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Пусть A и B – банаховы алгебры, а T : B −→ A – непрерывный гомоморфизм. Мы
рассматриваем левые мультипликаторы из A×T B в его первое двойственное, т.е.
A∗×B∗, и показываем, что A×T B является гипертауберовой алгеброй тогда и только
тогда, когда A и B являются гипертауберовыми алгебрами.
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Introduction

The notion of Hyper-Tauberian algebras is introduced by Samei [20]. These algebras
are commutative Banach algebras that consist of all Tauberian algebras. Idea of definition
of hyper-Tauberian algebras is related to the local derivation that this notion was
introduced by Kadison [13].

Let (A,‖ ·‖A) be a Banach algebra and (X ,‖ ·‖X) be a Banach space such that X is an
A-bimodule. If the module actions maps i.e., A×X −→ X and X×A−→ X are continuous
(in norm), then we say that X is a Banach A-bimodule. Now, let X be a Banach A-
bimodule, then one can see that the first dual of X i.e., X∗ is a Banach A-bimodule with
the following module actions:

〈x,a · f 〉= 〈x ·a, f 〉 and 〈x, f ·a〉= 〈a · x, f 〉,

for every a ∈ A, x ∈ X and f ∈ X∗. A derivation from A into a Banach A-bimodule X is a
linear map D : A−→ X such that

D(ab) = a ·D(b)+D(a) ·b,

for every a,b∈ A. The set of all derivations from A into X is denoted by Z 1(A,X); which
is a linear subspace of B(A,X), the space of all bounded linear maps from A into X .
For a fixed x ∈ X , set Dx : A −→ X , a 7→ a · x− x · a. Derivations of this form are called
inner derivations, and an inner derivation Dx is implemented by x. The set of all inner
derivations from A into X is a linear subspace N 1(A,X) of Z 1(A,X). We denote the
first cohomology group of a Banach algebra A with coefficients in a Banach A-bimodule
X by H 1(A,X), where it is equal to Z 1(A,X)/N 1(A,X).

Let A be a Banach algebra, and let X be a Banach A-bimodule. An operator D : A−→X
is called a local derivation if, for every a ∈ A, there is a derivation Da : A−→ X such that
D(a) = Da(a). Kadison proved that every bounded local derivation from a von Neumann
algebra A into a dual Banach A-bimodule X belongs to Z 1(A,X) and Johnson proved
the same result to a C∗-algebra A and Banach A-bimodule X [12].

The concept of amenability for Banach algebras was introduced by Johnson [10].
A Banach algebra A is called amenable if H 1(A,X∗) = {0} for any A-bimodule X . A
Banach algebra A is called weakly amenable if H 1(A,A∗) = {0} i.e., every continuous
derivation from A into A∗ is inner. The concept of weak amenability was first introduced
by Bade, Curtis and Dales in [3] for commutative Banach algebras, and was extended
to the noncommutative case by Johnson, see [11].

Let A and B be Banach algebras such that A is a Banach B-bimodule with compatible
actions and appropriate norm. The semidirect product of these Banach algebras is defined
on A×B as follows:

(a,b)(a′,b′) = (aa′+a ·b′+b ·a′,bb′)

for (a,b),(a′,b′) ∈ A×B. By the above defined product on A×B, it becomes a Banach
algebra with the `1-norm that we denote it by AnB. Moreover, if A and B are commutative
such that A is a symmetric Banach B-bimodule (i.e., a ·b= b ·a for every a∈A and b∈B),
then AnB becomes a commutative Banach algebra.

Let A and B be Banach algebras and θ ∈ σ(B), where σ(B) is the space of all
continuous homomorphisms from B onto C. Lau studied the Banach algebra A×θ B in
[15], with the norm ‖(a,b)‖= ‖a‖A +‖b‖B and with the following product:

(a,b)(a′,b′) = (aa′+θ(b′)a+θ(b)a′,bb′), (1)
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for all (a,b),(a′,b′) ∈ A×θ B. Amenability and weak forms of amenability of A×θ B are
studied in [7, 16]. Let T : B−→ A be an algebra homomorphism, and A be a commutative
Banach algebra. Following [5], we equip the Cartesian product space A×B with the
following multiplication:

(a,b)(a′,b′) = (aa′+T (b)a′+T (b′)a,bb′),

for all (a,b),(a′,b′) ∈ A×B. By the above product, A×B becomes a Banach algebra; we
denote it by A×T B. If A and B are Banach algebra and ‖T‖ ≤ 1, then A×T B is a Banach
algebra with the following norm

‖(a,b)‖= ‖a‖A +‖b‖B,

for (a,b) ∈ A×T B. Arens regularity and various notions of amenability of this new
Banach algebra considered in [5]. With a slight difference in definition of the multiplication
×T from that given by Bhatt and Dabhi [5], we consider A×T B with the following
multiplication

(a,b)(a′,b′) = (aa′+T (b)a′+aT (b′),bb′), (a,a′ ∈ A, b.b′ ∈ B). (2)

Note that if A is a commutative Banach algebra, then these multiplications coincide.
Let A be a unital Banach algebra with unit eA, θ ∈ σ(B), and define T0 : B −→ A by
T0(b) = θ(b)eA (b ∈ B). Then A×T0 B coincides with the product (1). The Banach algebra
A×T B with the above multiplication that is a splitting of Banach algebra extension of
Banach algebra B by A has been studied by many authors such as [1, 2, 6, 9, 17]. Splitting
of Banach algebra extensions has important roles in studying of Banach algebras and
they are good tools for giving counter examples for some concepts related to Banach
algebras, for example see [4, 8, 23].

In this paper, we consider the Banach algebra A×T B with the multiplication (2).
We show that A×T B is a Tauberian algebra if and only if A and B are Tauberian
algebraa (Section 2) and in Section 3, we characterize left multipliers from A×T B into
its the first dual. Finally, we show that if A and B are hyper-Tauberian then A×T B is a
hyper-Tauberian and vice versa.

Tauberian algebra

In this section, we study on some basic properties of the Banach algebra A×T B. We
identify (A×T B)∗ with A∗×B∗ in the natural way

〈(a,b),( f ,g)〉= 〈a, f 〉+ 〈b,g〉

for all (a,b) ∈ A×T B and ( f ,g) ∈ A∗× B∗. Then by easy calculations, we have the
following actions

(a,b) · ( f ,g) = (a · f +T (b) · f ,T ∗(a · f )+b ·g),

and
( f ,g) · (a,b) = ( f ·a+ f ·T (b),T ∗( f ·a)+g ·b).

for all (a,b) ∈ A×T B and ( f ,g) ∈ (A×T B)∗.
Lemma 1. [9, Theorem 2.2] Let A and B be Banach algebras, and let T : B−→ A be

an algebra homomorphism with norm at most 1. Let F1 = {(ϕ,ϕ ◦T ) : ϕ ∈ σ(A)} and
F2 = {(0,ψ) : ψ ∈ σ(B)}. Then
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(i) if σ(A) = /0, then F1 = /0.

(ii) σ(A×T B) = F1∪F2.

(iii) F1 and F2 are closed in σ(A×T B).

We recall the following definitions and notions from [20]. For a Banach algebra A
and a Banach A-bimodule X the annihilator of A in X and the annihilator of X in A are
the following sets

AnnX(A) = {x ∈ X : x ·a = 0 = a · x, for all a ∈ A},

and
AnnA(X) = {a ∈ A : x ·a = 0 = a · x, for all x ∈ X}.

For a commutative, semisimple and regular Banach algebra A the hull of a closed
ideal I in A denoted by h(I). The hull of I is the following set

{t ∈ σ(A) : a(t) = 0 for all a ∈ I}.

For any element x ∈ X , AnnA(x) is a closed ideal in A and the hull of AnnA(x) is
called the support of x in σ(A), denoted by suppA x or supp x. Let E ⊆ σ(A), we consider
the following sets

I(E) = {a ∈ A : a|E = 0},

I0(E) = {a ∈ A : a has a compact disjoint from E},

and
J(E) = {a ∈ I(E) : supp a is compact}.

The subset E of σ(A) is called a set of synthesis for A if there is a unique closed ideal
in A whose hull is E. We denote the set of all elements in A with the compact support
by Ac. The Banach algebra A is called Tauberian algebra if Ac is dense in A [19]. Ideals
of A×T B are investigated in [9, Proposition 2.4] and we write it as follows:

Lemma 2. Let A and B be Banach algebras and T : B −→ A be a homomorphism
with ‖T‖ ≤ 1. Then ideals of A×T B are one of the following form

(i) A.

(ii) I×T B, where I is a closed ideal of A and T (B)⊆ I.

(iii) I×T J, where I is a closed ideal of A and J is a closed ideal of B such that T (J)⊆ I.

By Lemma , any subset E of σ(A×T B) is a subset of F1 or F2. In other word,
E = {(ϕ,ϕ ◦T ) : for some ϕ ∈ σ(A)} or E = {(0,ϕ ◦T ) : for some ϕ ∈ σ(A)} or E =
{(0,ψ) : for some ψ ∈ σ(B)}.

Theorem 1. Let A and B be commutative, semisimple, regular Banach algebras and
T : B −→ A be a homomorphism with ‖T‖ ≤ 1. Then A×T B is a Tauberian algebra if
and only if A and B are Tauberian algebras.

Proof. Let A×T B be a Tauberian algebra. For every a ∈ A, (a,0) ∈ A×T B. Then
there is a net

(aα ,bα)⊆ (A×T B)c = Ac∪Bc∪{(a,b) : a ∈ Ac, b ∈ Bc},
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such that (aα ,bβ ) −→ (a,0). This follows that aα −→ a and consequently, Ac = A.
Similarly, one can show that B is a Tauberian algebra.

Let A and B be Tauberian algebras and let (a,b) ∈ A×T B. Then there are nets
(aα)α∈I ⊆ Ac and (bβ )β∈J ⊆ Bc such that aα −→ a and bβ −→ b. We define an indexing
directed set Γ = I×∏α∈I J equipped with the product ordering, and for each (α, f ) ∈ Γ,
we define cγ = cα, f (α) = cα,β . Then by the Theorem on iterated limits [14],

lim
γ∈Γ

cγ = lim
α∈I

lim
β∈J

cα,β .

Now, set cγ = cα,β = (aα ,bβ ) ∈ (A×T B)c. By the above arguments, we conclude that
cγ −→ (a,b). Thus, A×T B is a Tauberian algebra. �

Left multipliers from A×T B into (A×T B)∗

Let A be a Banach algebra and X be a left (right) Banach A-module. A linear mapping
T : A−→ X is called a left (right) multiplier if T (ab) = a ·T (b) (T (ab) = T (a) ·b). In this
section we characterize left multipliers from A×T B into (A×T B)∗ and a reason for
investigating of left multipliers related to the next section.

Theorem 2. Let A and B be Banach algebras and T : A −→ B be a homomorphism
with ‖T‖ ≤ 1. If F : A×T B−→ A∗×B∗ is a left multiplier, then

(i) there are coordinate maps F1 and F2 such that F = (F1,F2) and F1 and F2 are left
multipliers on A and B, respectively.

(ii) F2(aa′,0) = T ∗(a ·F1(a′,0)) and F1(0,bb′) = T (b) ·F1(0,b′) for every a,a′ ∈ A and b,b′ ∈
B.

(iii) if AnnA(A∗) 6= A or A is without of order, then F1(T (b),0) = F1(0,b) for every b ∈ B.
Similarly, if AnnB(B∗) 6= B or B is without of order, then T ∗(F1(a,0)) = F2(a,0) for
every a ∈ A.

Proof. Let F = (F1,F2), where F1 and F2 are coordinate maps related to F and it is easy
to check that they are linear and continuous.

(i)-(ii) For every a,a′ ∈ A, we have

(F1(aa′,0),F2(aa′,0)) = F(aa′,0) = F((a,0)(a′,0)) = (a,0) ·F(a′,0)
= (a,0) · (F1(a′,0),F2(a′,0))
= (a ·F1(a′,0),T ∗(a ·F1(a′,0))). (3)

Therefore F1(aa′,0) = a ·F1(a′,0) and F2(aa′,0) = T ∗(a ·F1(a′,0)) for every a,a′ ∈ A.
This means that F1 on A is a left multiplier. For every b,b′ ∈ B,

(F1(0,bb′),F2(0,bb′)) = F(0,bb′) = F((b,0)(0,b′)) = (0,b) ·F(0,b′)
= (0,b) · (F1(0,b′),F2(0,b′))
= (T (b) ·F1(0,b′),b ·F2(0,b′)). (4)

The above relations show that F1(0,bb′) = T (b) ·F1(0,b′) and F2(0,bb′) = b ·F2(0,b′)
for every b,b′ ∈ B. This shows that F2 is a left multiplier on B.
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(iii) By (1) and (2) we have

F((a,b)(a′,b′)) = F(aa′+aT (b′)+T (b)a′,bb′)
= (F1(aa′+aT (b′)+T (b)a′,bb′),F2(aa′+aT (b′)+T (b)a′,bb′))
= (F1(aa′,0),0)+(F1(aT (b′),0),0)+(F1(T (b)a′,0),0)

+(F1(0,bb′),0)+(0,F2(aa′,0))+(0,F2(aT (b′),0))
+(0,F2(T (b)a′,0))+(0,F2(0,bb′))

= (a ·F1(a′,0),0)+(a ·F1(T (b′),0),0)+(T (b) ·F1(a′,0),0)
(T (b) ·F1(0,b′),0)+(0,T ∗(a ·F1(a′,0)))
+(0,T ∗(a ·F1(T (b′),0)))+(0,T ∗(T (b) ·F1(a′,0)))
+(0,b ·F2(0,b′)) (5)

On the other hand,

(a,b) ·F(a′,b′) = (a,b) ·F((a′,0)+(0,b′)) = (a,b) ·F(a′,0)+(a,b) ·F(0,b′)
= (a,b) · (F1(a′,0),F2(a′,0))+(a,b) · (F1(0,b′),F2(0,b′))
= (a ·F1(a′,0)+T (b) ·F1(a′,0),T ∗(a ·F1(a′,0))+b ·F2(a′,0))

+(a ·F1(0,b′)+T (b) ·F1(0,b′),T ∗(a ·F1(0,b′))+b ·F2(0,b′))
= (a ·F1(a′,0),0)+(T (b) ·F1(a′,0),0)+(0,T ∗(a ·F1(a′,0)))

+(0,b ·F2(a′,0))+(a ·F1(0,b′),0)+(T (b) ·F1(0,b′),0)
+(0,T ∗(a ·F1(0,b′)))+(0,b ·F2(0,b′)) (6)

The relations (5) and (6) imply that
a ·F1(T (b′),0) = a ·F1(0,b′)

T ∗(T (b) ·F1(a′,0)) = b ·F2(a′,0).
(7)

For every x ∈ B∗, b ∈ B and a′ ∈ A,

〈x,b ·F2(a′,0)〉 = 〈x,T ∗(T (b) ·F1(a′,0))〉= 〈T (x),T (b) ·F1(a′,0)〉
= 〈T (x)T (b),F1(a′,0)〉= 〈T (xb),F1(a′,0)〉
= 〈xb,T ∗(F1(a′,0))〉= 〈x,b ·T ∗(F1(a′,0))〉. (8)

Then we can write (7) as follows:
a ·F1(T (b′),0) = a ·F1(0,b′)

b ·T ∗(F1(a′,0)) = b ·F2(a′,0).
(9)

Now if one of the assumptions in (iii) holds, we conclude the desire. �
We now consider the converse of the above Theorem as follows:
Theorem 3. Let A and B be Banach algebras and T : A−→ B be a homomorphism

with ‖T‖ ≤ 1. If FA : A−→ A∗ and FB : B−→ B∗ are left multipliers, then F : A×T B−→
A∗×B∗ defined as

F(a,b) = (FA(a+T (b)),T ∗ ◦FA(a+T (b))+FB(b)) (10)
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for every (a,b) ∈ A×T B, is a left multiplier.
Proof. For every (a,b),(a′,b′) ∈ A×T B, we have

(a,b) ·F(a′,b′) = (a,b) · (FA(a′+T (b′)),T ∗ ◦FA(a′+T (b′))+FB(b′))
= (a ·FA(a′+T (b′))+T (b) ·FA(a′+T (b′)),b ·FB(b′)

+b ·T ∗ ◦FA(a′+T (b′))+T ∗(a ·FA(a′+T (b′)))). (11)

Also, for all a,a′ ∈ A and b,b′,x ∈ B, we have

〈x,T ∗ ◦FA(T (b)a′+T (bb′))〉 = 〈T (x),FA(T (b)a′+T (bb′))〉
= 〈T (x),T (b) ·FA(a′+T (b′))〉
= 〈xb,T ∗(FA(a′+T (b′)))〉
= 〈x,b ·T ∗(FA(a′+T (b′)))〉. (12)

Then by (12) we have the following

F((a,b)(a′,b′)) = (FA(aa′+T (b)a′+aT (b′)+T (bb′)),T ∗ ◦FA(aa′+aT (b′))
+T ∗ ◦FA(T (b)a′+T (bb′))+FB(bb′))

= (a ·FA(a′+T (b′))+T (b) ·FA(a′+T (b′)),b′ ·FB(b′)
+b ·T ∗ ◦FA(a′+T (b′))+T ∗(a ·FA(a′+T (b′)))). (13)

Then the relations (11) and (13) imply that F is a left multiplier. �

Hyper-Tauberian algebra

Let X and Y be left (right) Banach A-modules. An operator T : X −→ Y is called
local with respect to the left (right) A-module action if supp T (x) ⊆ supp x, for every
x ∈ X . If A is a Tauberian algebra and X is a left (right) Banach A-module, then a
bounded operator T : A−→ X is called local if supp T (a)⊆ supp a, for every a ∈ Ac [20,
Proposition 2].

In this section we assume that all Banach algebras are commutative, semisimple
and regular. The Banach algebra A is a said to be a hyper-Tauberian algebra if every
bounded local operator T : A−→ A∗ is a multiplier. Hyper-Tauberian algebras are defined
by Samei in [20]. He proved that every hyper-Tauberian algebra is Tauberian algebra
and is weakly amenable [20, Theorem 5]. In light of Lemma , we have the following
Lemma.

Lemma 3. Let A and B be Banach algebras and T : B −→ A be a homomorphism
with ‖T‖ ≤ 1. Then

(i) supp (a,0) = {t ∈ σ(A) : a(t) 6= 0}.

(ii) supp (0,b) = {s ∈ σ(B) : b(s) 6= 0}.

(iii) supp (a,b) = {(t,s) ∈ σ(A×T B) : a(t)+b(s) 6= 0}.

Theorem 4. Let A and B be Banach algebras and T : B −→ A be a homomorphism
with ‖T‖ ≤ 1. Then A×T B is a hyper-Tauberian algebra if and only if A and B are
hyper-Tauberian algebras.
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Proof. Let A and B be hyper-Tauberian algebras. Since A×T B
A
∼= B, so A×T B

A is a hyper-
Tauberian algebra. Then by [20, Theorem 9], A×T B is hyper-Tauberian.

Let A×T B be hyper-Tauberian. First, we show that A is hyper-Tauberian. Let F :
A −→ A∗ be a bounded local operator. Consider the projection map πA : A×T B −→ A
defined by πA(a,b) = a+T (b), for all (a,b) ∈ A×T B. Then π∗A ◦F ◦πA : A×T B−→ A∗×B∗

is a bounded local operator. Because by Lemma 3, we have

supp π
∗
A ◦F ◦πA(a,b) = supp π

∗
A ◦F(a+T (b))⊆ supp π

∗
A(a+T (b))

= supp(a+T (b),0)
= {t ∈ σ(A) : (a+T (b))(t) 6= 0}
= {(t, t ◦T ) ∈ σ(A×T B) : (a+T (b))(t) 6= 0}
⊆ supp(a,b).

This means that π∗A ◦F ◦πA is local and therefore it is a multiplier. Then

π
∗
A ◦F ◦πA((a,b)(a′,b′)) = (a,b) ·π∗A ◦F ◦πA((a′,b′))

= (a,b) ·π∗A ◦F(a′+T (b′)) = (a,b) · (F(a′+T (b′)),0)
= (a ·F(a′+T (b′))+T (b) ·F(a′+T (b′)),T ∗(a ·F(a′+T (b′))))
= (a ·F(a′)+a ·F(T (b′))+T (b) ·F(a′)

+T (b) ·F(T (b′)),T ∗(a ·F(a′+T (b′)))). (14)

On the other hand

π
∗
A ◦F ◦πA((a,b)(a′,b′)) = π

∗
A ◦F ◦πA(aa′+T (b)a′+aT (b′),bb′)

= π
∗
A ◦F(aa′+T (b)a′+aT (b′)+T (bb′))

= (F(aa′+T (b)a′+aT (b′)+T (bb′)),0)
= (F(aa′)+F(T (b)a′)+F(aT (b′))+F(T (bb′))),0). (15)

By taking b = b′ = 0 and using relations (14) and (15), we conclude that F is a
multiplier. This shows that A is hyper-Tauberian.

Finally, we prove that B is hyper-Tauberian. Define F : A×T B −→ A×T B
A
∼= B by

F(a,b)= (a,b)+A, for every (a,b)∈A×T B. Clearly, F is a bounded and onto homomorphism.
Since A×T B is hyper-Tauberian algebra, by [20, Theorem 12], B is hyper-Tauberian. �

Amenability of A×T B studied in [6]. Authors in [6, 18] proved that weak amenability
of A×T B implies weak amenability of A and B, but converse is not true in general. Samei
in [20] proved that every hyper-Tauberian algebra is weakly amenable. By this fact and
above Theorem we have the following result.

Corollary. Let A and B be hyper-Tauberian algebras and T : B−→A be a homomorphism
with ‖T‖ ≤ 1. Then A×T B is weakly amenable if and only if A and B are weakly
amenable.

EXAMPLE. Let G and H be locally compact abelian groups and A(G) and A(H) be
Fourier algebras on them. Define T : A(G) −→ A(H) by T (ω)(h) = ω(τ(h)) for every
h ∈ H, where τ : H −→ G is continuous. According to [22], if T is an isometry, then τ

is of the form τ(h) = gφ(h) for every g ∈ G and φ : H −→ G is a group homomorphism.
Thus, A(G)×T A(H) is a hyper-Tauberian algebra, by [20, Proposition 18] and Theorem
.
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