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SECTION 2. Applied mathematics.  

Mathematical modeling. 

 

THE THEOREMS OF VALUES OF RELATIONSHIPS BETWEEN 

GROUPS OF VARIABLES 

 

Abstract: The problem of finding relationships between groups of variables is central in multivariate analysis. 

In this work are proved the theorems of values of relationships between groups of variables. Two theorems are 

proved. From the Theorem 1 follows that the CCA  doesn't maximize the relations necessary to usе.  From the 

Theorem 2 follows that the RA  maximizes separately relations between x- and v*-variables and relations between 

y-andu*–variables. Are considered Hotelling’s canonical variables and Van den Wollenberg’s redundancy 

variables. In 2 pairs groups of variables maximize a Stewart and Love's redundancy index. It is results with 

application only the necessary formulas for consideration CCA, RA  in terms of 3 functions. In this work are 

highlighted the relationship between redundancy indexes in CCA and RA .  

Key words: canonical correlation index,the value of relations of the biorthogonal canonical-redundancy 

variables. 

Language: English 

Citation: Zhanatauov SU (2018) THE THEOREMS OF VALUES OF RELATIONSHIPS BETWEEN 

GROUPS OF VARIABLES. ISJ Theoretical & Applied Science, 03 (59): 249-256.    

Soi: http://s-o-i.org/1.1/TAS-03-59-43      Doi:    https://dx.doi.org/10.15863/TAS.2018.03.59.43      

 

Introduction 

       Correlated and standardized n z-variables are 

usually considered as one homogeneous set of states. 

A correlation matrix of pair coefficients 

Rnn=RT
nn={rij}, i=1,…,n,j=1,…,n   corresponds to a 

single set of z-variables. Symmetric correlation 

matrices can have submatrices of the form of a 

symmetric block-diagonal matrix with blocks that 

differ from blocks of the Jordan block or from other 

species [1]. In [1], square symmetric block-diagonal 

n-on-n matrices consisting of 3 types of blocks were 

considered: from a given number of n1-by- n1-blocks 

(n1>2), from 2-to-2-blocks [j : (j +1)], from 1-to-1-

blocks ("half block" [(j-1): j] of length 1, Table 2 

[1]). Elements of these blocks can be chosen 

randomly, for example, be random numbers with a 

uniform distribution law P[0,1]. For blocks of the 

correlation matrix, for which the values of the 

elements do not exceed 1 in absolute value, and the 

diagonal elements are equal to 1. In [1], the case of 

dividing the number n into 2 parts is considered: 

n=(n-1)+1. This partition corresponds to the partition 

of n z-variables into n-1 independent variables and to 

one dependent variable in the direct linear multiple 

regression model (DM MLRM [1,2]). If a sample Z1 

of dimension m×(n-1) with known correlation matrix 

R11=(1/m)ZT
1Z1 of dimension (n-1)×(n-1) is known, 

then the standardized n-th z-variable with unknowns 

values  z1n,z2n,…,zmn is simulating with located in the 

n-th column of the matrix Zmn=[Z1⌡Z2], 

Z2=(z1n,z2n,…,zmn)
T. The matrix R12=(1/m)ZT

1Z2 is 

the block of the matrix Rnn=(1/m)ZT
mnZmn. It is a 

vector of length (n-1) and its elements r1j,r2n,r3n,…,rnn 

in the framework of optimization problem No. 4 [1] 

are given randomly, and the vector ß=R-1
11R12 

determined by it is a vector of regression 

coefficients. The problem of modeling the sample 

Zmn=[Z1⌡Z2], the correlation matrices R11,R12 for the 

given vector ß=(ß1,…,ßn-1)
T, was called the inverse 

model of multidimensional regression. We will 

consider it in another article. In the framework of the 

DM MLPM model, there are already other measures 

of interrelations between n-1 allocated and 1 

variable, these are regression coefficients β=R-1
11R12, 

where zn=zR-1
11R12=zβ, z=(z1,…,zn-1). This 

relationship is called a regression equation showing 

the functional dependencies between one variable zn 

and n-1 independent z-variables z1,…,zn-1. These n-1 

numbers ß1,…,ßn-1 express the pair relations between 

the n-1 z-variables z1,…,zn-1  and between each of 

them with the variable zn. There are many studies of 

the DM MLPM. Consider the case of partitioning the 

http://s-o-i.org/1.1/tas
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number n into 2 parts of the form: n =q+p, q≥p≥2. 

This partition corresponds to the partition of n z-

variables into q independent variables and to p 

independent variables. In this case, other 

multidimensional models of statistical analysis are 

used. The model of canonical correlations [2,3] and 

its alternative, the model of redundant variables 

[4,5], enrich the previously discussed measures of the 

interrelations between n z-variables.  

The new measures are the redundancy indexes 

[6]. The values of the redundancy indexes are equal 

to the eigenvalues of the generalized direct spectral 

problems (GDSP) [7,8]. In the direct  model of the 

principal component analysis (DM PCA) and in the 

inverse model of the principal component analysis 

(IM PCA) [7-8] called the eigenvectors and 

eigenvalues [9-12]. In the DM PCA (in the IM PCA 

[7-8]) called the eigenvectors and eigenvalues - 

direct (inverse) problem diagonalization 

(symmetrication) the symmetric (diagonal) matrixes 

[7-12]). The various linear, nonlinear functions 

(f1,f2,f3,f4,f5,f6) of the elements of the spectrum 

Λnn=diag(λ1,λ2,…,λℓ,…,λn) are measures of 

interrelations between the z-variables. Based on the 

given values of all or a part of these f-parameters, 

model spectra, correlation matrices, correlation 

matrix blocks, model Λ-samples having exactly the 

same correlation matrix were simulated [7-12].Other 

measures of the degree of interconnections are 

available and implemented, if they exceed a certain 

threshold, they will demonstrate the "redundancy" of 

the manifestation of a linear connection in pairs of 

certain variables from the GDSP [3,13]. Below, we 

consider the "redundancy" of linear coupling 

manifestations in pairs of sets of 6 types of 

variables.It is known that methods of the 

multidimensional statistical analysis solve various 

problems and in each method, and in each area of its 

application it is necessary to overcome the 

difficulties. In the forecasting models using the factor 

analysis, the purpose is, as we will see more low, 

reception of high factors of determination, and also 

high factor loadings at values of predicted variables. 

This  purpose satisfy few statistical methods. Each of 

considered below methods: CCA [2,3], RA [4,5], 

assumes splitting n=q+p initial variables on 2 sets: q 

x-variables, p y-variables (they should be 

standardised by means of the average and standard 

deviations), q≥p. Two sets of variables x and y 

standardized to zero mean and unit variance. It leads 

to use of the generalised direct spectral problems 

(GDSP [2,3] (обобщенная прямая спектральная 

задача), instead of direct problems diagonalization 

the symmetric matrixes (DSP- direct spectral 

problem [6], прямая спектральная задача). Such 

splitting of a vector of supervision meets in the real 

data. Here the real object should be characterized by 

two sets of properties, statistical relationship among 

themselves. We will more low measure values a 

redundancy indexes [6] steams of sets of variables in 

2 methods: a canonical correlations analysis (CCA) 

[2,3] and in a redundancy analysis (RA ) [4,5]. 

Redundancy analysis (van den Wollenberg, 1977) is 

a popular method of multivariate analysis for 

analyzing the relationship between two sets of 

variables. 

       The work purpose - a finding of parities between 

maximum values three functions from squares of 

correlation coefficients between variables from two 

different sets. Functions are interpreted as a 

redundancy indexes, value of each function changes 

in the range of (0,1) and defines average degree of 

expressiveness of linear interrelation between two 

sets of variables [2]. In terms of these functions 

average shares of dispersions of variables of each of 

two sets of the initial variables, explained by their 

correlations with variables from other set are 

investigated. 

Let's consider 3 pairs (from 6) sets of the initial, 
canonical, redundancy variables received in CCA, 

RA . When transforming using the RA  of canonical 

variables, we obtain new canonical-redundancy 

variables. A pair of new variables consists of  2p=p 

+p variables. The found formulas redundancy are 

necessary for a finding of pairs sets of variables (or 

factors).  The found redundancy formulas are 

effective when predicting the values of some input 

variables from the values of other variables. We will 

state results with reduction only the necessary 

formulas for consideration CCA, RA in terms of 3 

functions.   

 

  The redundancy formulas of the non-

symmetrical redundancy of the  x- and  y-

variables in biorthogonal canonical correlation 

analysis 

 

The essence of CCA consists in a finding as 

much as possible correlated among themselves u- 

and v-variables, i. е. two linear combinations initial 

x- (with  factors a1j, …, aqj at j-th u-variable) and u-

variables (with  factors b1j, …, bpj at j-th v-variables), 

named canonical u- and v- variables, satisfying to 

restrictions:  

     Ump=Z1Aqp, Vmp=Z2Bpp, (1/m)UTU=Ipp,  

(1/m)VTV=Ipp, (1m)UTV=Λpp 

R12=(1/m) Z1
T Z2, R21=(1/m) Z2

T Z1,  

R11=(1/m) Z1
T Z1, R22=(1/m) Z2

T Z2,         (1) 

Vectors aj=(a1j,…,aqj)
T , bj=(b1j,…,bqj)

T and factors of 

canonical correlations ruv= 1)/1(
1




vu ijijm
m

i

, u=uj, 

v=vj, j=1,…,p,  are from mathematical equations of 

maxima of these correlations  

ruv=aR12b
ba,

max , under equations of (1), where a, 

b – j- th eigen vectors from GDSP (3). 
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Necessary conditions of maxima are [1] matrix 

equations.   

                         R12 bj=μjR11 aj 

                   R21 aj =νjR22bj                                 (2) 

As aj
TR11 aj=1, bj

TR22 bj=1, from these matrix 

equations follows [1] that μj=νj=ruv, u=uj,v=vj.  Then 

matrix equations (2) can be written down in a kind  

(R12R
-1

22 R21 – μ2
j R11)aj=0,   

(R21R
-1

11 R12 – ν2
j R22)bj=0.                        (3) 

As Rnn it is positively defined (Rnn≠ Inn, Rnn>0) 

there are unique 2 matrixes Аqp,=[aj|…|ap], 

Вpp=[bj|…|bp] eigen vectors which are calculated by 

the solve of one of two GDSP (3). If it is found a 

vector aj, then bj=ν-1
jR

-1
22R21aj, if it is found bj, then 

aj=μ-1
jR

-1
11R12bj. Here р positive eigen values 

μ2
1,…,μ2

p are equal to eigen values ν2
1,…,ν2

p and are 

equal to squares of factors of canonical correlations 

r2
uv≡λ2

j=μ2
j=ν2

j, and, corresponding eigen vectors 

aj=(a1j,…,aqj)
T, bj=(b1j,…,bqj)

T are located on 

columns of matrixes Аqp, Вpp. As to a maximum ruv 

there corresponds a maximum r2
uv parities received 

in CCA are fair and at maximisation   of function φ1 

(r2
uv)= r2

uv  under conditions (1). The parities 

connecting matrixes of canonical variables Ump, Vmp, 

canonical loadings - Аqp, Вpp, initial variables - Z1 

(dimensions m×q),                Z2 (dimensions m×p), 

intragroup correlations R11, R22, intergroup 

correlations - R12, functions corresponding to the 

maximum value φ1: 

φ1(r
2
uv) = r2

uv =max1, look like: 

U=Z1A, V=Z2B, (1/m)UTU=ATR11A=Ipp, 

(1/m)VTV=BTR22B=Ipp,  

(1/m)UTV= ATR12B =Λpp, Λpp=diag(λ1,…,λp). 

In addition to formulas of CCA Stewart D., 

Love W. [2] have offered the formula of  the 

redundancy index, of the u-variables (v-variables), 

equal to an average explained dispersion y-variables 

(x-variables) in the presence of one canonical u-

variable (v-variable). Formulas of these indexes in 

CCA in our designations have an appearance 

accordingly  

Rp(Y,u)=(1/p)rT
Yu

r
Yu =(1/p)



p

i
r uy

i1

2
≡ φ2(r

2
Yu), 

Rq(X,v)=(1/q)rT
Xv

r
Xv =(1/q) 



q

i
r vxi

1

2
≡ φ3(r

2
Xv), 

Where rYu=R21a, rXv=R12b, vectors 

a=(a1,…,aq)
T, b=(b1,…,bp)

T-j-th eigen vectors 

(columns of matrixes Аqp, Вpp), corresponding to j-th 

eigen values λ2
j, where φ₂ , φ₃  - defined above 

functions. The following definitions are similar given 

in [3]. We are compelled to simplify a type of a 

formula. This formula designates a square of 

coefficient of pair correlation r2 between j-th y-

variable and i- th a u-variable, i. е. r2 with the bottom 

yjui indexes. It is inconvenient at the formulation of 

exact definitions. Therefore, for convenience we will 

designate this formula so: r2(yj,ui), and a formula 

rT
YurYu for i- th u-variable we will write in the form 

r2(Y,uj). Similarly: rT
XvrXv for i- th v-variable - in the 

form r2(X,vj). 

Definition 1. Total redundancy of all р y-

variables at presence р u-variables is equal 

Rp(Y,U)=


p

i 1

Rp(Y,ui)=


p

i 1

φ2(r
2(Y,ui)). 

Definition 2. Total redundancy of all q x-

variables at presence р v-variables is equal: 

Rq(X,V)=


p

i 1

Rq(X,v)=


p

i 1

φ3(r
2(X,vi)), 

If to use necessary conditions (2) maxima in 

CCA now formulas redundancies     Rp(Y,u) and 

Rq(X,v) become [2]: 

φ2(r
2

Yu)=Rp(Y,u)=(1/p)rT
YurYu=(1/p)(R21a)T(R21a)= 

(1/p)(νR22b)T(νR22b)=(1/p)ν2rT
YvrYv= ν2Rp(Y,v)= 

φ1(r
2
uv)× φ2(r

2
Yv), φ3(r

2
Xv)= 

Rq(X,v)=(1/q)rT
XvrXv=(1/q)(R12b)T(R12b)= 

(1/q)(μR11a)T(μR11a)= 

=(1/q)μ2rT
XurXu= μ2Rq(X,u)=φ1(r

2
uv)×φ3(r

2
Xu). 

Thus, we have equations:  

φ2(r
2

Yu)= φ1(r
 2

uv)×φ2(r
 2

Yv), 

          φ3(r
 2

Xv)=φ1(r
 2

uv)×φ3(r
 2

Xu)      (4) 

As φ1(r
 2

uv)<1, inequalities take place  

φ2(r
 2

Yu)<φ2(r
 2

Yv), φ3(r
 2

Xv)<φ3(r
 2

Xu).  

Lower will formulas φ2(r
 2

Yv)=1/p, φ3(r
 2

Xu)=1/q 

are received.  

Lemma. In CCA an average dispersion of all 

canonical y-variables (x-variables), is explained i-th 

one u-variables (v-variable), less than the average 

dispersion of all y-variables (x-variables) explained 

by one v-variable (u-variable):  

φ3(r
2

Yv)=φ1(r
2
uv)×φ3(r

2
Yu)=(1/p)λ2, 

φ3(r
2

Xv)=φ1(r
2
uv)×φ3(r

2
Xu)=(1/q)λ2, 

where λ - j-th coefficient of canonical correlation. 

  In the Lemma of the formula (4) redundancy 

of the canonical u-variables interpret as follows. The 

value ν2 is proportional to the explained dispersion of 

an canonical u-variable provided that there is a v-

variable correlating with it the second factor of the 

formula (4) is proportional to the average explained 

dispersion of all y-variables under a similar 

condition. 

 

3. The redundancy formulas of the non-

symmetrical redundancy  

of the x- and y-variables in non biorthogonal 

redundancy variables analysis 

 

In CCA product of these two factors to equally 

number  

φ2(r
2

Yu)=(1/p)rT
YurYu=(1/p)



p

i
r uy

i1

2
≡Rp(Y,u), 

which is not maximised in itself, but it is 

proportional to the maximum value   φ1(r
2
uv). In work 
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[5] vector rYu=R21a is designated in a matrix form 

(1/m)ZT
2U =(1/m)ZT

2Z1a =R21a, hence we have  

φ2(r
2
Yu)=(1/p)rT

YurYu=(R21a)TR21a)=aTR12R21a= 

=(1/p)(νR22b)T(νR22b)= (1/p)(bTR2
22b)ν2 = 

=(1/p)ν2rT
YvrYv= ν2Rp(Y,v)= ν2(1/p) = max1×max3 

If a vector rXv equal rXv=R12b, that  

             

φ2(r
2

Yu)=Rp(Y,u)=(1/p)rT
YurYu=(1/p)(R21a)T(R21a)= 

=(1/p)(νR22b)T(νR22b)=(1/p)ν2rT
YvrYv=ν2Rp(Y,v)

= φ1(r
2

uv)×φ2(r
2

Yv). 

Similarly we have  

φ3(r
2

Xv)=Rq(X,v)=(1/q)rT
Xv

r
Xv=(1/q)(R12b)T(R12b)= 

=(1/q)(μR11a)T(μR11a)=(1/q)μ2rT
Xu

r
Xu=μ2Rq(X,u)= 

                            =φ1(r
2

uv)×φ3(r
2

Xu)=max1×max2. 

In CCA value of function φ3(r
2

Xv) as product 

φ3(r
 2

Xv)=φ1(r
2

uv)×φ3(r
2

Xu) two values φ1(r
 2

uv) and 

φ3(r
 2

Xu), is equal to value Rq(X,v): 

φ3(r
 2

Xv)=(1/q) r T
Xv

r
Xv=(1/q)



p

i
r uy

i1

2
= Rq(X,v). 

        It would be desirable to maximise specified to 

redundancy in itself, i.e. separately. Differently, it is 

necessary to find such linear combinations from each 

set of variables which would maximise the average 

explained dispersion of variables of  

other set. 

Rp(Y,u*)=(1/p)


p

i
r uy

i1

2

* ≡ φ2(r
2

Yu*) → max
*a

 

Rq(X,v*)=(1/q)


q

i
r vxi

1

2

*≡ φ3(r
2

Xv*) → max
*b

 

Thus φ2(r
2

Yu*), φ3(r
2

Xv*)  it is desirable to 

maximise functions independently from each other. It 

is made in work [2], where for new so-called 

redundancy u* - and v*-variables equalities (4) any 

more are not satisfied. A method of redundancy 

variables (RA ) Van den Vollenberg-s A.L. [4] is 

alternative to CCA H. Hotelling-s [2] for other 

interrelations, than in CCA are maximized. The 

essence of RA  [4] consists in a finding of linear 

combinations of redundancy u*-variables u*
ij=




q

k

kjik az
1

* of initial x-variables, as much as possible 

correlated with y-variables, and in a finding of linear 

combinations of redundancy v*-variables v*
ij=






p

k
kjйki bz

1
( * , i=1,…,m; j=1,…,n, it is maximum 

is correlated the about an outcome j-th x-variables. 

Vectors a*
j=(a*

1j, …, a*
qj)

T, b*
j=(b*

1j, …, b*
pj)

T – j- th 

eigen vectors from GDSP (6), (7) are from maximum 

conditions, accordingly, functions                       

φ2(r
2
Yu*) =(1/p)



p

i
r uy

i1

2

*  → max
*a

 

φ3(r
2

Xv*)=(1/q)


q

i
r vxi

1

2

*  → max
*b

 

Extrema of these functions are separately a 

method of multipliers of Lagrang [4]. Multipliers 

μ*
j,ν

*
j are interpreted as eigen values corresponding 

GDSP (6), (7). Necessary conditions of maxima of 

functions φ₂ , φ₃  under the restriction (5) are 

equations:  

 (R12R21 – μj
*R11)aj

*=0                       (6) 

   (R21R12 – νj
*R22)bj

*=0                       (7) 

where μj
*
, j=1,…,p, are sets of eigen values for the 

corresponding sets eigen vectors a*
j=(a*

1j, …,a*
qj)

T, 

from matrix A*
qp=[a*

1|a
*
2|…|ap

*],, and eigen values 

νj
*
 , j=1,…,p, correspond to a set eigen vectors 

b*
j=(b*

1j, …, b*
pj)

T, j=1,…,p,, from matrix 

B*
pp=[b*

1|b
*
2|…|bp

*]. Thus matrixes U*
mp V*

mp 

redundancy u*- and the v*-variables received 

accordingly from x- and y-variables, satisfy to 

following equations: 

U*
mp=Z1A

*
qp,V

*
mp=Z2B

*
pp, 

(1/m)U*TU*=A*TR11A
*=Ipp, 

(1/m)V*TV*=B*TR22B
*=Ipp,  

(1/m)U*TV*=A*TR12B
* =Ψ12≠Ψ21.              (8) 

Functions from squares of coefficients of correlations 

between variables were applied in multiple linear 

regression analysis (DM MLRA), RA. RA  is applied 

to the forecast in [13].  Special cases of RA  are 

[3,14] multiple linear regression analysis (DM MLR) 

(n=q+p, p=1, in DM MLRAμj
*=R21R

-1
11R12 is solved 

DSP (R21R12-μj
*R11)a

*
j=0) by a*

j=0), PCA (direct 

model of the principal component analysis (DM of 

the PCA [6]), n=q+p, p=0, Z1=Z2) . DSP from PCA 

(R11 -μj
*I)A*=0pp [15] is solved.  Difference of RA  

from PCA that find a linear combination in RA  from 

q x-variables (p y-variables) with coefficients 

а*=(a*
1,…,a*

q)
T, b*=(b*

1,…,b*
p)

T, which maximizes 

а*TR2а* (b*TR2b*), where а*TRа* (b*TRb*=1). In DM 

PCA (by р=0) find a linear combination of n of x-

variables with coefficients c=(c1,…,cn)
T which 

maximizes cTRc, where cTc=1[7]. At the same time 

the MLRAby р=1 represents a special case of CCA. 

At  Z1=Z2 the equation from GDSP of the CCA 

contains a single matrix (Inn-μ
2Inn)=0, that is possible 

in the presence of ideal coefficients of canonical 

correlation: ruv=1. Therefore DM PCA is not a 

special case of CCA, and DM MLRA- yes. The 

numerical solution of problems (6), (7) is formally 

identical to calculations on a CCA, as matrix works 

R₁₂R₂₁, R₂₁R ₁₂ and matrixes R₁₁, R₂₂ - symmetric 

matrixes. However eigen values μ*
j and ν*

j in 2 

GDSP different: μ*
j ≠ν*

j j=1,…,p. So in RA  there are 

2 structures of eigen vectors of А*
qp and В*

pp:  

A*
qp=[a*

1|a
*
2|…|a*

p], B
*
pp=[ b*

1|b
*
2|…|b*

p]. 

In RA  redundancy u*- and v*-variables not 

biоrtogonality i.e. u*-set components not оrtogonality 

to v*-set components Ψ12≠diag(ψ1,…,ψp), for 

matrixes of eigen vectors Аqp and Вpp are defined 

separately (in CCA one of 2 matrixes of p eigen 
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vectors Аqp or Вpp is calculated: if it is calculated Аqp, 

then Вpp =ΛR21Аqp. Thus u- and v-variables 

biоrtogonality: (1/m)UTV=Λpp=diag(λ1,…,λp)). 

 
   The redundancy formulas of the non-

symmetrical redundancy  of the u - and v -

variables in biorthogonal canonical-redundancy 

variables  

 

       To interpret squares of factorial loadings at 

initial x - and y-variables from the CCA it is 

necessary to transform so x - and y-variables that 

received new ( u -and v -) variables would become 

biorthogonal. Then squares of factorial loadings 

(squares of coefficients of correlations) at them will 

begin to be interpreted as determination coefficients 

at biorthogonal (in pairs uncorrelated) j-th u  and v
-  variables. CCA is for this purpose suitable. We 

subject two sets of redundancy u*-and v*-variables 

to biortogonalization transformation with CCA 

application. Then at redundancy-canonical variables 

we have two orthogonal matrixes A pp, B pp, such 

that new matrixes U mp=U* A pp, V mp=V* B pp  

u - and v -variables will be sets of biorthogonal 

redundancy and canonical variables. The solved 

spectral problem has already an appearance of a DSP  

(Ψ12Ψ21 - 2I) A pp=0pp, 

because the corres-ponding GDSP 

(Ψ12Ψ
-1

22Ψ21- 2Ψ11) A =0pp, 

because of existence of equalities  

Ψ11 =(1/m) U*TU*,=I pp , Ψ22=(1/m)V*TV* =I pp 

becomes simpler and assumes DSP air:  

(Ψ12Ψ21 -  2 ) A =0          (9) 

We have to solve a problem (9) as GDSP from CCA, 

thus, having defined a matrix of eigen vectors A pp,, 

we define other matrix of eigen vectors  

B pp= -1Ψ21 A . Here the diagonal matrix has an 

view  pp=diag( 1,…,  p). Matrixes U mp, V mp 

of new biorthogonal variables satisfy to equations 

(1/m)U TU =Ipp,(1/m) V T V =Ipp,  

(1/m)U T V = pp , equivalent to equations: 

A .Ψ12 B  =   pp , A T A  =I pp, B T B  =I pp    (10) 

It is geometrically possible to treat A pp and B
pp matrixes as the orthogonal matrixes of rotations 

containing sine and cosines of corners between old 

axes (for redundancy variables) and new axes (for 

biortogonal redundancy-canonical u  and v - 

variables).  

Now we can consider redundancy of 4 pairs 

(from 8) sets of variables.  Total the redundancy, 

caused by functional linear dependences, are equal 1.  

For example, the redundancy of p y-variables caused 

by existence of p v-variables, each of which linearly 

depends on p y-variables, is equal 1:  

Rp(Y,V)= ),(
1

vR I

p

i
p

Y


=


p

i 1

φ2(rYvi

2
)= 

=(1/p)tr(BTR2
22B)=(1/p)tr(R22)=(1/p)p=1, 

redundancy of q x-variables, p u-variables caused by 

existence, each of which linearly depends on q of x-

variables, is equal 1: 

Rq(X,U) ),(
1

uR I

p

i

Xq


=


p

i 1

φ3(rXui

2
)= 

=(1/q)tr(ATR2
11A)= 

=(1/q)tr(R11)=(1/q)tr(R11)= (1/q)q=1. 

Other similar total indexes of redundancy Rq(X,U*), 

Rp(Y,V*), Rq(X,U ),Rp(Y, )V , Rp(U
*, )U ,   

Rp(V
*, )V   are also equal 1. 

Rq(X,U )= ),(
1

uR i

q

i

X


=


p

i 1

φ3(r ux i

2
)= 

=(1/q)tr( A TA*TR2
11A

* A )=  

=(1/q)tr( A TIqq A =(1/q)tr(Iqq)=(1/q)q=1, 

Rp(Y, )V = ),(
1

vR i

p

i
p

X


=


p

i 1

φ2(r vx i

2
)= 

=(1/p)tr( B TB*TR2
22B

* B )=  

=(1/p)tr( B TIpp B =(1/p)tr(Ipp)= (1/p)p=1, 

Rq(X,U*)=


p

i 1

φ3(r iuX

2
 )=(1/q)tr(A*TR2

11A
*)= 

=(1/q)tr(R11)=(1/q)q=1, 

Rp(Y,V*)=


p

i 1

φ2(r viY

2
* )=(1/p)tr(B*TR2

22B
*)= 

=(1/p) tr(R22)=(1/p)p=1, 

Rp(U
*, )U =



p

i 1

φ2(r uiu

2

*
 )= 

=(1/p)tr(B*TR2
22B

*)=(1/p)tr(R22)=(1/p)p=1, 

Rp(V
*, )V =



p

i 1

φ2(r viV

2

*
 )= 

=(1/p)tr(B*TR2
22B

*)=(1/p)tr(R22)=(1/p)p=1.     (11) 

At a conclusion of some of these formulas ratios (11) 

were used formulas [4]:   

R11AATR11=R11, R22BBTR22=R22                  (12) 

       Besides, redundancy φ1(r
2
uv)  to u-variable in the 

presence of a v-variable is equal in the CCA to 

redundancy φ1(r
2

vu)  to v-variable in the presence of a 

u-variable:  φ1(r
2
uv)=φ1(r

2
vu)=λ2. To redundancy of 
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two sets of u- and v-variables of initial variables are 

symmetric:  Rp(U,V)= Rp(V,U)=


p

j
j

1

2

 =max1 

Total redundancy of q x-variables is not equal in the 

CCA to total redundancy of p y-variables:  

Rq(X, Y) ≠ Rp(Y, X), q≠p. 

      In a CCA indexes of redundancy maximized 

separately. Therefore are not maximized total 

redundancy. Other total redundancy is maximized 

Rp(U,V), Rp(V,U).  

 

Theorem 1. In a CCA total redundancy of 

initial x- and y-variables are equal each other and 

equal to total redundancy of canonical u-  and v-

variables. 

(1/p)


p

j
j

1

2

 = Rp(V,U)=Rp(Y,U)= Rq(X,V)= 

=Rp(U,V)            (15) 

Proof. By definition Rp(Y,u)=(1/p) rT
YurYu.  

Therefore 

Rp(Y,U)= ),(
1

uR I

p

i
p

Y


=


p

i 1

(1/p)rT
YurYu= 

=


p

i 1

(R21a)TR21a)=


p

i 1

aTR12R21a= 

=(1/p)


p

i 1

(νR22b)T(νR22b)=(1/p)


p

i 1

ν2rT
YvrYv= 

=


p

i 1

ν2Rp(Y,v)=


p

i 1

ν2(1/p)=


p

i 1

λ2(1/p)=  

=Rp(U,V)               (16) 

Here equalities R21а=νppR22 and Rp(Y,v)= 1/p  

was applied.  Equality Rq(X,V)=


p

j
j

1

2
 Rp(X,uj) is 

similarly prove. Using definition Rq(X,v)= 

=(1/q)tr(bTR21R12b)  and a formula R12b=μR11a  we 

have  

Rq(X,V)=


p

i 1

φ3(r
2

Xv)=  =


p

i 1

Rq(X,v)=  

=


p

i 1

(1/q)rT
XvrXv=



p

i 1

(1/q)(R12b)T(R12b)= 

=


p

i 1

 (1/q)(μR11a)T(μR11a)=   

=


p

i 1

(1/q)μ2rT
XurXu= 



p

i 1

μ2Rq(X,u). 

      Owing to linear functional dependence of u-

variable from each of q x–variables, is followed that 

by the share of dispersion explained with linear 

dependence on q x-variables, the is equal 1/p, to    

j=1, …,p, i.е. ),( uI
XRз =1/p, we have demanded 

equality: 

Rp(Y,U)=Rq(X,V)=


p

j

j

1

2
  (1/p)= Rp(U,V)         (17) 

Having equated the right parts of equalities (16), (17) 

we have required equality (15).  Then  

Rq(X,V)=


p

j
j

1

2
 ),( u j

XRq =


p

j
j

1

2
 (1/p)=Rp(V,U) 

Ratio between the redundancy, similarly considered 

in the Theorem 1, we have when transforming by the 

CCA of matrixes of  U*
mp , V*

mp redundancy 

variables.  

         We will consider redundancy of the new 

variables received at consecutive transformation of 

initial variables by two specified methods. When 

transforming by RA  are maximized all р pairs of 

redundancy: 

RP(Y,uj
*)= φ2( rYui

2

)=(1/p) bj
*TR21R12bj

*
 =(1/p)μj

*2 

Rq(X,v*
j)= φ3( r Xvi

2

)=(1/q) a*T
jR12R21a

*
j =(1/q)ν*2

j 

 

Therefore, are maximized total redundancy: 

RP(Y,U*)= 


p

i 1

φ2( rYui

2

)= 

=(1/p) 


p

i 1

bj
*TR21R12bj

*= (1/p) 


p

i 1

μj
*2=max2 

Rq(X,V*)= 


p

i 1

φ2( r Xvi

2

)= 

=(1/q) 


p

i 1

aj
*TR12R21aj

*=(1/q) 


p

i 1

νj
*2=max3 

In the redundancy analysis we look for a linear 

combination from x, a*
 which maximizes a*TR2

11a
*, 

where a*TR11a
*=1, a* - j-th eigen vector. When 

transforming a m×2p-matrix [U*¦V*] of redundancy 

variables  by the CCA  (it is made on one of method 

steps from [8]) are maximized redundancy:  

Rp(U
*,

_

v i)=φ2(r
2(U*,

_

v i) = 2 ×φ2(r
2(U*,ū)= 2 

(1/p), 

                     Rp(V
*,ūi)=φ2(r

2(V*,ūi)= 

= 2 ×φ2(r
2(V*,

_

v i)=  2(1/p) →max, 

or it is maximized 

φ1(r
2(u , v )= 2  and φ2(r uu*

2
)=(1/p) a T a = 

=(1/p)1=1/p, 
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φ2(r vv
i

2

*
 )= (1/p)b T b=(1/p)1=1/p. As  2<1, 

then   φ2(r
2(u*,

_

v i))<φ2(r
2(u*,ūi)),  

          φ2(r
2(v*,ūi))<φ2(r

2(v*,
_

v i)). 

Maximum total redundancis of u*-and v*-variables 

are equal each other to  

Rp(U
*, )V =Rp(V

*, )U = 2(1/p)=max4    (18) 

If in the Theorem 1 instead of x- and y-variables to 

consider u*-and v*-variables that equality (15) it will 

be transformed to equality (18). 

Theorem 2. When transforming redundancy u*-

and v*-variables to CCA maximized total redundancy 

of  x - and y-variables don't change  

Rp(Y, )U =Rq(Y,U*)=(1/p) 


p

j
j

1

2*
 =max2, 

Rq(X, )V = Rq(X,V*)=(1/q) 


p

i 1

ν*2
j =max3. 

Proof.  When transforming redundancy of u*- and v*-

variables to CCA  total redundancy of  the  p  y - 

variables, p u -variables caused by existence, are 

equal 

  Rp(Y, )U =(1/p)tr( A TA*TR12R21A
* A )= 

=(1/p)tr( A Tμ*2
pp A )=(1/p)tr(μ*2

pp)= 

=(1/p)


p

j
j

1

2*
 =Rp(Y,U*)=max2.                      (19) 

Similarly total redundancy of the q x-variables, p v -

variables caused by existence, is equal  

Rp(X, )V =(1/p)tr( B TB*TR21R12B
* B )= 

=(1/p)tr( B Tν*2
pp B )=(1/p)tr(ν*2

pp)= 

 =(1/p)


p

j

j

1

2
 = Rp(X,V*)= max3                (20) 

The theorem 2 is proved. 

 

5. Conclusion 

 

To us Theorems 1, 2 are useful.  From the 

Theorem 1 follows that the CCA  doesn't maximize 

the relations necessary to usе.  From the Theorem 2 

follows that the RA  maximizes separately relations 

between x- and v*-variables and relations between y-

andu*–variables: 

Rq(X,V*)=max3,Rq(Y,U*)=max3,  

Rp(U
*, )V =Rp(V

*, )U = 2(1/p)=max4 

         After transformation of excess u*- and v*-

variables the CCA maximizes relations between new 

u - and v -variables. Before u*-variables were 

strongly related with y-variables, and v*-variables - 

with x-variables. Thus take place of equalities (18), 

(19) i.e. degrees of interrelations between group x-

and v*-variable and between group y- and u*–

variables have the same maximum value. In other 

words, the RA  maximizes on the average factorial 

loadings at x- and y-variables, and the subsequent 

transformations of excess variables by the CCA 

doesn't change the value of extent of relation x- and 

y-variables with their new factors, but does diagonal 

a correlacion  matrix of these factors. This 

diagonalization reduces number of the parameters 

characterizing interrelations between factors, with р² 

to p. It, in turn, simplifies ratios between values 

initial x- and y-variables and factors, the formula of 

an assessment of values of one variables is brought 

out of these ratios on values of other variables. 

Theoretical prerequisites for a method of predictive 

variables [8]. 
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