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Abstract This paper introduces a generalized model of the transmuted Gompertz-Makeham distributions from 

which some known extensions of the Gompertz-Makeham distribution can be derived. The proposed 

generalized model is obtained by adding two extra parameters to the Gompertz-Makeham distribution so that it 

becomes more flexible and adequately able to describe the intricacy of the data. We will study many of the 

statistical properties of the generalized model, especially its moments, moment-generating function, quantile 

function, entropy, order statistics, moments of order statistics, and weighted probability moments. 
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1. Introduction 

The Gompertz-Makeham (GM) distribution was introduced by Makeham [19] in 1860. It is an extended model 

of the Gompertz probability distribution that was introduced by Gompertz [10] in 1825. The GM distribution is 

a continuous probability distribution that has been widely used in survival analysis, modeling human mortality, 

constructing actuarial tables and growth models. It has been recently used in many fields of sciences including 

actuaries, biology, demography, gerontology, and computer science. 

A comprehensive review of the history and theory of the GM probability distribution can be found in Marshall 

and Olkin [20]. Golubev [9] emphasizes the practical importance of this probability distribution. Detailed 

information about the GM distribution, its mathematical and statistical properties, and its applications can be 

found in Johnson et al. [15] and Dey et al. [6]. 

A random variable X  is said to have a GM distribution with positive parameters  ,  and   if its cumulative 

distribution function (cdf) is given by 

    0.>,1)/(exp1=),,;( xxexF x

GM     (1.1) 

The corresponding probability density function (pdf) is given as 

      0.>,1)/(exp=),,;( xxeexf xx

GM     (1.2) 

In statistics, it is always desired to extend classical distributions and generate new flexible distributions in order 

to adequately fit real lifetime date. The literature is rich of studies that aim at proposing methods to generate and 

extend new families of univariate continuous probability models (see, for example, Lee et al. [18]). Among 

those methods that have recently attracted statisticians and gained their attention is transmutation. 

Transmuted distributions were introduced by Shaw and Buckley [24] in 2009 to extend known non-Gaussian 

distributions by adding extra parameters to their distribution functions. Transmuted distributions provide 

statisticians with tools to control the skewness and kurtosis of the distribution in order to fit their real data. 

Given a baseline probability distribution with cdf )(xG  and pdf )(xg , a random variable X  is said to have a 

transmutation map of quadratic rank if its cdf )(xF  and pdf )(xf  have the following simple forms 
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 ),()()(1=)( 2 xGxGxF    

   1.||,)(21)(=)(   xGxgxf  

Recently, many authors have proposed methods to extend the GM model. Abdul-Moniem and Seham [1] 

introduced the transmuted Gompertz distribution and studied its statistical properties. khan et al. [16] introduced 

a new three parameter aging distribution which is a generalization of the gompertz distribution and studied its 

properties. El-Gohary et al. [8] proposed a generalized Gompertz distribution with cdf and pdf given 

respectively by 
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where α, η>0 are the scale parameters and  >0 is the shape parameter. 

In 2017, Khan et al. [17] introduced the four parameter transmuted generalized Gompertz distribution with a cdf 

and pdf given respectively by 
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where 10,>,,  , and 0>x . 

El-Bar [7] introduced an extended Gompertz-Makeham model and studied its properties. It is in fact a 

transmuted Gompertz-Makeham (TGM) distribution that has a cdf 
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 where 0>0,>0,>  , and 1||  . 

The corresponding pdf is given by 
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In this paper, we would like to generalize the TGM distribution by adding two more parameters to its 

distribution functions. The cdf, for 0>x , of the proposed model is 

 ,11=);(
1)/(1)/(
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where   is the vector ),,,,,(  , 0>0,>0,>0,>1,   , and 1||  . 

The corresponding pdf, for 0>x , is 
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2. Generalized Transmuted GM Distribution 

We introduce the generalized transmuted Gompertz-Makeham (GTGM) distribution. The derivation of the 

GTGM distribution is based on a higher rank transmuted (HRT-G) family of distributions introduced in Riffi 

[23]. The cdf of the HRT-G distribution for some baseline distribution with cdf )(xG  is given by 

   ,))((1))((11))((11=)( 11

1

2=

1
1
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  (2.1) 

where 11  , 01 j , and 10 1   , jjj   11  for 1,1,= kj  . 

When  =,=2,= 21k , and )(xG  is the cdf of the Gompertz-Makeham distribution, the cdf of the 

resulting distribution is given by 

 .11=);(
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The pdf of the GTGM distribution is given by 
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The hazard rate function of X  is given, for 0>x , as 
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Figure  1: Plot of the GTGM pdf for a variety of values of its parameters 
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The GTGM model generalizes an extended Gompertz-Makeham (TGM) distribution studied by El-Bar [7]. In 

fact, we derive the TGM distribution from the GTGM distribution by letting 1==  . 

The expression "generalized" in the title of this paper comes from the fact that the cdf of the GTGM distribution 

can be written as 
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  (2.4) 

where )(xG  is the cdf of the GM distribution. 

Note that (2.4) can be justified by using the general binomial theorem. 

Similarly, the pdf of the GTGM distribution can be written as 

 .)()(11)()(=);( 11
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  (2.5) 

For example, if 1==  , then 

 
32 )()(3)()2(1=)( xGxGxGxF    (2.6) 

 

is the cdf of a special case of the cubic rank transmuted GM distribution introduced by Granzotto et al. [11] 

(when  21=1   and  1=2  in (3) of [11]). 

In the sequel, we will say that a random variable X  has a GTGM distribution with parameters  ,,,, , 

and  , abbreviated as )(GTGMX : , if its cdf is given by (2.2), where   is the vector ),,,,,(  , 

0>0,>0,>0,>1,   , and 1||  . We will let )(xFX  and )(xfX  denote the cdf and the pdf 

of )(GTGMX : , respectively. 

  

 
Figure  2: Plot of the GTGM pdf and cdf for a variety of values of its parameters  

3. Sub-models and Possible Extension 

1.  If we let 1==   in (2.2), then we get the quadratic transmuted GM distribution described in (1.3).  

2.  If we let 1==   and 0=  in (2.2), then we get the standard GM distribution with parameters  , , 

and  .  

3.  If we let 1==   and 0==   in (2.2), then we get the exponential distribution with parameter  .  
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4.  If we let 1==   and 0=  in (2.2), then we get the cubic transmuted Gompertz distribution described 

in (2.6).  

It is possible to extend the GTGM model by exponentiated the GM distribution that we use as a baseline; i.e., 

we replace )(xG  by 
axG )(  in (2.4), where 0>a . That is, the cdf of the extended GTGM model will be 

     .)(11)(11=)(


 aa

E xGxGxF   (3.1) 

Many known models will be special sub-models of the extended GTGM model. 

For example, with 1==  , we get the cubic transmuted GM model proposed by Aslam et al. [3] with 

 21=1   and  1=2 , namely 

 

 .)()(1)()()(=)( 3
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2

121

aaa xGxGxGxF    (3.2) 

 

The Kumaraswamy GM distribution introduced by Chukwu and Ogunde [4] can also be derived from the 

extended GTGM model. In fact, if we let 1=1,= b , and 1=  in (2.4), the cdf of the generated 

distribution will be 

    1
)(1)(11=),,,,;(




baa xGxGbaxF   

   .111=)(11= ))(1/(
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 (3.3) 

It is also remarkable to mention that the generalized transmuted Gompertz-Makeham model introduced by 

Alizadeh et al. [2] is a special case of extended model with cdf given by (3.1). To see this, let 1==   in 

(3.1). Then, the cdf of the generated model will be 

    1.||0,>,)(1)(11=)(   axGxGxF aa
 

4. GTGM as Mixture of Distributions 

The GTGM distribution is a mixture of two GM distributions with weights 1  and   as in the described in 

the following equation. 

 ),;();()(1=);( 21  xfxfxfX   

where the functions );(1 xf  and );(2 xf  are given by 

     xeexf xx    1)/(exp=);(1  (4.1) 

     .)(1))(/(exp)(=);(2 xeexf xx     (4.2) 

Here, )(1 xf  is the pdf of a GM random variable with parameters  , , and  . Similarly, )(2 xf  is the pdf 

of a GM random variable with parameters  )(,  , and  )(  . 

5. Moment-Generating Function 

The moment-generating function (mgf) of the GTGM distribution can be calculated using the transformation of 

variables technique. The result will be given in terms of the generalized integro-exponential function which is 

defined by 

 0.>,)log(
1)(

1
=)(

1
)( zdueuu

r
zE zusrr

s





 (5.1) 

As a special case,  zE s

0

)(  is the exponential integral given as  
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dueuzE zus
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  (5.2) 
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Below, we are going to use the following identity from [21]. 

 0.>),()(1)(=)( 1)()(
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   (5.3) 

Theorem 5.1  Let )(GTGMX : . Then the moment-generating function of X  is given by 

 



















































  




























0

1

0)(1=)(
ttX EEetM  

 .
)()(

)( 0

1
)(

0

)(

)(






















 







 




















 
































tt
EEe  (5.4) 

  

Proof. Let 
XeY = . Then the pdf of Y  is 
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 where   1=,=,= 121 , and  =2 . 

Now, the mgf of X  is given by 
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Then, in terms of the generalized integro-exponential function, )()( zE r

s , the mgf of X  can be written as 
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Corollary 5.1 The r th partial derivative of )(tM X  with respect to t  is 
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 Proof. To find the r th partial derivative of )(tM X  with respect to t , we differentiate under the integral sine 

of the right-hand side of (5.6) to get 
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In terms of the generalized integro-exponential function, 
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and, as before,   1=,=,= 121 , and  =2 .  

Remark 5.1 By letting 0=t  in (5.10) and using the identity 5.3, we get the r th moment of X  as in the 

following equation. 
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6. Moments and Quantile Function 

6.1. Moments 

Theorem 6.1 Let )(GTGMX : . Then, the r th moment of the X  is given by 
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 Proof. The r th moment of X  is given by  

    ,)(log= YEXE
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where 
XeY =  has the pdf given by (5.5). 

By the same technique we used to calculate the mgf of X , we see that 
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Using the generalized integro-exponential function, we write 
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 where ,1=),(=,= 121    and  =2 . 

Hence, (6.1) follows.  

6.2. Quantile Function 

Theorem 6.2. Let )(GTGMX :  with  = , for simplicity. Then the quantile function of X  is given by 

   ,),()/()),((log= /11
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where )(zp  is the principal solution for w  in 
wwez = .  

Proof. Assume that  = . To compute the quantile function qx  of X , we solve the following equation for 
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Now, let the function ),( qB  be defined by 
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Then, the solution of (6.7) reduces as required to 
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where )(zp  is the principal solution for w  in 
wwez =  (or the Lambert W-function).  

7. Probability Weighted Moments 

Given a random variable X  with a cumulative distribution function G , the probability weighted moments are 

defined to be  

  ,))((1)(=),,( srp xGxGXEsrpM   

where rp, , and s  are all real numbers (see Hosking [14] and Greenwood et al. [12]). 

A special case is when 1=p , and 0=s , namely 

  r

r xXGErM )(=)(1,0,=  
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The L-moments are defined as 

  1
*)(= rr PxXGE  

with 
*

1rP  denoting the r th shifted Legendre ploynomials. 

 1).(2:=),(* xPxnP n  

8. Entropy 

8.1. Rényi Entropy 

The entropy of a random variable X  with pdf )(xf  is a measure of variation of the uncertainty. A large value 

of entropy indicates the greater uncertainty in the data. The Rényi entropy (Rényi [22]) is defined as 
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Case 1: 1=  
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Using the general binomial expansion 
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we see that 
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The above integral reduces to 
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where )(zEn  is the exponential integral function given by (5.2). 

Therefore, the Rényi entropy of X  is 
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Case 2: 0=  

This case is similar to Case 2. The Rényi entropy of X  is 

 .log)(log)(log
1

1
=)(

10= 













































 


































k

kk

k

R E
k

I  

Case 3: 0,1=  

 As in the above two cases, we can write dxxf )(
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By using (8.1) and (5.2), the Rényi entropy can be written as 
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 (8.4) 

8.2. q -Entropy 

The q -entropy was introduced by Havrda and Charvat [13]. It is the one parameter generalization of the 

Shannon entropy. Ullah [25]defined the q -entropy as 

  ,)(1
1

1
=)(

0
dxxf

q
qI q

H 





 

where 0>q  and 1=q . 

To compute )(qIH , we consider the following three cases.  

Case 1: 1=  

By the same techniques we used in computing the Rényi entropy, we in this case that 
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Case 2: 0=  

 In this case, the q -entropy is just simply, 
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Case 3: 0,1=  

In this case, the q -entropy is given by 
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9. Order Statistics 

let nXX ,,1   be a random sample of size n  from the GTGM distribution with parameters 0>0,>  , 

and 0> , and let nnnn XXX ::2:1 ,,,   be the corresponding order statistics obtained by arranging 

niX i ,1,=,  , in non-decreasing order of magnitude. The i th element of this sequence, niX : , is called the i

th order statistic. 

From DasGupta [5], the pdf of the i th order statistics is obtain from the equation 
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Below, we will compute the r th moment of the i th order statistics in three cases according to the value of  . 

 

Theorem 9.1  Let niX :  be the i th order statistic from )(GTGMX :  with 0= . Then the r th moment of 
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Proof. When 0= , the pdf of the i th order statistic is 
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Hence, the r th moment of niX :  is 
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Theorem 9.2 Let niX :  be the i th order statistic from )(GTGMX :  with 1= . Then the r th moment of 

niX :  is given by  
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 Proof. When 1= , the pdf of niX :  becomes 
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Then, we use the same technique as above in Theorem 9.1.  

 

Theorem 9.3 Let niX :  be the i th order statistic from )(GTGMX :  such that 0=  and 1= . Then the 

r th moment of niX :  is given by  
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Proof. By using the transformation ni
X

eY :=


, we see that the pdf of Y  at 1>y  can be written as 
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Now, we use the following binomial expansions 
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where  )()(=0

, khjinb ni  . 

Using the same techniques as above in Theorem 9.3, we see that 
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