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SOME PROPERTIES OF THE LATTICE OF F-CLOSED RIGHT IDEALS

Abstract: Throughout this paper R is a unitary associative ring and f is an injective ring endomorphiosm of R.
In the present article, we introduce the notion of the lattice Lat(R, f) of all f-closed right ideals of R with some
special operation instead of the intersection operation. The paper is devoted to the study of this lattice. In
particular, we investigate the interrelationship between the lattice of all f-closed right ideals of R and the lattice of
right ideals of the Cohn-Jordan extension A. We obtained some results in this direction.

In Theorem 1 we give necessary and sufficient conditions, in terms of the lattice Lat(R, f), for the Cohn-
Jordan extension A be a right Artinian ring. This theorem implies in particular that A is right Artinian provided
that R is right Artinian. Theorem 2 is a structural theorem and states that a ring R with a bounded length of chains
of the right f-closed ideals is embeddable in a semisimple Artinian ring. The authors’ original proof is based on the
Cohn-Jordan extension. The Cohn-Jordan extensions were first introduced in [8] for the study of skew polynomial
rings constructed by means of a ring endomorphism. Five open questions are formulated.
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Introduction

Throughout this paper all rings are associative.
In what follows let R be a ring and f be an injective
ring endomorphism of R. Recall that David Alan
Jordan introduced in [8] the construction of the
smallest ring A containing R such that every
endomorphism f of R to an automorphism of A (see
also [2, 10]). More precisely, let A= A(R,f) be a
ring, containing R and £ be an automorthism of A
that extends the endomorphism f. Then the ring A
together with the automorphism £ is called the Cohn-
Jordan extension of the ring R with endomorphism f,
if each element a of A can be presented as a =
f™(r), where r € R and n is some positive integer.

Doi: &os¥ef https://dx.doi.org/10.15863/TAS.2017.07.51.17

Materials and Methods

Using the construction of a direct limit one can
verify that this extension and is unique. Let us
consider a countable number of copies R; of the ring
R labeled by nonnegative integers i and natural
isomorphisms ¢;: R — R;. Given a pair of indexes
(m, n ) with m<n , the mapping fmn: Rm— Rn is
defined by fmn= &,0 f"Mog . Then the equality
fon = Tk © fxn holds for all k such that m <k< n.

Therefore, there is a direct limit
AR, f) =lim(Ry, fun : mn = 0),
One can check that the mapping defined by
fre(r) > g4,(r), where i>0,r€R, is a
correctly defined automorphism of A(R, f) and the

ISPC Materials and technologies,
Philadelphia, USA

103 % THOMSON REUTERS

Indexed in Thomson Reuters



http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
mailto:mushrub@yandex.ru
mailto:suhorukovaira@yandex.ru
mailto:mochalina77@yandex.ru
mailto:g_ivankova@mail.ru
http://s-o-i.org/1.1/TAS-07-51-17
https://dx.doi.org/10.15863/TAS.2017.07.51.17

[ ISRA (India) = 1.344 | SIS (USA) =0.912 {ICV (Poland) =6.630

.| ISI (Dubai, UAE) = 0.829 | PHHII (Russia) = 0.234 | PIF (India) =1.940
Impact Factor: | GIF (Australia) =0.564 | ESJI (KZ) ~ =3.860 | IBI (India) = 4.260
i JIF =1.500 i SJIF (Morocco) =2.031 i

restriction of f to R is equal to the endomorphism f.
Thus, the direct limit A(R, f) and it’s automorphism
f form the Cohn-Jordan extension of R with respect
to the endomorphism f.

There is another method to construct the Cohn-
Jordan extension of R. This method based on the
classical left ring of quotients Q = X 'R[x, f],
where X = {1,x,x2, x3, ...} and the multiplication in
the skew polynomial ring is defined by xr =
f(r) (vr € R). Itis easy to prove that the set A =
Unsox ™"Rx™ of all elements Q of the form x ™rx™
is a ring containing R. Furthermore, the inner
automorphism f : x rx™ = x"rx™ 1 of A is an
extension of the endomorphism f. Moreover, A =
Unso f "(R) . Cohn-Jordan extensions are studied
and used for differ purposes in scientific papers [9,
11].

Throughout the sequel, let A together with f
denote the Cohn-Jordan extension of the ring R and
its injective endomorphism f.

Definition 1. A right ideal | of R is said to be f-
closed (see [3, 7)), if

1= Jrrarom.

n=1

One can check, that a right ideal | of R is f-
closed if and only if I = IA N R. It implies that any f-
closed right ideal | of R has the form | = MA n R for
some available right ideal M of A. Conversely, all
the right ideals of this kind are f-closed.

An ideal N of R is called an f-ideal if f~1(N) =
N (see[1,5)]).

Let us consider the lattice Lat(R, f) of all f-
closed right ideals of R supplied the following
operations:

1)BAC=BnC;

2)BVC =Upsof " (f"(B)R + f"(C)R).

The result of the first operation is the largest f-
closed right ideal contained in the f-closed right
ideals B and C. The result of the second operation is
the smallest f-closed right ideal containing both right
ideals B and C.

Remark a). If B and C are f -closed right ideals

of R, then the following two equalities hold:
fTPUPBIRNfM(OR) < f(f"(B)R) =B

and f(f"(B)R N f*(COIR) € f*(f"(C)R) = C.

Therefore, we need not to describe the
operation B A C in the same way as the operation
BVC, because  Upsof " (F*(B)RN f™(C)R) =
BnCcC.

6). The following relation holds:

BVC = (BA+ CA) N R.

Recall that, the submodules of some right module Mg
over a ring R, partially ordered by inclusion, form a
modular lattice. In particular, the lattice of right
ideals of some ring is a modular lattice. This means

that the lattice satisfies the following condition called
“Modular law”: if B, C and D are submodules of a
module M over aringRand B [J C, then (CN D) +B
=CnN (D +B).

Proposition 1. Let B, C u D are f -closed right
ideals of R with B S C. Then BV(CnD)<SCn
(BVvD) € (BA+ (CAnDA)) NR.

Proof. First we show that “BV(C N D) € Cn
(Bv D).

Let re€BV(CND)=(BA+(CnD)A)NR.
Thenr = Zbial- + Zx]ﬁ], where b,: € B, x]' ECN D,
a;,d; € A. Observe, that Yb;a; € BACS CA and
Yx;d; € CA. Hence r € CANR = C. Since b; € B,
x; €D, we have r € (BA+DANR=BVD.
Therefore,r € C N (B V D)a.

Next we show that “Cn (BvD)c
(BA+ (CAnDA))nR”. To prove this inclusion
observe that BA < CA and by modular law we obtain
that Cn (BVD)SCAN (BA+DA) = BA+
(CANn DA). QED.

Corollary 1. If BV(CnD)=(BA+(CAn
DA)) nR for all f-closed right ideals of R, then the
lattice Lat(R, f) of all f-closed right ideals of R is
modular.

Lemma 1. If MG M EM, S-S M, is a
strictly ascending chain of right ideals of A of the
length d, then R must have strictly ascending chain of
f -closed right ideals of length d.

Proof. Choose elements m; € M;\M;_,
(i=1,2,...,d). By Definition1 m; € f~"(R) for
some non-negative integers ny, no,..., ng. Let n be the
largest of these integer numbers. Then b; =
f*(m;) €R for all i=1,2,...,d and right ideals
B; = f™(M,) form the strictly ascending chain B, &
B, € B, & -+ € B;. Moreover, b; EB;NR u b; &
B;_ynRforalli=1,2,...,d. Hence the chain of f-
closed right ideals of R

BbNRESB,NREB,NRG - SB;NR
is strictly ascends. But this chain has length d. QED.

Lemma 2. Let BB, B, &+ S B;be a
strictly ascending chain of f-closed right ideals of R
of length d. Then

ByAS BiA G B,AG -+ G ByA
is a strictly ascending chain of right ideals of A of
the same length d.

Proof. If the relation B;_;A = B;A were
satisfied at some point in the second chain, then we
would have

Bi—l = Bi—lA NR= BLA NR= Bi
by virtue of the f-closeness of the right ideals B;_;
and B;. But the last equality contradicts the condition
of the lemma. QED.
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Theorem 1. The following conditions (1) and
(2) are equivalent:

(1) A isright Artinian;

(2) there exists a non-negative integer d such
that all strictly ascending chains of f-closed right
ideals of R have length at most d.

Proof. “(1)=(2)”. Let A be right Artinian.
Then by Hopkins—Levitzki theorem A is also right
Noetherian and by Jordan-Holder theorem (see [6],
Theorem 4.10, P. 44) A has finite composition length
d (as a right module over itself). If Lat(R,f)
contained a strictly ascending chain of f-closed right
ideals of length more than d, then by Lemma 2 the
ring A would contain a chain of right ideals of length
more than d. This leads to a contradiction. Therefore,
all strictly ascending chains of f-closed right ideals of
R have length at most d.

“(2)=(1)". Suppose that condition (2) holds.
Then Lemma 1 shows that lengths of all strictly
ascending chains of right ideals of A do not exceed d.
It follows that A is right Artinian of length at most d.
QED.

Proposition 2. Let be an endomorphism of S
and N be an F-ideal of S. Suppose that Ker F < N.
Then F:S—Sinduces the endomorphism

f:S/N —S/N such that f(s+N)=F(s)+N for

all s € S. In addition, the diagram
FTL
S — S

ml lm

R —_— R
is commutative in the following sense:
a) mo F'(s) =f"om(s) for all positive
integernand all s € S;
b) if Y is an ideal of S and N €Y, then
n( F(Y)) = f(z(1)).
Proof. a).
ffom(s)=f"(s+N)=F"(s)+ N =mo F'(s).
Check equality b):
n(F(Y))={x+N€eRF(x)EY}=
={x+NeR:f(x+N)en(Y)}=
={x+NeR:Fx)+Nen(Y)}=
={x+N€eR:f(x+N)en)}=f"(r()).
Let S be a ring and N be a prime radical of S.
QED.

Lemma 3. Let S be a ring satisfying ascending
chain condition on right annihilators. Suppose that
every nil-subring of R is nilpotent. Let F be an
endomorphism of S with KerF ©N. Than
f7Y(N) =N.

For a proof we refer on [2; 4].

Theorem 2. Let F be an endomorphism of S
and Ker fF < N. Suppose that d there exists a non-
negative integer d such that all strictly ascending

chains of F-closed right ideals of S have length at
most d. Then the quotient-ring R=S/N can be
embedded in a product of finitely many matrix rings
over division rings D;.

Proof. The right annihilator of a set in the ring S
is the intersection of S and the right annihilator of
this set in the Cohn-Jordan extension A = A(S, F),
ie.

rs(M) = SN 1y5p(M).

It follows that all right annihilators in the ring S
are F-closed. Hence, by Theorem 1, the ring S is a
subring of the right Artinian ring, and every nil
subring of an Aritinian ring is nilpotent. Therefore,
every nil subring of S is nilpotent.

Let P be a prime radical of A(S,F) and F be
an automorphism of A(S, F) extending F. Then P is a
nilpotent ideal and, consequently,
P 0 F(S) S rad (F(5)) = F*(N).

Thus ={J_ F™N). It implies NgP.
Moreover, since P is a nilpotent ideal of S, it follows
that PNS S N. Therefore, PNS=N. By
Proposition 2 the last equality shows that the map

S+NH>s+P(s€S)

is an embedding of the quotient-ring R = S/N in the
semisimple Artinian ring A(S,F)/P. To complete
the proof of the theorem, it remains to note that the
ring A(S,F)/P is isomorphic to a finite direct
product of complete matrix rings over the division
rings by Weddeburn-Artin theorem (see [6], § 61,
Theorem 5.16). QED.

Proposition 2. A right ideal L of A is essential
in A if and only if for each nonzero element r € R u
for every nonnegative integer n, there is a
nonnegative integer m such that

f™(r) RN F™™M(L) % 0.
Proof. Let L be an essential right ideal of the
ring A, let 0 #r €R and let n be a nonnegative

integer. Set a= 1 "(r). SinceaANL =0, there is a
number m >0 such thata-f "™(R)NL=0.
Applying the automorphism ™™ to the last
inequality, _ the demanded inequality
f™"(RNA F™™(L) =0 follows.

Suppose now that for each nonzero element r €
R and for any nonnegative integer n there is a
nonnegative integer m such that

fM(NRNF™™(L) %0, Every element a € A can
be represented in the form a= f~‘"(r) where r € R
and n > 0. Applying the automorphism f "™ to
the inequality f™(r)RN f™M(L) 20, we get that
af "™R)NL=0.QED.
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Conclusion
Here are some problems which will probably be
useful for magistrates and graduate students.

Open problems:

1. Give necessary and sufficient conditions on R
and f for the lattice Lat( R, f) be modular. Give some
examples demonstrating that these conditions are
essential.

2. If Lat(R, f) satisfies the descending chain
condition, then does A need to be right Artinian?
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