Journal of Scientific and Engineering Research, 2018, 5(8):279-286

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

On Matrix Division and Rational Matrices

Hasan KELEŞ

Karadeniz Technical University, Faculty of Science, Department of Mathematics, Campus of Kanuni, Ortahisar, Trabzon

Abstract In this paper we give, for the first time, the definitions of "co-divide" and division of two matrices with the same dimension. We will see that the definitions here are analogous to the case in real numbers. Here we research their properties and give some examples. Rational matrices was define by "Matrix Division". We will see that the properties here are analogous to the case in real numbers. Here we research their properties and give some examples. Here we research their properties and give some examples.

Keywords matrix, division, matrices division, co-divide, rational matrices Subject Classification: 05B20, 15A09, 15A16, 15A24, 81U20

1. Introduction

Let us start with the definition as follows.

Definition 1.1. Let $A = [a_{ij}]_{n \times n}$, $B = [b_{ij}]_{n \times n}$ be any two square matrices. $1 \le i \le n$, then ${}^{A}_{B}i_{j}$ denote the determinant of the matrix B_{i} obtained by putting j^{th} column of A in place of i^{th} column of B. The real number ${}^{A}_{B}i_{i}$ is called a co-divide of A on B.

We easily get

Lemma 1.1. Let *A* and *B* be any two square matrices of dimension *n*. Then the number of codivides of *A* on *B* is n^2 .

Example 1.1. If A = [1], B = [3]. Then the co-divides ${}^{A}_{B}1_{1}$ and ${}^{B}_{A}1_{1}$ are 1 and 3 respectively.

Theorem 1.1. Let $\mathcal{M}(\mathbb{R}) = \left\{ \left[a_{ij} \right]_{n \times n} \middle| a_{ij} \in \mathbb{R}, i, j = 1, ..., n, n \in \mathbb{Z}^+ \right\}$, and $C_{ij}(A) = (-1)^{i+j} M_{ij}(A)$, where $M_{ij}(A)$ is the minor of a_{ij} . If $A \in \mathcal{M}(\mathbb{R})$ with $|A| \neq 0$, let I be unit matrix. Then

i. ${}^{I}_{A}i_{i} = C_{ii}(A).$

ii. ${}^{A}_{I}i_{j} = a_{ij}$, for j = 1, ..., n.

iii. $A_{A}i_{j} = \begin{cases} |A|, i = j \\ 0, i \neq j \end{cases}$

Proof. *i*) Let $A, I \in \mathcal{M}(\mathbb{R})$ and $|A| \neq 0$. Then

$${}^{I}_{A}1_{1} = \begin{vmatrix} 1 & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{12} & \dots & a_{1n} \\ a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{n2} & \dots & a_{nn} \end{vmatrix} = C_{11}(A),$$

$${}^{I}_{A}1_{2} = \begin{vmatrix} a_{11} & 1 & a_{13} & \dots & a_{1n} \\ a_{21} & 0 & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & 0 & a_{n3} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n3} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n3} & \dots & a_{n(n-1)} & a_{nn} \end{vmatrix} = C_{12}(A)$$

$${}_{A}^{I}1_{n} = \begin{vmatrix} a_{11} \dots a_{1(n-1)} 1\\ a_{21} \dots a_{2(n-1)} 0\\ \vdots & \vdots & \vdots\\ a_{n1} \dots a_{n(n-1)} 0 \end{vmatrix} = \begin{vmatrix} a_{11} \dots a_{1(n-1)}\\ a_{21} \dots a_{2(n-1)}\\ \vdots & \vdots\\ a_{n1} \dots a_{n(n-1)} \end{vmatrix} = C_{1n}(A),$$

$$\vdots$$

$${}_{A}n_{n} = \begin{vmatrix} a_{12} \dots a_{1(n-1)} a_{1n}\\ 0 a_{22} \dots a_{2(n-1)} a_{2n}\\ \vdots & \vdots\\ 1 a_{n2} \dots a_{n(n-1)} a_{nn} \end{vmatrix} = \begin{vmatrix} a_{12} \dots a_{1(n-1)} a_{1n}\\ a_{22} \dots a_{2(n-1)} a_{2n}\\ \vdots & \vdots\\ a_{n2} \dots a_{n(n-1)} a_{nn} \end{vmatrix} = C_{n1}(A)$$

$$\vdots$$

$$\vdots$$

$$a_{n2} \dots a_{n(n-1)} a_{nn} \end{vmatrix} = C_{n1}(A)$$

ii)

$${}^{A}_{I}1_{1} = \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & 0 & \cdots & 1 \end{vmatrix} = a_{11}, \dots, {}^{A}_{I}1_{n} = \begin{vmatrix} 10 & \cdots & a_{11} \\ 01 & \cdots & a_{21} \\ \vdots & \vdots & \vdots \\ 00 & \cdots & a_{n1} \end{vmatrix} = a_{n1}, \dots, {}^{A}_{I}n_{1} = \begin{vmatrix} a_{1n} & 0 & \cdots & 0 \\ a_{2n} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{nn} & 0 & \cdots & 1 \end{vmatrix} = a_{1n}, \dots, {}^{A}_{I}n_{n} = \begin{vmatrix} 10 & \cdots & a_{1n} \\ 01 & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ 00 & \cdots & a_{nn} \end{vmatrix} = a_{nn}.$$

Therefore,

$${}^{A}_{I}i_{j} = a_{ij}$$

iii.) Let $\neq j$, then we have two equal columns, so ${}^{A}_{A}i_{j}$ is zero and also ${}^{A}_{A}i_{j} = |A|$ for i = j. Note 1.1. We notice that

$$\begin{bmatrix} {}_{A}^{I}1_{1}{}_{A}^{I}1_{2}\cdots{}_{A}^{I}1_{n} \\ {}_{A}^{I}2_{1}{}_{A}^{I}2_{2}\cdots{}_{A}^{I}2_{n} \\ \vdots & \vdots & \vdots \\ {}_{A}^{I}n_{1}{}_{A}^{I}n_{2}\cdots{}_{A}^{I}n_{n} \end{bmatrix} = \begin{bmatrix} {}_{C_{11}(A)C_{12}(A)\cdots C_{1n}(A)} \\ {}_{C_{21}(A)C_{22}(A)\cdots C_{2n}(A)} \\ \vdots & \vdots & \vdots \\ {}_{C_{n1}(A)C_{n2}(A)\cdots C_{nn}(A) \end{bmatrix}.$$

Example 1.2. Let $A = \begin{bmatrix} 1 & 5 \\ 3 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 6 \\ 4 & 8 \end{bmatrix}$. Thenall of co-divides are ${}_{A}^{B}1_{1} = \begin{vmatrix} 2 & 5 \\ 4 & 7 \end{vmatrix} = -6$, ${}_{A}^{B}2_{1} = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2$, ${}_{A}^{B}1_{2} = \begin{vmatrix} 6 & 5 \\ 8 & 7 \end{vmatrix} = 7$, ${}_{A}^{B}2_{2} = \begin{vmatrix} 1 & 6 \\ 3 & 8 \end{vmatrix} = -10$, ${}_{B}^{A}1_{1} = \begin{bmatrix} 1 & 6 \\ 3 & 8 \end{bmatrix} = -10$, ${}_{B}^{A}2_{1} = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} = 2$, ${}_{B}^{A}1_{2} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = -2$, ${}_{B}^{A}2_{2} = \begin{bmatrix} 2 & 5 \\ 4 & 7 \end{bmatrix} = -6$.

Matrices of co-divides of A on B (B on A resp.) and B are

Å

$$C = \begin{bmatrix} -6 & -2 \\ 7 & -10 \end{bmatrix} (D = \begin{bmatrix} -10 & 2 \\ -2 & -6 \end{bmatrix} \text{ resp.}).$$

Lemma 1.2. Let $A, B \in \mathcal{M}(\mathbb{R})$ and $k \in \mathbb{R} \setminus \{0\}$ then i. ${}^{(kA)}_{B}i_j = k{A \choose B}i_j$. ii. ${}^{(kB)}_{(kB)}i_j = k^{(n-1)}{A \choose B}i_j$.

Proof. Let $A, B \in \mathcal{M}(\mathbb{R})$ and $k \in \mathbb{R} \setminus \{0\}$, then

i) As any entry of kA is a product of an element of A by k, we conclude that

 ${}^{(kA)}_{B}i_{j} = k \begin{pmatrix} A \\ B \end{pmatrix}i_{j}$. And we can conclude that

$$\text{ii)}_{(kB)}^{A} \dot{i}_{j} = \begin{vmatrix} kb_{11} & \cdots & kb_{1(j-1)} & a_{1j} & kb_{1(j+1)} & \cdots & kb_{1n} \\ kb_{21} & \cdots & kb_{2(j-1)} & a_{2j} & kb_{2(j+1)} & \cdots & kb_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ kb_{n1} & \cdots & kb_{n(j-1)} & a_{nj} & kb_{n(j+1)} & \cdots & kb_{nn} \end{vmatrix} = k^{(n-1)} \sum_{i=1}^{n} a_{ij} C_{ji} \left(B \right) = k^{(n-1)} \left({}_{B}^{A} \dot{i}_{j} \right).$$

Corollary 1.1. If k = 0 then ${}^{(0A)}_{B}i_j = 0 {A i_j} = 0$. **Lemma 1.3.** Let $A, B, C \in \mathcal{M}(\mathbb{R}), |C| \neq 0$. Then i. ${}^{A}_{B}i_j = \frac{1}{|C|} {}^{C}_{B}i_j] {}^{A}_{C}i_j]$.

Journal of Scientific and Engineering Research

ii. $\begin{bmatrix} A \\ B \\ i_j \end{bmatrix} = A \begin{bmatrix} I \\ B \\ i_j \end{bmatrix}$.

We now give, the following new "Matrix Division" definition .

2. Matrix Division

Definition 2.1. Let *A* and $B \in \mathcal{M}(\mathbb{R})$ with $|B| \neq 0$. Then the matrix $\left[\frac{\binom{A}{B}i_j}{|B|}\right]_{n \times n}$ is called the division of *A* by *B*

and denoted by $A \div B$ or $\frac{A}{B}$. **Example2.1.** Let $A = \begin{bmatrix} 1 & 5 \\ 3 & 7 \end{bmatrix}, B = \begin{bmatrix} 2 & 6 \\ 4 & 8 \end{bmatrix}$. Then $A \div B = \begin{bmatrix} \begin{vmatrix} \frac{1}{3} & 6 \\ -\frac{3}{8} & \frac{1}{7} & 6 \\ -\frac{3}{8} & -\frac{8}{8} \\ -\frac{3}{8} & -\frac{8}{8} \end{bmatrix} = \begin{bmatrix} \frac{5}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4} \end{bmatrix}$. And $B \div A = \begin{bmatrix} \begin{vmatrix} \frac{2}{4} & 5 \\ -\frac{3}{8} & -\frac{8}{8} \\ -\frac{3}{8} & -\frac{1}{8} \\ -\frac{3}{8} & -\frac{8}{8} \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{5}{4} \\ -\frac{1}{4} & \frac{3}{4} \end{bmatrix}$.

Note2.1. In the above example we see that $B(A \div B) = A$. In fact,

$$\begin{bmatrix} 2 & 6 \\ 4 & 8 \end{bmatrix} \begin{bmatrix} \frac{5}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4} \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 3 & 7 \end{bmatrix} = A.$$

Note2.2. From the above we have

 $\begin{bmatrix} 1 & 5 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & -\frac{5}{4} \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 4 & 8 \end{bmatrix} = B.$ It is obvious that, in general,

$$A \neq B \neq B \neq A.$$
Example 2.2. Let $A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}, B = \begin{bmatrix} 4 & 3 \\ 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 5 \\ 1 & 1 \end{bmatrix}.$
Then $|B| = \begin{vmatrix} 4 & 3 \\ 1 & 1 \end{vmatrix} = 1$ and $|C| = \begin{vmatrix} 1 & 5 \\ 1 & 1 \end{vmatrix} = -4$. So
 $(A \div B) \div C = \begin{bmatrix} \begin{vmatrix} 1 & 3 \\ 2 & 3 \end{vmatrix}, \begin{vmatrix} 1 & 3 \\ 3 & 1 \\ 1 & 2 \end{vmatrix} \doteq \begin{bmatrix} 1 & 3 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} \div \begin{bmatrix} 1 & 5 \\ 1 & 1 \end{bmatrix}$
 $= \begin{bmatrix} -5 & -8 \\ 7 & 11 \end{bmatrix} \div \begin{bmatrix} 1 & 5 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} -5 & 5 \\ 7 & 1 \\ -4 \\ 1 & -5 \\ 1 & 7 \end{bmatrix} = \begin{bmatrix} -8 & 5 \\ 1 & 1 \\ -4 \\ 1 & -4 \\ 1 & -4 \end{bmatrix}$
 $= \begin{bmatrix} 10 & \frac{63}{4} \\ -3 & -\frac{19}{4} \end{bmatrix}.$ And
 $A \div (B \div C) = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \div \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \div \begin{bmatrix} 1 & 4 \\ 1 & 1 \\ -4 \\ 1 & -4 \\ 1 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \div \begin{bmatrix} \frac{1}{4} & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{2} \end{bmatrix}$
 $= \begin{bmatrix} 2 & 4 \\ 1 & 0 \end{bmatrix}.$ Also,

 $(A \div B) \div C \neq A \div (B \div C)$. Consequently, the commutative and associative laws do not hold in general for division.

Example2.3. Let
$$A = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 2 & 0 \\ 0 & 2 & 2 \\ 3 & 3 & 0 \end{bmatrix}$, $C = \begin{bmatrix} -4 & -1 & 0 \\ 0 & -1 & -1 \\ -2 & -2 & 1 \end{bmatrix}$. Then
 $A \div (B + C) = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & -1 \\ 0 & -2 & 0 \end{bmatrix}$,

Journal of Scientific and Engineering Research

$$(A \div B) + (A \div C) = \begin{bmatrix} \frac{1}{90} & -\frac{1}{45} & -\frac{2}{9} \\ -\frac{17}{45} & -\frac{11}{45} & \frac{5}{9} \\ -\frac{11}{90} & \frac{11}{45} & -\frac{1}{18} \end{bmatrix}.$$

 $A \div (B + C)$ is different from $(A \div B) + (A \div C)$. Then distributive property is not hold for division either. **Theorem 2.1.** Let $A \in \mathcal{M}(\mathbb{R})$ and $|A| \neq 0$. Then $\frac{A}{A} = I$.

Proof. It is clearly from theorem 1(iii.) that

$$(A \div A) = \begin{bmatrix} \frac{|A|}{|A|} & 0 \cdots 0 & 0\\ \vdots & \ddots & \vdots\\ \frac{0}{|A|} & 0 \cdots 0 & \frac{|A|}{|A|} \end{bmatrix} = \begin{bmatrix} 1 & 0 \cdots 0 & 0\\ \vdots & \ddots & \vdots\\ 0 & 0 \cdots 0 & 1 \end{bmatrix} = I.$$

Theorem 2.2. Let $A \in \mathcal{M}(\mathbb{R})$ and $|A| \neq 0$. Then $\frac{1}{A} = \frac{adj(A)}{|A|}$. **Proof.** From theorem 1.1.(i) we have

$$(I \div A) = \begin{bmatrix} \frac{\frac{1}{A}11\frac{1}{A}12}{|A| |A|} & \frac{\frac{1}{A}1n}{|A|} \\ \frac{\frac{1}{A}21\frac{1}{A}22}{|A| |A|} & \frac{\frac{1}{A}2n}{|A|} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\frac{1}{A}n1\frac{1}{A}n2}{|A| |A|} & \frac{\frac{1}{A}nn}{|A|} \end{bmatrix} = \frac{1}{|A|} \begin{bmatrix} C_{11}(A) C_{21}(A) \dots C_{n1}(A) \\ C_{12}(A) C_{22}(A) \dots C_{n2}(A) \\ \vdots & \vdots & \vdots \\ C_{1n}(A) C_{2n}(A) \dots C_{nn}(A) \end{bmatrix}.$$

Corollary 2.1. Let $A \in \mathcal{M}(\mathbb{R})$ and $|A| \neq 0$. Then $\frac{l}{A} = A^{-1}$.

Example 2.4. Let
$$A = \begin{bmatrix} 0 & 3 & -1 \\ 1 & 5 & 3 \end{bmatrix}$$
. Then $|A| = 8$.

$$I \div A = \begin{bmatrix} \begin{vmatrix} 1 & 3 & 1 \\ 0 & 3 & -1 \\ 0 & 5 & 3 \end{vmatrix} & \begin{vmatrix} 0 & 3 & 1 \\ 1 & 3 & -1 \\ 0 & 5 & 3 \end{vmatrix} & \begin{vmatrix} 0 & 3 & 1 \\ 1 & 3 & -1 \\ 0 & 5 & 3 \end{vmatrix} & \begin{vmatrix} 0 & 3 & 1 \\ 1 & 5 & 3 \end{vmatrix} \\ \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 1 & 0 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 3 \end{vmatrix} \\ \begin{vmatrix} 1 & 0 & 1 \\ 0 & 0 & -1 \\ 1 & 1 & 3 \end{vmatrix} \\ \begin{vmatrix} 1 & 3 & 0 \\ 0 & 3 & 1 \\ 1 & 5 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 3 & 0 \\ 0 & 3 & 1 \\ 1 & 5 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 3 & 0 \\ 0 & 3 & 1 \\ 1 & 5 & 0 \end{vmatrix} \\ = \begin{bmatrix} \frac{7}{4} & -\frac{1}{2} & -\frac{3}{4} \\ -\frac{1}{8} & \frac{1}{4} & \frac{1}{8} \\ -\frac{3}{8} & -\frac{1}{4} & \frac{3}{8} \end{bmatrix} = A^{-1}$$

We give without proof

Corollary 2.2. Let $A \in \mathcal{M}(\mathbb{R})$ and $|A| \neq 0$. Then $A\left(\frac{I}{A}\right) = I$. **Theorem 2.3.** Let $A, B \in \mathcal{M}(\mathbb{R})$ and $|A| \neq 0, |B| \neq 0$. Then $(A \div B)(B \div A) = I$. **Proof.** Let $A, B \in \mathcal{M}(\mathbb{R})$ and $|A| \neq 0, |B| \neq 0$.

$$(A \div B)(B \div A) = \frac{A}{B} \frac{B}{A} = \frac{A}{B} \frac{I}{\frac{A}{B}} = I \iff \left(\frac{A}{B}\right)^{-1} = \frac{B}{A}.$$

Example 2.5. If A = [6], B = [3]. Then $A \div B = [2]$, which is analogous to the real case $\frac{6}{3} = 2$. **Theorem2.4.** Let $\forall k \in \mathbb{R} \setminus \{0\}$ and $A, B \in \mathcal{M}(\mathbb{R})$ with $|B| \neq 0$. Then,

Journal of Scientific and Engineering Research

i. $(kA \div B) = k(A \div B)$.

ii. $(A \div (kB)) = \frac{1}{k}(A \div B)$.

Proof

i. Using Lemma 1.2.(i), we have ${}^{(kA)}_{B}i_j = k {A i_j}$. Therefore $(kA \div B) = k(A \div B)$. ii. Using Lemma 1.2.(ii), we have ${}^{A}_{(kB)}i_j = k^{(n-1)} {A i_j}j_i$. Also, $(A \div (kB)) = \frac{k^{n-1}}{k^n} \left[\frac{B i_j}{|B|}\right] = \frac{1}{k} (A \div B)$. **Example2.6.** Let $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 & 1 \\ 3 & 1 & 1 \end{bmatrix}$. Then |B| = -1. Therefore $\begin{bmatrix} k & 1 & 0 \\ k & 0 & 1 \\ -k & 1 & 1 \end{bmatrix} = \frac{k^n - 1}{k} \begin{bmatrix} k & 1 & 0 \\ k & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \frac{k^n - 1}{k} \begin{bmatrix} k & 1 & 0 \\ k & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.

$$kA \div B = \begin{bmatrix} \frac{|-k & 1 & 1|}{-1} & \frac{|0 & 1 & 1|}{-1} & \frac{|k & 1 & 1|}{-1} \\ \frac{|2 & k & 0|}{2 & k & 1} & \frac{|2 & k & 0|}{2 & k & 1} \\ \frac{|3 & -k & 1|}{-1} & \frac{|3 & 0 & 1|}{-1} & \frac{|2 & -k & 0|}{2 & k & 1} \\ \frac{|2 & 1 & k|}{-1} & \frac{|2 & 1 & k|}{-1} & \frac{|2 & 1 & k|}{-1} \\ \frac{|2 & 1 & k|}{-1} & \frac{|2 & 1 & k|}{-1} & \frac{|2 & 1 & -k|}{-1} \\ \frac{|3 & k & 1|}{-1} & \frac{|3 & 1 & 0|}{-1} & \frac{|3 & 1 & k|}{-1} \\ = \begin{bmatrix} 3k & 2k & 0\\ -5k & -3k & 0\\ -5k & -3k & k \end{bmatrix} = k(A \div B) = k \begin{bmatrix} 3 & 2 & 0\\ -5 & -3 & 0\\ -5 & -3 & 1 \end{bmatrix}$$

Lemma2.1. Let $A, B, C, D \in \mathcal{M}(\mathbb{R})$ be any four matrices such that $|B| \neq 0, |D| \neq 0$. If $(A \div B) = (C \div D)$ then

$$\frac{\frac{B}{B}i_j}{D_i} = \frac{|B|}{|D|}.$$

Proof. If $(A \div B) = (C \div D)$ then

$$\begin{bmatrix} \frac{A}{B}i_j\\ |B| \end{bmatrix} = \begin{bmatrix} \frac{C}{D}i_j\\ |D| \end{bmatrix} \Leftrightarrow \frac{\frac{A}{B}i_j}{|B|} = \frac{C}{D}i_j\\ |D| \Leftrightarrow \frac{A}{D}i_j = \frac{|B|}{|D|}$$

Lemma 2.2. Let $A, 0 \in \mathcal{M}(\mathbb{R})$ such that $|A| \neq 0$ is $0 \div A = 0$. **Proof.** For i, j = 1, ..., n we get ${}_{A}^{0}i_{j} = 0 \begin{pmatrix} 0\\A}i_{j} \end{pmatrix} = 0$. Therefore $\frac{{}_{A}^{0}i_{j}}{|A|} = 0 \iff 0 \div A = 0 \in \mathcal{M}(\mathbb{R})$.

3. Divisibility

For matrices A and B such that $|B| \neq 0$, we say that B divides A, or that B is a divisor (or factor) of A, or that A is a multiple of B, if there exists an integer C such that A = BC, and we denote this by B|A. Otherwise, B does not divide A, and we denote this by B|A.

Theorem 3.1. Let $A, B, R \in \mathcal{M}(\mathbb{R})$ such that $|B| \neq 0$. Then there exist unique $P \in \mathcal{M}(\mathbb{R})$, $|P| \neq 0$ such that

i.
$$\frac{A-R}{B} = P$$
.

ii.
$$R = 0$$
 if $B|A$.

Proof. i. For $\forall A, B \in \mathcal{M}(\mathbb{R})$ and $|B| \neq 0$ then there is unique $P \in \mathcal{M}(\mathbb{R})$, $|P| \neq 0$ such that;

$$\frac{1}{|B|} \left[i_B^{A-R} \right] = P \iff \frac{A-R}{B} = P$$

It is unique.

ii. It is clearly.

4. Rational Matrices

Let us start with the definition as follows. The term rational in reference to the set $\mathbb{Q}(\mathcal{M}) = \left\{\frac{A}{B} \middle| A, B \in \mathcal{M}(\mathbb{R}), |B| \neq 0\right\}^1$ refers to the fact that a rational matrix represents a ratio of two matrices. The set of rational matrices is include by $\mathcal{M}(\mathbb{R})$. A rational matrix is a matrix like $\frac{A}{B}$, where A, B are matrices. If B = 0 then this division is not defined. $\frac{0}{A} = 0 \in \mathbb{Q}(\mathcal{M})$ and $\frac{A}{A} = I \in \mathbb{Q}(\mathcal{M})$. Then $\mathbb{Q}(\mathcal{M}) \neq \emptyset$. Lemma 4.1. Let $A, B, C \in \mathcal{M}(\mathbb{R}), |C| \neq 0$. Then

i. $\begin{bmatrix} A\\ Bij \end{bmatrix} = \frac{1}{|C|} \begin{bmatrix} C\\ Bij \end{bmatrix} \begin{bmatrix} A\\ Cij \end{bmatrix}.$

ii. $\begin{bmatrix} A \\ B \\ i_j \end{bmatrix} = A \begin{bmatrix} I \\ B \\ i_j \end{bmatrix}$.

We give the Lemma not proof from [3].

The set of rational matrices will show with

$$\mathbb{Q}(\mathcal{M}) = \left\{ \frac{A}{B} \middle| A, B \in \mathcal{M}(\mathbb{R}), |B| \neq 0 \right\}.$$

We easily get

Lemma 4.2. Let $\frac{A}{B}, \frac{C}{B} \in \mathbb{Q}(\mathcal{M})$. Then $\frac{A}{B} + \frac{C}{B} = \frac{A+C}{B}$. Proof. $\frac{A}{B} + \frac{C}{B} = \frac{1}{|B|} \begin{bmatrix} A \\ B \\ i \end{bmatrix} + \frac{1}{|B|} \begin{bmatrix} C \\ B \\ i \end{bmatrix} = \frac{1}{|B|} (\begin{bmatrix} A \\ B \\ i \end{bmatrix} + \begin{bmatrix} C \\ B \\ i \end{bmatrix}) = \frac{1}{|B|} (\begin{bmatrix} A \\ B \\ i \end{bmatrix}) = \frac{1}{|B|} (\begin{bmatrix} A \\ B \\ i \end{bmatrix}) = \begin{bmatrix} (A+C) \\ B \\ i \end{bmatrix} = \frac{A+C}{B}$. Theorem 4. 1. Let $\frac{A}{B}, \frac{C}{D} \in \mathbb{Q}(\mathcal{M})$. Then

$$\begin{pmatrix} \underline{A} \\ \underline{B} \end{pmatrix} \div \begin{pmatrix} \underline{C} \\ \underline{D} \end{pmatrix} = \frac{|D|}{|B||_D^C i_j|} \begin{bmatrix} \begin{pmatrix} \underline{A} \\ \underline{B} \\ \begin{pmatrix} \underline{D} \\ D \end{pmatrix} i_j \end{bmatrix}.$$

Proof. Let $\frac{A}{B}, \frac{C}{D} \in \mathbb{Q}(\mathcal{M})$.

$$\begin{pmatrix} A\\B \end{pmatrix} \div \begin{pmatrix} C\\D \end{pmatrix} = \frac{|D|}{|B|} \frac{[A_{ij}]}{[D_{ij}]} = \frac{|D|}{|B|[D_{ij}]} \left| \begin{pmatrix} A\\B_{ij} \end{pmatrix} (A_{ij}) \right|_{D} = \frac{|D|}{|B|[D_{ij}]} \left| \begin{pmatrix} A\\B_{ij} \end{pmatrix} (A_{ij}) \right|_{D} = \frac{|D|}{|B|[D_{ij}]} \left| A_{ij} \right|_{D} = \frac{|D|}{|B|[D_{ij}]} \left| A_{ij} \right|_{D} = \frac{|D|}{|D|} \left| A_{ij} \right|_{D} = \frac{|D$$

Corollary 4.1. Let $\frac{A}{B}, \frac{C}{D} \in \mathbb{Q}(\mathcal{M})$. Then $\left(\frac{A}{B}\right) \div \left(\frac{C}{D}\right) = \frac{|D|}{|B|} \begin{bmatrix} D\\C i_j \end{bmatrix} \begin{bmatrix} A\\B i_j \end{bmatrix}$.

Theorem 4. 2. Let $\frac{A}{B}, \frac{C}{D} \in \mathbb{Q}(\mathcal{M}), |C| \neq 0$. Then $\left(\frac{A}{B}\right) \div \left(\frac{C}{D}\right) = \left(\frac{D}{C}\right) \left(\frac{A}{B}\right)$. **Proof.** Let $\frac{A}{B}, \frac{C}{D} \in \mathbb{Q}(\mathcal{M}), |C| \neq 0$. $\frac{A}{B} = \left[\frac{C}{D}\right]^{-1} \left[\frac{A}{B}\right] = \left[\frac{D}{C}\right] \left[\frac{A}{B}\right]$. **Example 4.1.** Let $A = \begin{bmatrix} 1 & 2\\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 3 & 2\\ 1 & 1 \end{bmatrix}, C = \begin{bmatrix} 2 & 1\\ 1 & 1 \end{bmatrix}, D = \begin{bmatrix} 5 & 7\\ 2 & 3 \end{bmatrix}$ $\frac{A}{B} = \begin{bmatrix} -1 & 0\\ 2 & 1 \end{bmatrix}, \frac{C}{D} = \begin{bmatrix} -1 & -4\\ 1 & 3 \end{bmatrix} \Rightarrow \frac{A}{D} = \begin{bmatrix} 5 & 4\\ -1 & -1 \end{bmatrix},$ $\frac{C}{D} = \begin{bmatrix} -1 & -4\\ 1 & 3 \end{bmatrix} \Rightarrow \frac{D}{C} = \begin{bmatrix} 3 & 4\\ -1 & -1 \end{bmatrix},$ $\left[\frac{D}{C}\right] \left[\frac{A}{B}\right] = \begin{bmatrix} 3 & 4\\ -1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0\\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 4\\ -1 & -1 \end{bmatrix} = \frac{A}{D}$. Lemma 4.3. Let $\frac{A}{B} \in \mathbb{Q}(\mathcal{M}), C \in \mathcal{M}(\mathbb{R})$. Then

a. $\left(\frac{A}{B}\right)C = \frac{AC}{B}$. b. $\left(\frac{A}{B}\right)A = \frac{A^2}{B}$.

¹Sequare matrix of reel numbers is denoted with $\mathcal{M}(\mathbb{R})$ or \mathcal{M} .

c. If
$$|C| \neq 0$$
, also $\frac{A}{B} = \left[\frac{C}{B}\right] \cdot \left[\frac{A}{C}\right]$.

Proof. Let
$$A = [a_{ij}], B = [b_{ij}]$$
 and $C = [c_{ij}]$ then
i. $\frac{AC}{B} = \begin{bmatrix} \sum_{s=1}^{n} (\sum_{k=1}^{n} a_{sk} c_{k1}) C_{s1}(B) & \cdots & \sum_{s=1}^{n} (\sum_{k=1}^{n} a_{sk} a_{kn}) C_{s1}(B) \\ \vdots & \vdots & \vdots \\ \sum_{s=1}^{n} (\sum_{k=1}^{n} a_{sk} c_{k1}) C_{sn}(B) & \cdots & \sum_{s=1}^{n} (\sum_{k=1}^{n} a_{sk} a_{k1}) C_{sn}(B) \end{bmatrix}$

$$= \begin{bmatrix} \sum_{k=1}^{n} a_{sk} C_{k1}(B) & \cdots & \sum_{k=1}^{n} a_{sk} C_{k1}(B) \\ \vdots & \vdots & \vdots \\ \sum_{k=1}^{n} a_{sk} C_{k1}(B) & \cdots & \sum_{k=1}^{n} a_{sk} C_{k1}(B) \end{bmatrix} \begin{bmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots \\ c_{n1} & \cdots & c_{nn} \end{bmatrix} = \left(\frac{A}{B}\right) C .$$
ii. If $C = A$ from i).

$$\begin{pmatrix} \frac{A}{B} A = \left[\frac{A_{ij}}{|B|}\right] A = \frac{1}{|B|} \left[\frac{A_{ij}}{B}\right] A = \frac{1}{|B|} \left[\frac{A_{ij}}{B}\right] = \frac{A^{2}}{B} .$$
iii. If $|C| \neq 0$ from lemma 1.3.

$$\frac{A}{B} = \frac{1}{|B|} \left[\frac{A}{B}i_{j}\right] = \frac{1}{|B|} \frac{1}{|C|} \left[\frac{C}{B}i_{j}\right] \left[\frac{A}{C}i_{j}\right] = \left[\frac{C}{B}\right] . \left[\frac{A}{C}\right] .$$

Note 4.1. In general, $A\left(\frac{A}{B}\right) \neq \frac{A^2}{B}$. Theorem 4. 3. Let $\frac{A}{B}, \frac{C}{D}, \frac{E}{F} \in \mathbb{Q}(\mathcal{M})$. Then i. $\frac{A}{B} + \frac{C}{D} = \frac{C}{D} + \frac{A}{B}$. ii. $\frac{A}{B} + \left(\frac{C}{D} + \frac{E}{F}\right) = \left(\frac{A}{B} + \frac{C}{D}\right) + \frac{E}{F}.$ iii. $\frac{A}{B} + 0 = \frac{A}{B}, 0 + \frac{A}{B} = \frac{A}{B}.$ iv. $\left(\frac{A}{B}\right) \left(\frac{C}{B}\right)$ is rational matrix $\left(\frac{A}{B}\right)\left(\frac{C}{D}\right)$ is rational matrix. We give the lemma without proof.

Lemma 4.4. Let $\frac{A}{B}$, $\frac{C}{D} \in \mathbb{Q}(\mathcal{M})$. Then $\left(\frac{A}{B}\right)\left(\frac{C}{D}\right) = \frac{A\left(\frac{C}{D}\right)}{B}$. **Lemma 4.5.** Let $\frac{A}{B} \in \mathbb{Q}(\mathcal{M})$ and $n \in \mathbb{Z}^+$. Then

$$\left(\frac{A}{B}\right)^n = \frac{1}{\left|B\right|^n} \left[\begin{smallmatrix}A\\B\\i\end{smallmatrix}_B^n i_j\end{smallmatrix}\right]^n.$$

Theorem 4.4. Let $\frac{A}{B}$, $\frac{C}{D} \in \mathbb{Q}(\mathcal{M})$ and $n, m \in \mathbb{Z}^+$. Then

$$\begin{pmatrix} \frac{A}{B} \end{pmatrix}^n = \underbrace{\begin{pmatrix} \frac{A}{B} \end{pmatrix} \dots \begin{pmatrix} \frac{A}{B} \\ \frac{1}{B} \end{pmatrix}}_{n-\text{times}} .$$
i.
ii.
$$\begin{pmatrix} \frac{A}{B} \end{pmatrix}^{-1} = \frac{B}{A} = \frac{I}{\frac{A}{B}} .$$

II.
$$\left(\frac{B}{B}\right)$$

iii.
$$\left(\frac{A}{B}\right)^{-n} = \left(\left(\frac{A}{B}\right)^{-1}\right)^n = \left(\frac{B}{A}\right)^n$$
.
iv. $\left(\frac{A}{B}\right)^n \left(\frac{A}{B}\right)^m = \left(\frac{A}{B}\right)^{n+m}$.

V.
$$\left(\frac{A}{B}\right)^{n} \left(\frac{B}{B}\right)^{m} = \left(\frac{A}{B}\right)^{nm}$$

Proof. i. It is clearly from Lemma 2 that

$$\left(\frac{A}{B}\right)^{n} = \underbrace{\frac{1}{|B|} \begin{bmatrix} A & i_{j} \end{bmatrix} \dots \frac{1}{|B|} \begin{bmatrix} A & i_{j} \end{bmatrix}}_{n-\text{times}} = \underbrace{\left(\frac{A}{B}\right) \dots \left(\frac{A}{B}\right)}_{n-\text{times}}$$

ii. This proof is the paper "Matrix Division".

iii. It is seen clearly.

Example 4.2. Let
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $n = 2$. Then

$$A = \begin{bmatrix} \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} \Rightarrow \left(\frac{A}{B}\right)^2 = \begin{bmatrix} 3 & 2 \\ -2 & -1 \end{bmatrix}$$
 and $\frac{A^2}{B^2} = \begin{bmatrix} 5 & 3 \\ -7 & -4 \end{bmatrix}$ then
 $\left(\frac{A}{B}\right)^2 \neq \frac{A^2}{B^2}$.

Note 4.2. In general for rational matrices,

$$\left(\frac{A}{B}\right)^n \neq \frac{A^n}{B^n}.$$

5. Results and Discussions

The matrix division supports insistence of the way and carries to multiple systems. It increases the ability of thinking creatively. More than one different result is achieved for the same system.

References

- [1]. John B. (1995). Frateigh and Raymond A. Beauregerd., Linear Algebra, Addiso-Wesley,
- [2]. Keleş, H. (2015). Lineer Cebire Giriş-I-. 2nd adn. Trabzon, Turkey: Akademi Yayinevi, pp.154-169.
- [3]. Keles, H. (2010). The Rational Matrices, New Trends in Nanotechnology and Nonlinear Dynamical systems, Ankara. Turkey, paper 58.
- [4]. Keleş, H, (2017). Different Approaches on the Matrix Division and Generalization of Cramer's Rule. India. 4(3):105-108.
- [5]. Keleş, H, (2016). On The Linear Transformation of Division Matrices, Journal of Scientific and Engineering Research, 3(5), 101-104.
- [6]. Vasantha Kandasamy W.B., (2003). Linear Algebra and Smarandache Linear Algebra, American Research Press.