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RESEARCH OF DEFORMATION OF THE CURRENT CARRYING 

ORTHOTROPIC SHELLS IN NONLINEAR STATEMENT 

 

Abstract: In the present paper, the effect of taking into account the nonlinearity in determining the stress-

strain state of flexible orthotropic shells in a geometrically nonlinear setting is studied using the example of a 

flexible current-carrying orthotropic conical shell located in a magnetic field. 
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INTRODUCTION 

An important place in the mechanics of 

conjugate fields is occupied by the study of the 

motion of a continuous medium with allowance for 

electromagnetic effects. One of the main directions 

of development of modern solid mechanics is a 

development of the theory of conjugate fields and, in 

particular, the theory of the electromagnetic 

interaction with deformable medium [6, 7, 16, 17, 

20]. The electromagnetoelasticity coupled problems 

of anisotropic plates and shells having anisotropic 

conductivity are of scientific interest in terms of both 

theory and applications. The matter is that in the case 

of thin anisotropic bodies having anisotropic 

conductivity it is possible to solve optimal problems 

of magnetoelasticity by the variation of all physical-

mechanical material parameters of body.  

Most of the known works on the deformation of 

elastic conducting bodies are performed for a 

linearized system of equations. However, the 

solution of a number of applied problems, to which 

the nonstationary problems of determining the 

stressed state of flexible current-carrying anisotropic 

shells should be attributed, requires a more complete 

study of mechanical processes, including the wave 

fields accompanying the magnetoelastic interaction, 

on the basis of the nonlinear model of 

magnetoelasticity and represent an actual scientific 

problem. Problems interaction between electro-

magnetic field and deformed bodies are frequent in 

advanced technology. 

PROBLEM  FORMULATION 

Assuming that an external magnetic field acts 

on the body, the magnetoelasticity equations in the 

Lagrangian variables in the region occupied by the 

body (internal problem) can be represented in the 

form [1-3, 5]: 
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where E


electric field strength; H


magnetic 

field strength; B


magnetic induction; D


electrical induction; стJ


 – a density of foreign 

current ,  f


 – a volume mechanical force, 
f


 – a 

Lorentz volume force, J


 – a density of  current, 
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  is the density of the material; 


 rate of 

deformation; ̂  – an internal stress tensor. 

For the case of quadratic nonlinearity 

considered in [2, 3, 5], we assume that deformations 

and shifts are small in comparison with the angles of 

rotation of the element, and the angles themselves are 

substantially less than unity. Elastic properties of the 

shell are considered orthotropic, which main 

directions of elasticity coincide with the directions of 

the corresponding coordinate lines. Material obeys 

the generalized Hooke's law and has a finite 

conductivity. Electromagnetic properties of the 

material of the current-carrying shell are 

characterized by tensors of electrical conductivity

ji , magnetic permeability 
ji  and dielectric 

permittivity
ji  3,2,1, ji . At the same time due to 

the crystallophysics for the considered class of 

conducting media with rhombic crystal structure it 

was considered that the tensors 
ji ,

ji ,
ji  take a 

diagonal form [4, 11, 19]. 

System of equations must be closed 

magnetoelasticity relations linking the vectors of the 

electromagnetic field and induction, as well as Ohm's 

law defining the conduction current density in a 

movable medium. If the body is linear with respect to 

the anisotropic magnetic and electrical properties, the 

constitutive equations for the electromagnetic field 

characteristics and kinematic equations for the 

electrical conductivity, as well as expressions for the 

Lorentz forces, taking into account the external 

current стJ


 into the Lagrangian variables are written 

respectively as: 

HB ji
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Here ji , ji , ji  are the tensors of electrical 

conductivity, dielectric and magnetic permittivities 

of linear current-carrying anisotropic body 

 3,2,1, ji   respectively. For homogeneous 

anisotropic media, they are symmetric second-rank 

tensors. Thus, equations (1) and (2) together with 

(3)-(5) are a closed system of nonlinear equations of 

magnetoelasticity for anisotropic current-carrying 

bodies with anisotropic electrical conductivity, 

magnetic and dielectric permittivities in the 

Lagrangian formulation. 

Coordinate surface in the unstrained state we 

assign to the curvilinear orthogonal coordinate 

system s  and  , where s  length of the arc 

forming (meridian) is measured from a fixed point, 

  central angle in a parallel circle measured from 

the selected plane. The coordinate lines consts   

and const  lines are the principal curvatures of 

the surface coordinate. Choosing a coordinate   

coordinate normal to the surface of revolution, we 

refer to the shell of the spatial coordinate system of 

coordinates  ,,s . Assume that the surface of the 

conical shell known magnetic induction, and the 

surface mechanical strength.  Upon receipt of the 

resolution of the system in the normal form of 

Cauchy choose as basic functions 

 EBMQNwu SSSS ,,,,,,, . 

By selecting these functions in the future, you 

can choose different combinations of fixing cone. 

We assume that all the components of the excited 

electromagnetic field and displacement field 

belonging to magneto-elasticity problem equation 

does not depend on the coordinates  , and also 

believe that the elastic characteristics and 

electromagneto-mechanical shell material does not 

vary along the parallels. 

After some transformations [11], we obtain a 

complete system of nonlinear differential equations 

in the form magnetoelasticity Cauchy, which 

describes the stress-strain state of the current-

carrying orthotropic conical shell with an unsteady 

mechanical and magnetic fields: 
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Here ,sN  N  meridional and 

circumferential forces; S shear; ,sQ shear force; 

MM s ,  bending moments; wu ,  

displacement and deflection; S the rotation angle 

of the normal; PPS ,  mechanical load 

components; E – mechanical load components; B

– the normal component of the magnetic induction; 


ss BB , – known components of the magnetic 

induction on the surface of the shell; тсJ –

component of the electric current density from an 

external source; 
ees , – elastic modules in the 

directions ,s – respectively;  ,S – Poisson's 

ratio, which characterize the tensile transverse 

compression in the direction of the coordinate axes; 

  permeability;   the angular frequency; 

321 ,,  – the main components of the tensor 

conductivity. 

Obtained coupled allowing system of nonlinear 

differential equations of order eight (6) describes the 

stress-strain state of flexible current-carrying 

orthotropic conical shells of rotation having 

orthotropic electrical conductivity, magnetic and 

electrical permittivity. Solving of magnetoelasticity 

boundary values problems associated with the 

essential computational difficulties.  

This is because the resolution of the system of 

equations (6) is a system of differential equations of 

hyperbolic-parabolic type of eighth-order with 

variable coefficients. Components of the Lorentz 

force consider the speed of shell deformation, an 

external magnetic field, the size and intensity of the 

conduction current relatively to the external magnetic 

field. Accounting for nonlinearity in the equations of 

motion causes nonlinearity in the ponderomotive 

force. The boundary conditions for the functions 

characterizing the mechanical part of the problem are 

as in the usual theory of shells. The boundary 

conditions for electromagnetic functions can be 

specified taking into account the electric field or a 

combination of electrical and magnetic fields. The 

initial conditions are given in the classical form. 

 

METHODOLOGY OF THE SOLUTION 

The method for solving the nonlinear problem 

of the magnetoelasticity of shells is based on the 

consistent use of the Newmark scheme, the 

quasilinearization method, and the discrete 

orthogonalization method [3, 8-15, 18]. To separate 

the variables from the time coordinate, we apply the 

implicit Newmark scheme, with which the nonlinear 

boundary value problem reduces to a sequence of 

nonlinear one-dimensional boundary value problems 

at each time step. The next step in solving the 

sequence of nonlinear boundary value problems of 

magnetoelasticity is based on the application of the 

quasilinearization method, with which the nonlinear 

boundary value problem reduces to a sequence of 

linear boundary value problems. Then each of the 

linear boundary value problems of the sequence on 

the corresponding time interval is solved numerically 

with the help of the stable method of discrete 

orthogonalization. 

 

THE DISCUSSION OF THE RESULTS 

A study of the stress-strain state of flexible 

orthotropic conical shell of boroaluminum of 

constant thickness mh 4105  , under mechanical 

stress 23 /sin105 mNtP    was performed. The 

shell is in an external magnetic field ТBS 1.00   

and is applied by the external electrical current of 
24 /sin105 mАtJ TC   , density. The shell has 

a finite orthotropic conductivity ),,( 321  . 

Note that in this case the anisotropy of specific 

electrical resistivity is 27.2/ 13  .  

We assume that by the electric current in the 

disturbed state is evenly distributed on the shell, the 

external current density does not depend on the 

coordinates. In this case, the combined effect on the 

shell loading, the ponderomotive force consisting of 

Lorentz forces and mechanical. 

The boundary conditions are 
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The initial conditions are 

      0,,0,,0,
000


 ttt
tswtsutsN 


 

The parameters of the shell and the material are: 

0
0
s , ,4,0 msN  4105 h m, mr 4.00 

;cos0 srr  , ,sec16.314 1 ,15/   

,/2300 3mkg TBB ss 5.0  ., ,

mH /10256.1 6 ,
 

,/sin105 25 mAtJ mc  

  18

1 10454.0


 m ,
   18

2 10454.0


 m ,

  18

3 10200.0


 m ,
 262.0S , 320.0 ,

23 /sin105 mNtP   , TBS 1.00   

,/109.22 210 mNeS  210 /107.10 mNe 
 

 The solution is found in the time interval 

sec100 2  for the integration time step is 

chosen to be sec101 3t . Maximum values 

obtained at time step sec105 3t . 

It was investigated the stress-strain states of 

flexible shells in nonlinear formulation based on 

comparison of the solutions obtained for the current-

carrying orthotropic cone of beryllium and current-

carrying isotropic cone of aluminum, as well as for 

the isotropic cone of aluminum in the absence of a 

magnetic field and the external current. 

In Fig. 1 shows the deflection distribution 

according to "s" at sec105 3t . The results of the 

calculations are given for the variants: 1 - a current-

carrying isotropic cone made of aluminum; 2 is an 

isotropic cone made of aluminum in the absence of a 

magnetic field and an external current; 3 - current-

carrying orthotropic cone of beryllium. In all three 

cases the distribution of the deflection is nonlinear (

5/1
0
 hw ) and its maximum values occur in the 

left contour of the shell. Thus, in the case of 

beryllium orthotropic cone and the cone of isotropic 

alumina, considering the maximum value of the 

magnetic field deflection differs by about two times.  

 

 
Figure 1 -  Distribution deflection

 
)(sw  at sec105 3t  for all variants.  

 

It was revealed that in the case of the isotropic 

cone without influence of the magnetic and electric 

fields the deflection increases significantly (

4/ 0 hw ). This is because in the absence of an 

electric field acting on the shell the tensile strength of 

the tangential component of the magnetic induction (


sB )  and the tangential component of the Lorentz 

force (


SF ) is equals to zero. In this case the shell 

becomes more ductile, i.e. flexible with respect to the 

deflectio            n. The absence of a magnetic field (

0B ) also leads to an increase in deflection. 

Figures 2 and 3 show the distributions of the 

maximum stresses )()(
2222

sTs  
 

and meridional 

bending  moment 
S

M
 

along the meridian of the 

shell at the time point sec105 3t  for all 

variants: 1 - the current-carrying orthotropic cone of 

beryllium; 2 - current-carrying isotropic cone made 

of aluminum; 3 is an isotropic cone made of 

aluminum in the absence of a magnetic field and an 

external current. 
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Figure 2 -  Distributions of the maximum stresses 
  2222 T  at sec105 3t   for all variants. 

 

 

Figure 3 -  Distribution meridional bending  moment )(sM  at sec105 3t   for all variants  

for all variants.  

 

Note that when solving the problem, the stress 

of the conical shell was considered as the sum of 

Maxwell's mechanical stresses and stresses, i.e. the 

total stress state was taken into account. It can be 

seen from these curves that the distribution of the 

change in stresses and bending moment differs 

quantitatively and qualitatively. A phase-independent 

distribution of stresses and bending moment is 

observed on a segment 0.08 m <s <0.4 m. Their 

maximum values arise near the left-hand section of 

the shell at ms 04.0 . In this case, in the presence 

of a magnetic field and an external current and their 

absence, the values of stresses and bending moment 

in differ by 1.5 times. The obtained results show the 

influence of orthotropic electrical conductivity, 

external electric current and external magnetic field 

on the stress-strain state of the shell, and the 

inclusion of geometric nonlinearity makes it possible 

to substantially clarify the deformation picture.  

 

CONCLUSION  

The nonlinear problem of magnetoelasticity is 

considered in the axisymmetric statement for conical 

shells. The resolving system of nonlinear differential 

equations is obtained, which describes the stress-

strain state of the flexible orthotropic conical shell in 

mechanical and magnetic fields. The numerical 

example is given. The stress-strain state of flexible 

shells in nonlinear formulation based on comparison 

of the solutions obtained for the current-carrying 

orthotropic cone of beryllium and current-carrying 

isotropic cone of aluminum, as well as for the 

isotropic cone of aluminum in the absence of a 

magnetic field and the external current was 

investigated. In all three cases the distribution of the 

non-linear deflection and its maximum values occur 

in the left contour of the shell. At the same time in 

the case of beryllium orthotropic cone and the 

isotropic cone of aluminum, considering the 

magnetic field maximum values of deflection differ 

by about two times. It was revealed that in the case 

of the isotropic cone without influence of the 

magnetic and electric fields, the deflection increases 

significantly. This is because in the absence of an 

electric field acting on the shell, the tensile strength 

of the tangential component of the magnetic 

induction, and the tangential component of the 

Lorentz force equals to zero. 
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