Impact Factor:

	ISRA (India) = 1.344	SIS (USA) $= 0.912$	ICV (Poland)	= 6.630
ctor:	ISI (Dubai, UAE) = 0.82 9	РИНЦ (Russia) = 0.207	PIF (India)	= 1.940
	GIF (Australia) $= 0.564$	ESJI (KZ) $= 4.102$	IBI (India)	= 4.260
	JIF = 1.500	SJIF (Morocco) = 2.031		

SOI: <u>1.1/TAS</u> DOI: <u>10.15863/TAS</u> International Scientific Journal Theoretical & Applied Science							
p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online)							
Year: 2018 Issue: 07 Volume: 63							
Published: 23.07.2018 <u>http://T-Science.org</u>							

SECTION 9. Chemistry and chemical technology.

UDC 0000-0001-5887/5721

Kerem Sefi Shixaliyev

Professor, Academician of EAEN Professor of the Department "Organic substances and technology of high-molecular compounds" <u>kerem_shixaliyev@mail.ru</u>

I.H. Movlayev

Professor of the Department "Organic substances and technology of high-molecular compounds" Azerbaijan State University of Oil and Industry

PLASTICIZATION OF BUTADIENE-NITRILE RUBBER WITH DICAPRYLATE ETHER OF DIPHENYLOLPROPANE

Abstract: Dicaprylate ether of diphenylpropane DEDE derived from oil extracted from Balakhani fields was used for plasticization of butadiene-nitrile rubber. It has been revealed that the percentage of DEDE should be 10% because the strength of NBR-40 rubber is too high. In that case DEDE acts as both plasticizer and filler. But the subsequent increase in the amount of plasticizer reduces resistance to stretch and friction of the vulcanizates.

When using 5-10% DEDE by mass in rubber mixture, breaking strength of the vulcanizates increased by 1,4-2,9 MPa; oil, acid and base resistance were 4-8% greater.

Key words: Butadiene-nitrile rubber (NBR-40), plasticizer, vulcanizate, filler, hardness, oil-acid resistance, synthesis, physical-mechanical properties, sulfur, accelerator, modification.

Language: English

Citation: Shixaliyev KS, Movlayev IH (2018) PLASTICIZATION OF BUTADIENE-NITRILE RUBBER WITH DICAPRYLATE ETHER OF DIPHENYLOLPROPANE. ISJ Theoretical & Applied Science, 07 (63): 124-126.

Soi: http://s-o-i.org/1.1/TAS-07-63-17 Doi: crosses https://dx.doi.org/10.15863/TAS.2018.07.63.17

Introduction

The main purpose of adding the plasticizer to the rubber mixture is to modify the mechanical properties of the polymer. Different plasticizers have a different effect on the plasticity of the polymer.

A number of plasticizers were used for plasticization of NBR-40 rubber. However, these plasticizers can not fully provide equal distribution and compatibility of the ingredients used in the rubber mixture based on the NBR-40 rubber, so that the purpose of this work is to synthesis a new plasticizer and overcome the above mentioned deficiency [1,c.243],[2,c.37]

For this purpose, the following scientific research has been carried out.

Composition preparation

The composition mixture was prepared on laboratory two-roll mixing mill machine. For this

purpose, after heating the rolls to 90° C temperature, the ingredients were added to the mill in the following sequence. [3,c.267],[4,c.65],[5,c.57].

Synthetic and natural naphthenic acids have been used as the primary material for the synthesis of esters. Synthetic naphthenic acids have been synthesized by a direct oxidation of oil concentrates extracted from Balakhani at temperatures of 220-250°C. In order to oxidize, variable valent metals (Mn and Co) were used as catalyst.

The dicaprilate ester of diphenylolpropane of naphthen and benzoic acids was used for the plasticization of NBR-40 rubber.[6,c.132],[7,c.16],[8,c.37],[9,c.88],[10,c.31]

Some properties of dicaprilate ether of the diphenylolpropane and dioctylphthalate used in the experiments are given in Table 1.

Table 1.

Properties of plasticizer

N⁰	Indicators	DEDE
1	Ignition temperature, °C	206
2	Acid number, mq KOH/q	0.5
3	Density at 20°C, km/m ³	959.4
4	Saponification number, mq KOH/q	290-300

	ISRA (India)	= 1.344	SIS (USA)	= 0.912	ICV (Poland)	= 6.630
Impost Fostory	ISI (Dubai, UAE)	= 0.829	РИНЦ (Russi	ia) = 0.207	PIF (India)	= 1.940
Impact Factor:	GIF (Australia)	= 0.564	ESJI (KZ)	= 4.102	IBI (India)	= 4.260
	JIF	= 1.500	SJIF (Morocc	co) = 2.031		

A rubber mixture was prepared on the laboratory two-roll mixing mill machine using the DEDE as a plasticizer and the butadiene-nitrile rubber (NBR-40) indicated on the following table (Table 2). The rubber blend was vulcanized at 155^{0} C for 20 minutes.

Table 2

Recipe of the rubber blend consists of NBR-40 and plasticizer

N⁰	Ingredients	1	2	3	4		
1	NBR -40	100	100	100	100	100	100
2	Altax	2,0	2,0	2,0	2,0	2,0	2,0
3	Captax	2,0	2,0	2,0	2,0	2,0	2,0
4	Neozon-D	2,0	2,0	2,0	2,0	2,0	2,0
5	Zinc oxide (ZnO)	5,0	5,0	5,0	5,0	5,0	5,0
6	Dioctylphthalate	2,0	2,0	2,0	2,0	2,0	2,0
7	Dibutylphthalate	3,0	3,0	3,0	3,0	3,0	3,0
8	Sulfur	4,0	4,0	4,0	4,0	4,0	4,0
9	Technical carbon	50	50	50	50	50	50
	P-324						
11	Dicaprylate ether of	-	2,0	4.0	6,0	8,0	10
	diphenylpropane						

Physical-mechanical properties of vulcanizates are illustrated in Table 3.

Table 3

Physical-mechanical properties of vulcanizates of NBR-40/DEDE mixtures

Composition of the blend, m.f.							
NBR-40	100	98	96	94	92	90	
DEDE		2	4	6	8	10	
Prope	rties of th	ne vulcanizate	es				
Tensile strength, MPa	17,2	17,9	18,6	19,2	20,1	17,5	
Conventional tension in 100% elongation, MPa	3,8	3,9	4,0	4,5	4,7	3,78	
Relative extension, %	320	340	360	370	380	395	
Relative residual deformation, %	13,0	13,0	13,2	13,5	14,0	15,8	
Resistance to tearing, kN/m							
Elasticity, %	12,0	12,5	13	13,2	13,8	13,7	
Conventional unit of hardness on TM-2		82,0	81,5	81,5	80,7	78,0	
During 138 hours at 120 ^o C aging							
coefficients							
Fp	0,84	0,85	0,80	0,86	0,86	0,84	
εр	0,62	0,62	0,63	0,63	0,64	0,63	
Swelling rate for 24 hours at 23 ^o C	114.0	115.0	115.0	117.0	120.0	139	
Burning time	292	300	320	390	97	35	
Strength of metal contact, MPa	5,6	5,8	6,2	6,8	7,0	6,85	

Oil-gasoline resistance of the compositions and vulcanizates have been studied. The results are indicated in Table 4.

Table 4

Resistance of vulcanizates to aggressive environment

N⁰	Ingredients	Solving
1	Transformer oil	not dissolved
2	Crude oil	not dissolved
3	HCl	not dissolved
4	Base	not dissolved

	ISRA (India)	= 1.344	SIS (USA)	= 0.912	ICV (Poland)	= 6.630
Immed Testam	ISI (Dubai, UAE) = 0.829	РИНЦ (Russi	ia) = 0.207	PIF (India)	= 1.940
Impact Factor:	GIF (Australia)	= 0.564	ESJI (KZ)	= 4.102	IBI (India)	= 4.260
	JIF	= 1.500	SJIF (Moroco	$(x_0) = 2.031$		

References:

- Baramboym N.K. (1971) Mekhanokhimiya vysokomolekulyarnykh soedineniy. M.: Khimiya- 1971. - 364 p.
- 2. Butyagin P.Yu. (1971) Kinetika i priroda mekhanokhimicheskikh reaktsiy. Uspekhi khimii, 1971, -T.11,- p. 1935-1959.
- Kuz'minskiy A.S. (1971) Nekotorye aktual'nye problemy khimii elastomerov. Vysokomolekulyarnykh soedinenie, 1971,- T. 13,- № 2, -p. 384-394.
- (1969) «Dostizhenii nauki i tekhnologii v oblasti reziny. Pod red. Zueva Yu.M., M.: Khimiya, -1969,- 404 p.
- 5. Shykhaliev K.S. (2017) Problema polucheniya polimernykh materialov obladayushchikh neobkhodimymi svoytsvami dlya raboty v ekstremal'nykh usloviyakh KhKhII mezhdunarodnaya nauchno-prakticheskaya konferentsiya "Perspektivy razvitiya nauki i obrazovaniya" Moskva.E-mail: www.naukaip.ru, 2017. -p.81-90.
- Bilalov Ya.M., Ivanov A.V., Abrakham Y., Alizade G.L. (1976) Issledovanie termicheskoy destruktsii SKEP s PVKh. Azerb. Khim. zhurn., -1976, - № 1, -p. 74-77.

- Aliguliev R.M., Martynova G.S., Gasanov Kh.A. (1994) Kratkie ocherki po teplofizicheskim issledovaniyam polimerov. Baku.-Elm.-1994, -p.136.
- Regel' V.R., Pozdnyakov O.F., Amelin N.V. (1975) Issledovanie termo- i mekhanoodestruktsii polimerov s primeneniem massspektometrov. Mekh. Polim.1975.- № 1, p. 16-32.
- Shixaliyev K.S. (2017) Termodinamika i vzaimnoe raspredelenie makromolekul v sisteme khlor- khlorsoderzhashchie polimery International Scientific and Practical Conference «WORLD SCIENCE» № 4(20), Vol/5, -2017. –p.37-44
- Shixaliyev K.S. (2017) Exelolted thermoplastics based compositions European science review. Scientific journal- № 5-6,-2017. Vienna, -p.89-94.
- 11. Shykhaliev K.S., Movlaev I.G. (2017)Issledovaniya sovmestimosti polimerov, khimicheskikh i drugikh osobennostey ikh smesey. Sb.statey pobediteley Kh mezhdunarodnoy nauchno-Prakticheskoy konfrentsii. Penza Nauka i prosveshchenie». 2017. -р.31-35.

