
file, produced a database representation of 20, 748
bytes (Compression rat io l. 7186235: 1).

In sum, starting from the initial file to the final com-
pressed data:

lnitial file size: 252,200 bytes = 246.3 KB

Final size: 20, 748 bytes = 20.26 KB

Compression ratio: 12.155388:1

5.3. Results Analysis

Method Size (Byt es) Size (Kilo b- Compress1on
ytes) ra t io to 1

252,200
246.3

0.0000000

.tar.gz
39,668

38 .7
6.3577695

.jar
39,658

38 .7
6.3593726

.zip
39,658

38.7
6.3593726

B inary Repre-
35,658 34.8 7.0727466 sentation

.ta r.bz2
32,299 31.5 7.8082913

Comp lemented
20,748 20.3] 2.1553880 Binary Re p. (.zip}

Table l. Compression techniques . Ascending ordered by ratio.

Bytes

252200

189150

l26J0l)

63050

o
Original.tar.gz .Jur .z1p R. B. tar.bz2 C.B.R.

Tc<.:hniquc

Figure 5 Compression methods cons idering data size resulting (Less
bytes is better). "B. R." means "Binary representation". "C. B. R." means

"Complemented Binary Representation (.zip)" .

Tccbniquc

n 3.0JRS 6.0777 9.1165 11 .1554

Comprcssion mtio

Figure 6. Compression methods. Ordered by compression ratios.
(Bigger ratio is better). "B. R."" means " Binary Representat ion". "C. B. R."

means Complemented Binary Representation (.zip)".

re-vista de in en.Le_r:J.a..u~--_J

David Sánchez

As can be observed in table 1, the binary represen
tation technique, "B.R. ", which only uses data mode
ling, returns a rat io compression equivalent to other
methods which include modeling (although generic)
and entropy-cod ing (.zip, tar.gz, .jar, tar.bz2). Figure 5
shows a visual comparison of techniques considering
data size representing the information. Figure 6 shows
a visual comparison of techniques considering com
pression ratio.

As can be observed in table 1, complemented binary
representation technique, "C.B.R.", has a compression
ratio superior to other methods that include model ing
(although generic) and e tropy-codificatio (.zip, tar.
gz, .jar, tar.bz2). Figure 5 shows a visual comparison
of tech iques highl ighting data size of the information.
Figure 6 shows a visual comparison of cornpression
techniques against compression rat io.

lmproved compression ratio is possible dueto the
previous information modeli 1g. Compression time of
entropy-coding algorithm is srnall because it is being
done over previously compressed-by-modeli g data.

"Complernented Binary Representation" was used
in the final solutio of the project.

Conclusions

The main reason for t e huge size of "Common
format" files is the represe tation of information using
statistical ly red ndant data. Understanding the natur·e
of the represented information can achieve an enor
mous increase in computer efficiency.

Researc ers should not scrimp resources in the
correct use of computing power. Modeling is the most
d ifficult part of compression techniques si ce it is
related to the nature of the information itself. Most of
the time, modeling has to be done by the researcher
hirnself since he is the one who knows what needs to
be preserved.

Most of today's comp u ing prob lems try to be
solved by increasing hardware capabilities. However,
th is article shows how a simple technique can bring
tasks previously thoughts as supercomputer real m to
portable computers.

In most situations, researchers would opt for a com
mon compression technique, such as .zip, .jar, or .rar
without previously analyzing the data being consid ered.
Ge eric modeling is only marginally useful in most si-

..___ --1" tekhne 12

tuations. Best results are achieved trough a complete
understanding of information nature.

As can be seen, synthetic information acquired
through NaSch simu lators can be expressed using
byte arrays without statistically redundant data. Tur
ning information into this low-level data representation
format offers a compression ratio as good as the more
sophist icated techniq ues that include both generic
model ing and entropy-coding algorithms.

E ven better, applying a common compression algo
rithm6 over a previously compressed data by modeling
allows outstanding compression ratios [17]. In this case
an average of 12:1 compression rati o was achieved.
lt is rare to achieve this high level compression with a
fast lossless algorithm; so once again, the importance
of modeling can be overestimated.

Thanks to the inclusion of the "Complemented
Binary Representation" compression technique, the
information tool developed was able to produce un
derstandable animations of the given problems, using
just a portable computer.

Better use of resources can dramatically increase
the kind of problems that can be analyzed and solved.
Animation of those traffic problems opened the door
for future problems that would be too difficult or even
impossible to imagine with "Common Format'' repre
sentation. Among those problems are access roads,
distributors, service lanes, passing cars and many
others.

This research is nota definitive solution to the vehi
cle flow compression-modeling problem. Further works
can refine the modeling technique using Jots7 instead
of bytes. However, the complexity of the analysis could
rise exponential ly and it wou ld be more difficult to un
derstand and apply by most researchers.

7. References

[1] A. Aponte and J . A. Moreno, "Cellu/ar auto
mata and its application ot the mode/ing of
vehicu/ar traffic in the city of caracas," Master's
thes is, Centro de Investigación y Desarrol lo

6 lt was used .zip beca use of its high speed, however, we pre
sume result s are v2lid for simila r techniques .

7 Jot is a un it of data equal toa + of a byte, where F repre
sents an integer bigger tha n 8. Jot represents informa tion
sma ller than a bit[lO]. Because the mínimum elect ron ic
representation is a bit, to achieve its purpose, Jot uses
meaning techniques of bit sets. T hat is why its defin it ion is
made using bytes .

Compression of Synthetic-Vehicular·Traffic Flow using "Complemented Binary Representation"

de Ingeniería (C IDI), Facu ltad de 1 gen1ena
UCAB Venezuela, Laboratorio de Comp tación
Emergente LACE, Facultad de Ingeniería UCV
Ve ezuela, 2006.

[2] A. Aponte and S. Buitrago, "Global optimiza
tion in modeling vehicular traffic, " Centro de
Investigación y Desarrollo de Ingeniería (CIDI),
Facultad de Ingeniería UCAB Venezuela, La
boratorio de Computación Emergente LACE,
Facultad de Ingeniería UCV Venezuela, 2006.

[3] A. Aponte, S. Bu itrago , and J . Moreno,
"lnappropriate use of the shoulder in highways.
impact over the in crease of gas consumption,"
Centro de Investigación y Desarrollo de In
geniería (CIDI), Facultad de Ingeniería UCAB
Venezuela, Labora ario de Computación
Emergente LACE, Facultad de Ingeniería UCV
Venezuela, Departamento de Cómputo Cien
tífico y Estadística, USB, 2007.

[4] G. Poore, "Emergent phenomena in vehicu/ar
traffic." , M ay 2006.

[5] B.-H. Wang, L. Wang, and B. Hu, "Analytical
results for the steady state of traffic flow models
with stochastic de/ay," The American Physical
Society, 1998.

[6] K. Nagel, D. Wolf, P. Wagner, and P. Simon,
"Two-lane traffic rules for ce/lular automata: A
systematic approach," Los Alamas National
Laboratory, 1997.

[7] T. Strutz, Bilddaten-Kompression (lmage Data
Compression) ISBN 3-528-23922-0. Vieweg
Braunschweig/Wiesbaden, 3 ed., July 2005.

[8] G. Blelloch , "lntroduction to data compres
sion," Computer Science Department Carnegie
Mellan University , October 2001.

[9] T. Halthill, "How safe is data compression?,"
Byte Magazine, vol. 19, no. 2, pp. 56-74,
1994.

[1 O] W. D. Withers, "A rapid entropy coding algori
thm,"Dr. Dobb'sJournal, vol. 22, pp. 38-44,78,
April 1997.

[1] J. Lewis and N. Dale, Computer Science 11/u
minated ISBN 07637 41493. Jones and Barlett
Publishers, 3 ed., 2006.

[12] Dale and Orshalick, lntroduction to Pascal and
Structured Design. Me Graw Hi ll , 1 ed ., 1986.

[13] 1S0/1 EC, "lso/iec 8859 7-bit and 8-bit codes
and their extension." , February 1998.

[14] P. C. Ramon Mata-Toledo, lntroducction to
Computer Science. Shaun, Me Graw Hill , 1 ed.,
2000.

[15] H. Schildt, Java 2: The Complete Reference.
Me Graw Hill, 4 ed. , 2003.

[16] D. Flanagan, Java in a Nutshe/1. e Graw Hill,
2 ed., 1997.

[17] W. Heriman, "Practica/ compressor test." , July
2005.

David Sdnl ¡e¿

Appendices

A. Working program Scheme

Screen shots were taken from a Spanish set up be
cause the program was created to work in a "Spanish
language" e vironment.

Befare running the program, a MySQL server must
be working. The MySQL database used in th is artic le
was configured to run every time the computer was
turned on.

O ce the program is running, the following steps
are performed:

1. A dialog shows up to start a local or remate
ySQL connection.

O ce confirmed, this dialog c reates a data
object t at keeps the ecessary pass phrase
to allow the database connection. T is object
validates keys (Figure 7).

To achieve its work, the dialog (Connection.java
c lass) creates a connection object to the data
base. lf this object (ConnectionData c lass) is
vali d, by achieving a satisfactory authentication
to the database server, the ConnectionData
is automatically crafted into a new object that
will handle database queries. This object called
SQLQuerier (SQLQuery class) is responsible for
database con:¡munication using data kept safe
inside the connection object (ConnectionDa
ta).

The dialog, as well as the object used to co
llect data from the user (Connection object), is
erased from memory. After th is operation, the
only way to access the database is through
SQLQuerier. lt is not possible to modify con
nection parameters.

2. Program Main Menu.

SQLQuerier object is inserted into a "Palette"
class. This palette is an interface object which
allows the user to perform di verse actions such
as creating new search ing windows (Figure
8) .

Original /y, the palette was designed to stay
above al l windows, but this behavior was
changed d e to user demand and its actual
behavior is like any other window.

3. "Rampa Acceso" (lnner) selection

This option is in designing stage.

4. " Ida y Vuelta" (Two-way drive)

"Consu ltar" (Consulting) menu creates a new
window with all data found (Processed or non
processed information) as well as a tab to filter
information . A sample of this window can be
seen in figure 10.

"Consultar" windows have two "Tabs". The
first one can be seen in figure 1 O. Buttons allow
the user to perform different operations on the
database. Those operations are:

• Nuevo (New)

New data to be save in the database. Only
simulation entry data is editable.

• Guardar (Safe)

Save data introduced.

• El iminar (Delete)

lt allows erase info from the database. Deleting
requires a previously selected ítem. For safety
reasons, only one simulation can be erased at
a time.

• Simular (Simulated)

lt runs a C simulator library.

• Ver (See)

lt shows an animation with previously preces
sed data by the e simulator.

A sample animatio can be seen in figure 8.
This window includes the code that identifies it
in the database in the tile. lt is possible to have
different open windows at the same time.

In the animation window, each dot represe ts
a vehicle.

• Exportar (Export)

Export button (Currently disabled) allows se
lected data to be saved in different formats.

The Searching ("Buscar") tab allows entering
parameters to filter data from the database
(Figure 11).

Once data is introduced, the search is perfor
med and the window shows the resul t in the
"Base de datos" (database) tab. lf no para
meters are specified , it returns all sim ulations
previously inserted (processed or not) in the
database.

Compression of Synthetic-Vehicular-Traffic Flow using "Complemented Binary Representation"

.--
{ ~ ú;)f¡(I.H

Figure 7. Screen to get connection parameters

1 :v.. ...-._ -~ . . '
1 ' • • ~ ._, 1

, ·~:...-,..:-~...:..c:..

F1gure 8. Main Menu

Figure 9 . Animation w ith processed duta.

F igu re 10. This Win dow shows a JI data saved in the database (" Ida y

vuelta" (Two-way lan e] option).

Figure 11. Data base Searching ta b ("'Id a y vuelta'' Two-way lane option).

David S~nchez
.-------- ---------------------

B. "Binary Representation" algorithm implemented
in Java

Duc the small size of the algorithm , it was decided
to place it inside tl1e Read.java class.

pu blic vnid rcadFrom FIIcC'I clt •pe!;() {

try {

}

lnputStrea 11 n1 = IIC\1' Fd clnput~tream(ou tCiclopcgFi l e);

int st z ·-m ~~ o.~ i labl c ();

byte b¡¡ ,.-m• \v bvto.:]~i 7 c];

in re<~ (b);

in.close();

f!I t crcates a readi ng input st rcan1 lo rcad

//"0utCi c l opc~Frk" l tl<
//l t mC::lSll ll'' thc <J / t' pf tht· file ¡, ':t111l f. 1<' l•c
/'¡cad

// lt c rcatcs a twH· :ur.l\' the ~ i ;c of
// thl' f1k bci ng re :Jd
/ 1 l~cad al! tcxl ti k byft's .md
//~.1'.;; thcm In¡,
/ 1('loo;..: thc tl k

StJJJl~ s- nc11 :-;tring(h ,O .su:e); / 1l t crcatcs a st11ng wnh al l rc.1d h\t l!s

//cu11' CJ tcd to char'
s ~ s replacc(' !l' ,' 1 ') : //R.eplacc Os [1,

s - s rcplacc('2 · ,' 1 ') ; / /l<cplacc 2 s bv
s = s n·placc('1' .' 1'), / 1Rcplacc 3 s bv
s- s .replace('• · .' 1'): // Ro.: placc 4 s bv
s - s replacc('S' .' 1 '), /!Rcpl.Jcc 5 s bv
S - S n:plan:(' ',' ()') : //Rcpbc t• al IVllltC SJ'ilCCS bv Q
Stnng Buffcr 'h = nc w Strinz Buflcr(s subs tnng(1)): lt cr catcs a Stl lllg buffer to pcrf,mn o pcra ti<>ns

int i=fl:
while (i<sb. lcngth()) {

if (sh.charA t(i)=='') {

sb.dclc tcCharAt(i):
}
i++:

String bi tConvcrlcrString=sb. toS tri ng():
int top = (bitConvcrterString .length()/7)+ 1:
byte[] bytes = new byte] top]:
String n :
int j=O:
whilc (bi tConverterString.lcngth()> 7) {

n=bitConverterS tring .substnng(0.7);
bytes ij 1 = Bytc.parsc8yte(n.2);
bit Conve rterStri ng=bi tCon1·crtcrStri ng .substri ng(7):

j++:

/Ion data
/ffhis loops erases allline breaks

/ffran sform a S tri ng buffer into a ncw String
//Mcas ures the byte array lcngth
//lt creates the byte array
//!lelping Stri ng
//Cnunter

!/Chop thc string in 7 bits size pi cccs

/ffransforms 1 andO scqucnccs in byte~
//Stnng choppcd

n=bitCon,·crtcrString; //l t proccsses the last one
bytcs[j] = Bytc.pars d3yte(n ,2):
int ans\\ er = this .sqlQuerier.h:mdkUpdatclnOutAnimacionlda(cocle.bytcs);

/flt savcs in thc c.latabase
} catch (FilcNotFoundException e 1) System.crr.pri ntln("Filc. not foun d: "+ file):

catch (lOExccption c2) e2 .printStackTrace() :

.....__ _ __.. : t.e.kbn~_12, ______________ ~----------------~-

Compression of Synthetic-Vehicular-Traffic Flow using "Complemented Binary Representation"

C. "Complemented Binary Representation" imp/e
mented in Java

public void rcadFwmFileCiclopcg() {
try {

lnputStrcam in= ncw FilclnputStrcam(outCiclopcgFi le):
in t sizc=i n.available();
b~tc b/]=ncw bytclsizel :
in .rcad(b);

in .closc():
String s= new String(b.O .sizc):

s = s.rcpla~c("O" .' 1");
s = s.rcplacc("2" ."1'):
s = s.replacc(T .' 1 ') ;
s = s. rcplacc("4" ,' 1") ,

S = s.rcplaccC s·: 1,);
s = s.replacc(" · ."0"):
StringRuffcr sb = new StringBuffcr(s.substring(1)) :
int i=O;
while (i<sb.kngth()) {

if (sb.charAt(i)==--)
sb.dclcteCharAt(i):

i++;

String bitConvcrtcrString=sb. toString();
int top = (bitConvcrtcrString. length()/7)+ 1;
bytc l l b)"tcs = new bytc ltnpl ;

int j=O;
whilc (bitConvcrterStringJcngth()> 7) {

n=bit Con ve rtcrStri n g .substri ng(O ,7):
bytcsjj 1 = B) tc .parscBytc(n ,2):
bitConvc rtcrString=bi tConvcrtcrStri ng .su bstrin g(7):
j++:

n=bitCon vcrtcrString;
bytcslj 1 = Bytc.parscByte(n.2);

1/lt e reates a stream lo rcad thc file
//Mcasures thc sizc of !he file to be read
lllt creates a byt~ arra y the samc sizc of the file
//Read all bytes from the text fil~ and
//savcs thcm in b
//C losc thc file
/lit makcs a string with a ll bytes rcad
1/tr::msformcd tnlo chars
//Com pression by modcling start
//Replace zcros by 1
//Rcp l a ce 2 s by 1
//Re place 3 s by 1
//Replacc 4 s by 1
//Replace 5 s by 1
//Rcplace white spaccs by O
/lit crcatcs string buffer to perform opcrations
/ffhis loops erases line brcaks

//lt transforms thc string buffer into n string
//Mcasurcs nrray sizc
/llt mnkcs byte nrray String n;
//Helping String
//Countcr
//Chop thc string in 7 bits sizc picccs

/ffransfom1 1 andO scgucnces in bytes
//Chop thc st ring

// lt proccss !he last onc
//lt cnds comprcssion by data modcling

FileOutputStrcam os = ncw FilcOutputStream(""7.ip_cachc") ;
ZipOutputStrcam zos = ncw ZipOutputStrcam(os) ;

/llt starts complemcntcd comprcssing //(Modeling + cntropy-coding)
/ll t crcatc an externa! lile for data flow

zos .put!\extEntry(ncw Zi pEntry(""zip_cac he ..)):
zos.writc(hytcs):
zos .closcEntry();
zos .closc ():

lnputStream is = ncw FilclnputSt rcam("zip_cache ..):

sizc=is .availablc();
byte comprcsscdBII=ncw bytc[sizc l:

is.rcad(comprcsscd B):

// ll wwps thc externa! file in lo a comprcss
//formal
/íl t create hcadcr files
//lt comprcsscs prcviously modcl data
//Closc data llow
//Clase lile
//End of complcmcntcd compression
//Reading Comprcsscd file lo scnd itto
//databnsc
//Creates n rcading strcam for thc
//"" outCiclopcgFilc ..
//Mcasurc the sizc of rcading file
//lt crcates a byte array
// fi le sizc
//Rcad all bi tcs from files and
//sa vc thcm in comprcssedB

is.closc(): //Clase thc file and cnds comprcsscd lile
//rcading

i nt answcr = thi s .sg 1 Queri er.hand 1 e U pdatcl nO u tAn i macion Ida(e o de .com presscd B) :
//Savc in thc databnse

} catch (Filcl\otFoundE.xccption el) Systcm .crr.println("Filc not found : .. + file);
catch (IOExccpti on c2) c2 .prin tStackTrace():

..

