
Impact Factor:

ISRA (India) = 1.344

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.207

ESJI (KZ) = 4.102

SJIF (Morocco) = 2.031

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

Philadelphia, USA 1

SOI: 1.1/TAS DOI: 10.15863/TAS

International Scientific Journal

Theoretical & Applied Science

p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online)

Year: 2018 Issue: 06 Volume: 62

Published: 01.06.2018 http://T-Science.org

Sagat Zhunisbekov

prorector, doctor of Science,

Taraz state University named after М.Kh. Dulati

Alexandr Shevtsov

candidate of technical sciences,

member of PILA (USA),

Taraz state University named after М.Kh. Dulati

Nurlan Karymsakov

candidate of technical sciences,

Taraz state University named after М.Kh. Dulati SECTION 2. Applied mathematics. Mathematical

modeling.

DEVELOPMENT OF THE SIMPLEST PERCEPTRON FOR ARTIFICIAL

INTELLIGENCE

(Part 1)

Abstract: This study analyzes the existing algorithms for creating artificial intelligence and develops a simple

perceptron capable of self-learning on the example of a simple game.

Key words: perceptron, game, delphi.

Language: English

Citation: Zhunisbekov S, Shevtsov A, Karymsakov N (2018) DEVELOPMENT OF THE SIMPLEST

PERCEPTRON FOR ARTIFICIAL INTELLIGENCE. ISJ Theoretical & Applied Science, 06 (62): 1-10.

Soi: http://s-o-i.org/1.1/TAS-06-62-1 Doi: https://dx.doi.org/10.15863/TAS.2018.06.62.1

Introduction

Perceptron creates a lot of questions. How does

the brain really function? How does he build

connections within himself? How does the process of

neural network learning happen? Neurons are

random number and are connected by accident. You

want to build a connection algorithm, after which the

model will act expediently. The perceptron (from

the word perception) can be considered as a variant

of neural network realization [1].

Materials and Methods

Block diagram of the game with perceptron will

be presented in the following form Picture 1.

Picture 1 - Block diagram.

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
http://s-o-i.org/1.1/TAS-06-62-1
https://dx.doi.org/10.15863/TAS.2018.06.62.1

Impact Factor:

ISRA (India) = 1.344

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.207

ESJI (KZ) = 4.102

SJIF (Morocco) = 2.031

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

Philadelphia, USA 2

The learning algorithm of a neural network:

id - is the desired output of some of the i-th

effector.

iy -the current state of the effector.

E - the error between the desired and the real.

If it is minimal, the training was successful.

The structure, input and output signals cannot

be changed.

E can be minimized by changing jiw .

  
i

ii dyE
2

2

1

 ;ii

i

i dy
y

E
EA 




 (1)

 ;1 iii

i

i

ii

i yyEA
x

y

y

E

x

E
IE 













 (2)

;ii

ij

i

iij

ij yEI
w

x

x

E

w

E
EW 













 (3)

 














j

iji

j i

i

ij

j wEI
y

x

x

E

y

E
EA ; (4)

1-dependence of the error rate on the output signal of

the perceptron.

2-dependence of the error rate on the input signal of

the perceptron.

3-the dependence of the error rate of change on the

weight of the connection.

Back-calculation algorithm

We know what should be on the output and

gradually calculate the input from layer to layer by

the chain of formulas 1 - 2 - 4 - 2 - 4 - 2 - 4 - : after

determining (2) in each layer, you can calculate the

formula (3) w and then w by the formula:

www  . Implemented as a gradient method.

The task is as follows: find all ijw , that is,

adjust the weight of all connections so that the

perceptron gave the desired output signal to the

corresponding input. To set up (train) a perceptron

for a task, it is necessary to implement many

iterations. The goal is to reduce error E to zero. As

a result, all the best ijw values are found. Learning is

exponential. If the error E does not come to zero, it

means that the complexity of the perceptron is not

enough to teach this example (examples), the number

of layers or neurons in the layers should be

increased.

The General features of the technology are as

follows. The system begins to detect patterns in the

input information. The system doesn't know how it

learns - it doesn't care about the subject of reasoning.

The system can easily complete their education, and

relearn.

64 games were submitted for input. As a

training, the system had to give an answer to the

question – can you win in this game. On games she

studied. Then gave the expert image – a game that

still she couldn't see. She answered her question

exactly.

Thus, the experiment took place in two stages-

training (perseptron gave a number of examples) and

examination (verification of the degree of training).

Each perceptron was trained exponentially. the

perceptrons were trained in languages, reading

English text, recognition of spoken letters, etc. the

Perceptron can be "for underfeeding" examples, but

you can "overfeed". The number of perceptrons

should be increased hierarchically, until the

complexity of the system is equal to the complexity

of the problem.

































































































































1**

1**

1**

1

1

1

**1

**1

**1

**1

1

1**

111

111

111

1**

1

**1

Picture 2 - Winning combination.

Impact Factor:

ISRA (India) = 1.344

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.207

ESJI (KZ) = 4.102

SJIF (Morocco) = 2.031

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

Philadelphia, USA 3

Single-layer perceptron

Similar names. But this is not the same as a

perceptron with one hidden layer, although it may

seem so. This type of perceptron as an elementary

perceptron, too often mean when they talk about the

perceptron at all.

Its key feature is that each S-element uniquely

corresponds to one A-element, all S-A connections

have a weight equal to +1, and the threshold a of

elements is 1.

I'll explain. Take a picture of the perceptron in

the General sense and convert it into a picture of a

single-layer perceptron.

Initially, the perceptron in the General sense

looks like this [2-4]:

S A R

S – Sensors

A – Association

R – Reaction

Based on the key features of a single-layer

perceptron sensor can be uniquely associated with

only one associative element. Look at the white

sensor in the picture (upper left corner). It transmits a

signal to the light green (first) and gray (fourth)

associative elements. Disorder. The sensor can only

transmit a signal to one a-element. Remove the

excess communication. The same operation is carried

out with other sensors.

Make sure you understand the phrase "each S-

element uniquely matches one A-element". This

means that each sensor can only transmit a signal to

one A-element. However, this statement does not

prohibit the situation when several sensors transmit a

signal to one A-element, as shown in the picture

above (1, 2 and 3 A-elements).

Next, s-a links always have a weight equal to

one, and the threshold of A-elements is always +1.

On the other hand, we know that sensors can only

signal 0 or 1.

Consider the first S-element in the last picture.

Let it generate a signal equal to one. The signal

passes through The s-A link and does not change,

since any number multiplied by 1 is equal to itself.

The threshold of any element is equal to 1. Since the

sensor produced a signal equal to 1, the a-element

was definitely excited. This means that it has a signal

equal to 1 (since it can also generate only 1 or 0 at its

output). Further, this single signal is multiplied by an

arbitrary weight of a-R connection and enters the

corresponding R-element, which sums up all the

received weighted signals, and if they exceed its

threshold, gives +1. Otherwise, the output of this R-

element is -1.

Not counting the touch-elements and S-A

relations we described the scheme of the artificial

neuron. It's no coincidence A single-layer perceptron

is indeed an artificial neuron with a slight difference.

Unlike an artificial neuron, the single-layer

perceptron inputs can take fixed values: 0 or 1. The

artificial neuron can be applied to the input of any

value.

https://neuralnet.info/wp-content/uploads/2017/08/4-perceptron.png
https://neuralnet.info/wp-content/uploads/2017/08/4-one_layer_correction_1.png

Impact Factor:

ISRA (India) = 1.344

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.207

ESJI (KZ) = 4.102

SJIF (Morocco) = 2.031

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

Philadelphia, USA 4

In the perceptron, R-elements sum the weighted

inputs and, if the weighted sum is above a certain

threshold, give out 1. Otherwise, the outputs of the

R-elements would be -1.

It is easy to guess that this behavior is easily set

by the activation function called the single jump

function, which we have already considered in

Chapter 2. The difference is that the function of a

single jump gives 0 if the threshold is not exceeded,

and here gives -1, but it is not essential.

Thus it becomes clear that part of the single-

layer perceptron (highlighted in black rectangle in

the picture above) can be represented as an artificial

neuron, but in any case do not confuse these two

concepts. First, no one has canceled S-elements,

which in the artificial neuron simply do not exist.

Secondly, in a single-layer perceptron, S-elements

and A-elements can only take fixed values 0 and 1,

whereas in an artificial neuron there are no such

restrictions.

A single-layer perceptron is a perceptron, each

S-element of which uniquely corresponds to one A-

element, s-a connections are always equal to 1, and

the threshold of any A-element is equal to 1.

Part of the single-layer perceptron corresponds

to the model of an artificial neuron.

A single-layer perceptron can also be an

elementary perceptron with only one layer of S, a,R-

elements.

Multilayer perceptron

Under a multilayer perceptron understand two

different types: multilayer perceptron Rosenblatt and

multilayer perceptron Rumelhart.

Rosenblatt multilayer perceptron contains more

than 1 layer of a-elements.

The multilayer perceptron by Rumelhart is a

special case of the multilayer perceptron by

Rosenblatt, with two features:

S-A relationships can be of arbitrary weight and

learn along with the A-R relations.

Training is performed by a special algorithm,

which is called training by the method of back

propagation of the error.

This method is the cornerstone of learning all

multilayer ins. Thanks to him, the interest in neural

networks has been renewed. But we will discuss it in

other chapters.

Picture 3 - Multilayer perceptron.

https://neuralnet.info/wp-content/uploads/2017/08/4-one_layer_correction_2.png
https://neuralnet.info/wp-content/uploads/2017/08/4-many_layer_perceptron.png

Impact Factor:

ISRA (India) = 1.344

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.207

ESJI (KZ) = 4.102

SJIF (Morocco) = 2.031

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

Philadelphia, USA 5

Multilayer perceptron Roseblatt-perceptron,

which has more than 1 layer Of a-elements.

Multi-layer perseptron by Rumelhart is a

multi-layer perseptron by Rosenblatt, in which s-a

connections are also subject to training, as well as the

training itself is made by the method of back

propagation of the error.

Classification task

Is it possible to classify Boolean functions?

Yes, and besides, this problem will perfectly

illustrate such a classification.

These are functions from some number of

variables. Moreover, both the variables themselves

and the values of logical functions can take only

fixed (discrete) values: 0 or 1.

We have two binary variables (that is, they can

only be 0 or 1). The value of the logical "And"

function will be 1 only when the values of both

variables are also 1. In all other cases, the value of

this logical function is 0.

In order to better understand the principle of the

logical function, often use truth tables, where the first

two columns have possible combinations of

variables, and the third value of the function in this

case.

Here is, for example, a truth table for logical

And.

x1 x2 function Value

0 0 0

1 0 0

0 1 0

1 1 1

And there is a logical "OR". The truth table for

logical OR looks like this.

x1 x2 function Value

0 0 0

1 0 1

0 1 1

1 1 1

Logic functions illustrate the idea of

classification very nicely. Any such function takes

two arguments as input. By luck points on the plane

are given by two numbers (x and y)! But logical

functions can only accept discrete arguments (0 or 1).

As a result, we obtain that for the image of any

logical function on the plane, 4 points (with

coordinates (0,0) (1,0) (0,1) (1,1)). This is what it

looks like:

Let's consider the logical function of I. It is

equal to zero for any set of input arguments, except

for a set of (1,1).

x1 x2 The Logical And

0 0 0

1 0 0

0 1 0

1 1 1

There is a problem of classification: we have 4

points. We need to draw a straight line so that on one

side we have points for which the values of the

logical And is equal to 1, and on the other, for which

this value is 0.

In the case of the logical and this line, for

example, you can draw as shown in the figure below.

All points below this line result in a 0 value of this

function. A single point above this line results in a

logical and equal to 1.

In a similar way behaves in a logical OR with

the following truth table:

x1 x2 Logical OR

0 0 0

1 0 1

0 1 1

1 1 1

https://neuralnet.info/wp-content/uploads/2017/08/4-logic_empty.png
https://neuralnet.info/wp-content/uploads/2017/08/4-logic_AND.png

Impact Factor:

ISRA (India) = 1.344

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.207

ESJI (KZ) = 4.102

SJIF (Morocco) = 2.031

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

Philadelphia, USA 6

For this function, the graphical representation

will look like this:

It is easy to notice that this picture is a graphical

representation of the logical and, but Vice versa (also

one point, but for which the value of the function is 0

and already under the line).

On this we complete the classification tasks. I

think now you can imagine that many problems can

be solved if you can reformulate them in the form of

classification problems.

Now we move to the cornerstone of neural

networks — their training. After all, without this

property, they do not make any sense.

Training a perceptron

You know what they are and what tasks they

can solve. It is time to talk about their training. As

you remember, by learning neural network means the

process of adjusting the weight coefficients of the

connection so that as a result, when the network

input of a certain signal, it gave us the correct

answer.

Simplify to the limit

Let's start training our neural networks from the

simplest case. To do this, we will greatly simplify the

already simple single-layer perceptron with one

hidden layer:

1. We will assume that its A-R connections can

only take integer values (..., -2, -1, 0, 1, 2, ...).

2. Moreover, each A-element can have only one

S-element.

3. And we will only have 1 R-element.

In words, such a large number of

simplifications can look difficult. Let us explain what

was said in the diagram. Take the already used image

of a single-layer perceptron with one hidden layer

and convert it.

Initially, we have the following perceptron.

 We have to simplify it. Now A-elements can be

connected to only one S-element. We're taking out

all the extra connections.

In the picture above 3 R-element. Only one left.

S-A weights and thresholds of a elements are

now +1. Note this in the figure.

As a result, we get the following picture.

However, it turns out that we have a layer of A-

elements does not perform any functions. It is

equivalent to S-layer. Therefore, we are making the

following simplification. Throw away the sensor

layer. Now the role of sensors we will perform

associative elements (or Vice versa, no difference).

So, we just made a very simple single-layer

perceptron with one hidden layer.

https://neuralnet.info/wp-content/uploads/2017/08/4-logic_OR.png
https://neuralnet.info/wp-content/uploads/2017/08/4-perceptron.png
https://neuralnet.info/wp-content/uploads/2017/08/4-super_simple_perceptron.png
https://neuralnet.info/wp-content/uploads/2017/08/4-super_simple_perceptron_end.png

Impact Factor:

ISRA (India) = 1.344

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.207

ESJI (KZ) = 4.102

SJIF (Morocco) = 2.031

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

Philadelphia, USA 7

Conclusion

Each turn is a total of nine squares, with only

two possible colors. As mentioned in the previous

section, the white square is 0, and the black square is

1. So our four moves from 1 to 4 in string format will

look like this:

To record every game we have a used 4 stroke

with 9 characters each. Now remove all line breaks

to get one long line of 36 characters for each move

from 1 to 4.

1 – 001001001001001

………………………………....

4 – 111101111001111

Numbers in this string format can already be

used to work with the neural network.

Learning algorithm

Finally we got to the main thing: how to train

the network. In General, the process is clear. We will

randomly select a number and run it through the

network, modifying its weight. But how to modify

them?

We know that the importance of certain inputs

(in our case – S-elements) is given by weights that

connect them to the R-element. Thus, the more

strongly influenced some weight of the connection

on the result, the more it is necessary to change it.

Therefore, we must consider the following

important points:

If our neural network correctly recognized /

rejected move 1, then we do not do anything

(everything is great!).

If the neural network made a mistake and

recognized the wrong move as 1, then we must

punish it-we reduce the weight of those connections

through which the signal has passed. In other words,

the weights associated with the excited inputs are

reduced.

If the neural network made a mistake and did

not recognize the move 1, then we must increase all

the weights through which the signal passed. Thus if

we say network such and so and related inputs –

correct.

Now we write down the learning algorithm,

which we will implement in the program:

Submit to the inputs of the neural network

number in string format.

If the number detected/rejected by the right,

then go to step 1.

If the network has made a mistake and

recognized the wrong number, then subtract one

from all the links associated with the excited S-

elements.

If the network made a mistake and rejected

move 1, then add one to all links associated with the

initiated S-elements.

Why in the algorithm we add or subtract 1. In

fact, this value can be set any. It is clear that this

value affects the effectiveness of training.

References:

1. (2018) Back-calculation algorithm

https://intellect.ml/perseptron-5281

2. (2018) perseptrons

http://neuralnet.info/chapter/персептроны/

3. Bryukhomitskiy, Yu. A. (2005) Neyrosetevye

modeli dlya sistem informatsionnoy

bezopasnosti: Uchebnoe posobie. — Taganrog:

Izd-vo TRTU, 2005. — 160 p.

4. Mak-Kallok, U. S., Pitts, V. (1956)

Logicheskoe ischislenie idey,

otnosyashchikhsya k nervnoy aktivnosti = A

logical calculus of the ideas immanent in

https://intellect.ml/perseptron-5281
http://neuralnet.info/chapter/персептроны/

Impact Factor:

ISRA (India) = 1.344

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.207

ESJI (KZ) = 4.102

SJIF (Morocco) = 2.031

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

Philadelphia, USA 8

nervous activity // Avtomaty : Sb.. — M., 1956.

— p. 363—384.

5. Minskiy, M., Peypert, S. (1971) Perseptrony =

Perceptrons. — M.: Mir, 1971. — 261 p.

6. Rozenblatt, F. (1965) Printsipy neyrodinamiki:

Pertseptrony i teoriya mekhanizmov mozga =

Principles of Neurodynamic: Perceptrons and

the Theory of Brain Mechanisms. — M.: Mir,

1965. — 480 p.

7. Uossermen, F. (1992) Neyrokomp'yuternaya

tekhnika: Teoriya i praktika = Neural

Computing. Theory and Practice. — M.: Mir,

1992. — 240 p. — ISBN 5-03-002115-9.

8. Khaykin, S. (2006) Neyronnye seti: Polnyy kurs

= Neural Networks: A Comprehensive

Foundation. — 2-e izd. — M.: «Vil'yams»,

2006. — 1104 p. — ISBN 0-13-273350-1.

9. Yakovlev S.S. (2004) Sistema raspoznavaniya

dvizhushchikhsya ob"ektov na baze

iskusstvennykh neyronnykh setey // ITK

NANB. — Minsk, 2004. — p. 230—234.

10. Kussul E., Baidyk T., Kasatkina L., Lukovich

V. (2001) Pertseptrony Rozenblatta dlya

raspoznavaniya rukopisnykh tsifr = Rosenblatt

Perceptrons for Handwritten Digit Recognition

// IEEE. — 2001. — p. 1516—1520. — ISBN

0-7803-7044-9. (angl.)

11. Stormo G. D., Schneider T. D., Gold L.,

Ehrenfeucht A. (1982) Ispol'zovanie

pertseptrona dlya vydeleniya saytov initsiatsii v

E. coli = Use of the 'Perceptron' algorithm to

distinguish transational initiation sites in E. coli

// Nucleic Acids Research. — 1982. -p. 2997–

3011. (angl.)

Annex 1

unit Unit1;

interface

uses

 Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System.Classes, Vcl.Graphics,

 Vcl.Controls, Vcl.Forms, Vcl.Dialogs, Vcl.StdCtrls, Vcl.ButtonGroup;

type

 TForm1 = class(TForm)

 ButtonGroup1: TButtonGroup;

 Button1: TButton;

 Memo1: TMemo;

 Label1: TLabel;

 Label2: TLabel;

 Label3: TLabel;

 Label4: TLabel;

 procedure Button1Click(Sender: TObject);

 procedure ButtonGroup1Items0Click(Sender: TObject);

 procedure ButtonGroup1Items1Click(Sender: TObject);

 procedure ButtonGroup1Items2Click(Sender: TObject);

 procedure ButtonGroup1Items3Click(Sender: TObject);

 procedure ButtonGroup1Items4Click(Sender: TObject);

 procedure ButtonGroup1Items5Click(Sender: TObject);

 procedure ButtonGroup1Items6Click(Sender: TObject);

 procedure ButtonGroup1Items7Click(Sender: TObject);

 procedure ButtonGroup1Items8Click(Sender: TObject);

 private

 { Private declarations }

 public

 { Public declarations }

 end;

var

Impact Factor:

ISRA (India) = 1.344

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.207

ESJI (KZ) = 4.102

SJIF (Morocco) = 2.031

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

Philadelphia, USA 9

 Form1: TForm1;

a:array[1..9]of integer;

t:integer;

implementation

{$R *.dfm}

procedure TForm1.Button1Click(Sender: TObject);

var i:integer;

begin

label1.Visible:=false;label2.Visible:=false;label3.Visible:=false;label4.Visible:=false;

for i:=1 to 9 do begin

 ButtonGroup1.Items[i-1].Caption:='';

 a[i]:=0;

 end;

end;

function check():boolean;

begin

if

(a[1]+a[2]+a[3]=3) or

(a[4]+a[5]+a[6]=3) or

(a[7]+a[8]+a[9]=3) or

(a[1]+a[4]+a[7]=3) or

(a[2]+a[5]+a[8]=3) or

(a[3]+a[6]+a[9]=3) or

(a[1]+a[5]+a[9]=3) or

(a[3]+a[5]+a[7]=3) then begin

 form1.label1.Visible:=true;

 form1.label2.Visible:=true;

 end;

if

(a[1]+a[2]+a[3]=-3) or

(a[4]+a[5]+a[6]=-3) or

(a[7]+a[8]+a[9]=-3) or

(a[1]+a[4]+a[7]=-3) or

(a[2]+a[5]+a[8]=-3) or

(a[3]+a[6]+a[9]=-3) or

(a[1]+a[5]+a[9]=-3) or

(a[3]+a[5]+a[7]=-3) then begin

 form1.label3.Visible:=true;

 form1.label4.Visible:=true;

 end;

end;

function xodcomp():boolean;

begin

k:=false;

s:=random

a[t]:=1;

check;

end;

function upd(t:integer):boolean;

begin

form1.ButtonGroup1.Items[t-1].Caption:=' X';

Impact Factor:

ISRA (India) = 1.344

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.207

ESJI (KZ) = 4.102

SJIF (Morocco) = 2.031

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

Philadelphia, USA 10

a[t]:=1;

check;

end;

procedure TForm1.ButtonGroup1Items0Click(Sender: TObject);begin upd(1); end;

procedure TForm1.ButtonGroup1Items1Click(Sender: TObject);begin upd(2); end;

procedure TForm1.ButtonGroup1Items2Click(Sender: TObject);begin upd(3); end;

procedure TForm1.ButtonGroup1Items3Click(Sender: TObject);begin upd(4); end;

procedure TForm1.ButtonGroup1Items4Click(Sender: TObject);begin upd(5); end;

procedure TForm1.ButtonGroup1Items5Click(Sender: TObject);begin upd(6); end;

procedure TForm1.ButtonGroup1Items6Click(Sender: TObject);begin upd(7); end;

procedure TForm1.ButtonGroup1Items7Click(Sender: TObject);begin upd(8); end;

procedure TForm1.ButtonGroup1Items8Click(Sender: TObject);begin upd(9); end;

end.

