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Abstract A signal which possesses bandwidth that exceeds that of available receivers can be reconstructed from 

the outputs of spectrally overlapped receivers. Adaptive filters were used to compensate for varying amounts of 

overlap, relative delay between receiver outputs, and a small amount of frequency shift. The preferred 

architecture contains adaptive multiple transversal filters, each of which incorporates an adaptive lattice filter to 

pre-whiten the data, thereby enabling faster convergence.  Testing was conducted in the cases that the 

modulations were QPSK and 16-QAM and when two overlapping receivers were employed. Results indicate 

that, for a wide range of overlaps and even when the relative delay between receiver outputs is several symbols, 

the equalizer structure will converge in roughly the same time as a conventional equalizer applied to an 

unfiltered signal. 
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1. Introduction 

Signals with bandwidths in excess of available receiver bandwidths can still be demodulated and information 

extracted, if multiple receivers are available which can capture overlapping frequency bands which cover the 

entire signal spectrum. Indeed signal reconstruction methods which make use of multiple channel outputs are 

well known [1]. The outputs of quadrature mirror filters, for example, may be up-sampled, heterodyned, and 

summed to reconstruct the signal. In this paper, a robust signal reconstruction method is described which 

consists of a variant of the constant modulus algorithm (CMA) [2] applied to the different receiver outputs, 

which can be delayed with respect to one another and which can be overlapped in frequency  by variable 

amounts (unlike quadrature mirror filters, which are carefully overlapped).  

Simulation results are provided in the case of quaternary-phase shift keyed (QPSK) and quadrature amplitude 

modulated (QAM) signals with a 4x4 signal constellation (16-QAM), two receivers, and two adaptive filters.  

The  fundamentals  of  signal  combining  and  modelling  are  provided  in  Section  2.  Section  3  sheds  light  

on  the  implementation  and  evaluation  of  the  two   adaptive filtering (signal  processing)  architectures. In  

Section  4,  the  results  obtained  and  the  discussions  that  follow  are  clearly  presented. The tap update 

equations are derived in section 5. The concluding remarks are given in Section 6. 

 

2. Signal Combining and Modelling 

If there were no delay between receiver outputs, and if the overlap between receivers is such that the 

“combined” (i.e. summed) transfer function is relatively flat across the signal’s frequency band, then the 

obvious solution to signal reconstruction is simply to add the appropriately heterodyned receiver outputs and 

apply an adaptive equalizer. This technique was implemented and tested when the number of receivers was two. 
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It works well if there is no delay or frequency offset between signals, since the CMA can compensate well for a 

non- flat amplitude response of the effective channel filter resulting from non-ideal overlap of the receivers’ 

frequencies. However, if the relative delay between receiver outputs exceeds the duration of a symbol then the 

technique fails completely. The technique also fails if there is a frequency offset, as would occur if the signal 

were shifted in frequency by different amounts at the two receivers. 

To enable compensation for relative delays and, in general, to provide additional robustness to the receiving 

system, a multiple equalizer system was developed. If delays are indeed a potential problem, this robustness can 

ease system requirements which are designed to minimize such delays. 

 Here and henceforth, the signal model derives from the reasonable assumption that the signal was captured by 

two receivers, although the results for two receivers are generalized to an arbitrary number of overlapping 

receivers. Neither receiver had sufficient bandwidth to collect the entire signal, although the bandwidth of each 

was slightly greater than one-half of the signal bandwidth. The two receivers were tuned so that each receiver 

collected somewhat in excess of one-half the frequency band occupied by the signal. 

 The amount of overlap between the receivers has been observed to vary. The delay  between receiver outputs 

varied between 0 and 3 symbols. The receiver outputs were heterodyned by (complex) sinusoids differing in 

frequency by the difference in the center frequencies of the receivers. Frequency offsets varied between 0.0 % 

and about 0.4 percent of the symbol rate. The signal-circuitry model is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Signal-Circuitry Model 

The heterodynes and filters in Figure 1 represent the receivers, while f1 and f2 are the frequencies to which they 

are tuned. They are separated (= f2 – f1) so that the two receivers cover the entire RF band containing the signal. 

The delay  is included to indicate that the receiver outputs could be delayed with respect to one another. In the 

simulations, the delay could be as great as the duration of several symbols. 
 

3. Signal Processing Architectures 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Model of Processing System I (Here,  two  weight  coefficients  are  simultaneously  being  varied in  

order  to  eliminate  the  CMA  error in  the output  signal) 

H1
(

f) 

H2
(

f) 

A/

D 

A/

D 

z- 

x(t

) 

s1 (k) 

s2 (k) 

s1(

t) 

S2(t-

) 

-2f1t + 

1 

-2f2t + 

2 

e 

e 

W1 

W2 

error 

S2(k) 

S1(k) 

-2(fc-f1)kΔt 
e 

-2(fc-f2)kΔt e 



Azeez WA & Ibitola GA                          Journal of Scientific and Engineering Research, 2018, 5(8):158-164 

 

Journal of Scientific and Engineering Research 

160 

 

Two signal processing architectures for processing the two outputs of the system in Figure 1 were implemented 

and evaluated. The first architecture is shown in Figure 2. Each input signal was heterodyned by a complex 

sinusoid at frequencies which differed by the difference in center frequencies (= fc1 – fc2) of the receivers. The 

outputs of adaptive transversal equalizers were added, with the feedback taps of each equalizer adjusted to 

minimize the CMA-based error in the output signal. 

The heterodynes shown in Figure 2 are intended to overlap the spectra of the receiver outputs by the appropriate 

amounts, and to center the spectrum of the combined signal at the frequency 0 Hz. The frequency fc is an 

“intermediate frequency” whose purpose is to place the signal at the appropriate frequency for an existing 

receiver/demodulator. Generalization of the two-equalizer system of Figure 2 to an N-equalizer system capable 

of processing inputs from N overlapped channels is straightforward. 

The system depicted in Figure 2 worked as expected, with the convergence time comparable to that for the 

conventional CMA algorithm. Most of the experiments were conducted using thirteen taps in each equalizer. To 

speed up the convergence time, an attempt was made to replace the two transversal equalizers with a 

combination of a lattice filter and transversal equalizer, like that shown in Ref. [3]. The equalizers would  not  

converge  in  this  case. The reason was that the taps in the two equalizers were updated jointly, as they would 

be when a single signal were being processed, but unlike the usual situation when lattice filters bare employed, 

not all of the signals propagating through the two lattices were orthogonal. 

Specifically, the signals in one lattice filter were not orthogonal to those of the other lattice filter. More 

precisely, System I can be represented as a linear system, 

y =W
T
 x,  

where W
T
 = (W1

T
 , W2

T
) and x

T
= (S1

T
 , S2

T
). The vector x represents the vector output of the lattice filters. The 

autocorrelation function is therefore given by: 

 

 

 

 
 

While the two lattice filters applied at the inputs to the filters, W1 and W2, render RS1S1 and RS2S2 diagonal, the 

cross correlation matrices, RS1S2 and RS2S1, are not necessarily zero. 

To remedy the difficulty encountered when attempting to apply lattice filters to the system in Figure 2, a second 

architecture for processing the outputs of multiple receivers was developed. It is illustrated in Figure 3. By 

adding the first signal to the filtered version of the second signal prior to applying filter W1, lattice filters can be 

applied at the inputs to both filters, W1 and W2. By so doing ensures that all of the outputs that multiply the 

equalizer coefficients are orthogonal, and the equalizer converges normally. The disadvantage of this approach 

is that it is more complex, both in hardware implementation and in the tap update equations, which are given in 

Section 5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Processing System II block diagram (Here,  two  weight  coefficients  are  separately, successively  

controlled  in  order  to  eliminate  any  error  in  the  output  signal) 
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The system shown in Figure 3 can be generalized to the one in Figure 4, which can be applied  to  outputs  from  

N  overlapping  channels,  for  any  finite  arbitrary   N. While no experiments were conducted for N  2, and 

while the tap update equations become more complicated as N increases, the previous argument about 

orthogonalization of filter outputs applies also to the system of Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:Improved, General  Block Diagram of Processing System II (In  which,  three  weight  coefficients  are  

separately,  successively  varied  to  eliminate any  CMA  error  in  the  output  signal). 

 

4. Results and Discussions 

Very little frequency offset between S1(t) and S2(t) can be compensated by the adaptive filters in either system. 

Such offsets manifest themselves as oscillations in the mean square error of the CMA, with the frequency of the 

oscillations varying in proportion to the magnitude of the offset. These oscillations are depicted in Figure 5 for a 

frequency offset of 0.1 percent of the symbol rate. To eliminate these frequency offsets, the value of the 

heterodyne frequency fc can be adjusted for one of the receiver outputs to eliminate the oscillations, although 

this was not done in the experiments. Such an adjustment offset is not too great. In the experiments, the 

equalizer could compensate for a frequency offset of about 0.01 percent of the symbol rate. 
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Figure 5: Oscillations in mean squared error due to frequency offset 

Figure 6 shows an overlay of two overlapping spectra that represent two receiver outputs. The signal that was 

filtered to obtain these spectra is a 16-QAM. The SNR is 30dB. Figure 7 shows the constellation after the CMA 

had converged and when the delay between inputs to the system in Figure 4 was one symbol. Both systems 

perform wellwhen the delay  is greater than the duration of a symbol. In system II, the equalizers had 

converged by approximately 2400 symbols, which is roughly the convergence for the conventional (lattice- 
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based) orthogonal CMA algorithm [3-4]. In the tests, the convergence time was approximately the same for 

SNR = 30dB and SNR = 20dB. 
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Figure 6: Overlapped spectra covering signal band 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Constellation after CMA convergence delay between signalinputs s1 and s2 is one symbol 

 

5. Tap Update Equations 

The steepest (gradient) descent algorithm was used to adapt the filter weights for the first two-channel system 

(Figure 2). The tap update equations are very similar to those in the case of one signal and one equalizer. The 

combined output {y(k)} of the adaptive filters is given by:  

 𝑦 𝑘 =  𝑤1𝑖
𝑛
𝑖=−𝑛 𝑠1  (𝑘 − 𝑖)+ 𝑤  𝑠   𝑘 − 𝑖 ,𝑚

𝑖=−𝑚                                            (I) 

Where:W1 = {W1i}, W2 = {W2i} represent the complex tap weights of the two filters. The constant Modulus 

error function at time k is: 

E
2
(k) = (⃒y(k)⃒2

 – 1)
2
,                                                                                       (II) 

Assuming reasonably that the signals S1(t) and S2(t) have been appropriately normalized. 

In the gradient descent method, the tap weights W1 = {W1i}, W2 = {W2i} are updated at time k + 1 according to 

the formulas: 

W1(K+1) = W1(K) -1w1(k),                                                                          (III) 

and 

W2(K+1) = W2(k) - 2W2(k).                                                                             (IV) 

Where: W1 (k) and W2 (k) are the gradients of E
2
 with respect to W1 and W2, respectively, at time k, and1, 2 

are the adaptation gains. 

The gradients [2] are given by: 

W1(k) = - Ey
T
S1*;                                                                                             (V) 

and 

W2(k) = -Ey
T
S2*;                                                                                            (VI) 

where:  “T” denotes “transpose” and “*” denotes “complex conjugate”. 
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>> Thus, tap update equationsfor  System  I become: 

W1(k+1) = W1(k) + 1E(k)y(k)
T
S1 *(k),                                                                   (VII) 

W2(k+1) = W2(k) + 2E(k)y(k)
T
S2 *(k).                                                                   (VII) 

The tap update equations for system II (Figure 3) are considerably more complicated, since the system is non-

linear. 

  The tap update equation for register 1 tap(s)   in Figure 3 is the standard one, given  as  follows: 

W1(k+1) = W1(k) + 1Ey(k)x *(k),                                                                        (VIII) 

Where x denotes the input to the filter 

 The update equation for the taps associated with register 2 is: 

W2(k+1) = W2(k) - 2W2 (k),                                                                   (IX) 

>>The gradient vector W2(k) consists of the partial derivatives (E
2
/Re(W2), and E

2
/lm(W2)). These 

quantities are given by: 

E
2
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/Im(W2) = 4{ Re(y(k)).Im(W1

T
(k)S2(k))- 

  Im(y(k)).Re(W1
T
(k)S2(k))}E.                                           (XI) 

Therefore, 

W2(k) = 4.E.y(k). (W1
T
 (k) S2(k))*                                                             (XII) 

 

And the tap update equation for  

W2 is:W2(k+1) = W2(k) -2E.y(k).( W1S2(k)) *.                                                      (XIII)                        

Note that the product W1
T
S2 is not available directly in Figure 3. Figure 8 shows the computations required for 

the adaptive filtering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Detailed processing flow block diagram – System II 

The additional filtering (by W1) associated with system II is its major disadvantage. For the three-receiver case, 

three new filtering operations are required, for a total of six. In general, when going from N-1 to N receivers, N 

new filtering operations are introduced, so that the number of filtering operations is N.(N + 1)/2. Clearly, the 

system quickly becomes prohibitively complex as N increases. 
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overlapped,  delayed,  narrowband  N  receivers,  when  the  received  signal is  of  type  QPSK  with  

16-QAM [5-6]. 

 Tap  update equations  are  derived  for  the  following  cases: 

 One  narrowband signal,  one  equalizer system; 

 Two  narrowband  signals, one-loop error corrector  processing  system  I; 

 Two narrowband  signals,  one-loop  error corrector processing  system  II; 

 Three  narrowband  signals, two-loop error  corrector  processing  system  II;  and   

 The combined output y(k)  signal. 

 The processing  system  design  block  diagram  becomes  highly  complex  as  the  number  of  tapped  

input  signal  lines  (N)  increases. 

 These  reconstructed  wideband  signals  improve  performance  of  equalizers, improve signal-to-noise  

ratio  (SNR)  and  are  utilized  for  research  and  trouble-shooting  programs or  activities. 
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