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Abstract Use of flax as thermal insulation on a cylindrical calorimeter is proposed in this study. Flax used has 

medium diffusivity α = 8.10
-7

 m
2
.s

-1
 and average thermal conductivity 𝝀 = 0,037 W.m

-1
.K

-1
. Thermal behavior of 

flax material is highlighted from the study of temperature and heat flow density curves.  

Spectroscopic study from Bode diagrams and Nyquist representation of thermal impedance and its phase 

showed the quality of thermal insulation. Thermoelectric parameters such as series resistance and shunt resistor 

have made it possible to characterize the material. 
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1. Introduction 

Artificial or synthetic insulation [1, 2] is a threat to the environment unlike natural insulation that is 

biodegradable and renewable. Studies on heat transfer have shown that these natural insulators (tow, kapok, 

sawdust ...) have a very good thermal insulation property [3, 4]. Studies on different models [5, 6, 7] have 

shown the quality of some thermal insulators such as tow or kapok. 

In this study, we characterize the thermal behavior of flax over a hollow aluminum cylinder filled with a warm 

homogeneous liquid solution. We follow the thermal inertia of the filasse material from the study of the 

evolution curves of the temperature and the density of heat flow in dynamic frequency regime.  

Calorimetric times or periods of measurement are relatively short which corresponds to relatively high 

excitatory pulsations (high frequencies). We thus analyze the Bode diagrams and the Nyquist representations by 

showing the behavior of the high-frequency material. 

 

2. Theory 

2.1. Scheme of study device 

Different outer surfaces of calorimeter are considered subject to same external climatic constraints. Calorimeter 

is considered a closed system. Initial temperature of the fluid in calorimetric vessel is everywhere same. 

2.2. Mathematical model 

We consider that system is in cylindrical symmetry. Equation of heat (1) is obtained by considering that material 

does not contain an internal source of heat.   
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 = thermal conductivity 

  = density of the material 

C= massic heat 

 
Figure 1: Schematic of calorimeter 

T1 : Temperature inside solution. T1= To1e
iωt 

   with To1= 90
0
C  

T2 : Ambient temperature T2= To2e
iωt 

    with To2= 27
0
C  

Ti : Initial temperature of flax Ti =25
0
C 

R1 : Inner radius of flax layer R1= 0.05 m  

R2 : outer radius of flax layer R2= 0.065 m  

er= R2 - R1 : thickness of insulation in radial direction er= ez=e=0.015 m  
ez: thickness of insulation along z axis  

 

Solution of equation (1) in dynamic frequency regime is given by equation (3):
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We obtain expressions of components Aj and Bj from equations (5) and (6). Equations (7) and (8) make it 

possible to obtain eigenvalues which are determined graphically from transcendental equations (9) and (11). 
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We graphically determine the eigenvalues jn  and j . 

 

 
Figure 2: Graphical determination of eigenvalues µj 

h1r= 60 (W/ m
2
.K); h2r= 1 (W/ m

2
.K)  ω= 0.001 rad.s

-1
. 

Table 1: Eigenvalues 

nj 0.35 0.978 1.677 2.39 3.106 3.825 4.546 5.268 

µj 23.333 65.2  111.8 159.333 207.067 255 303.067 351.2 

 

Expression (12) gives the density of heat flow through flax material.
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By analogy with Ohm's law, we write:
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Relation (14) expresses temperature variation inside material. 
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Taking into account expression (13), expression (15) of thermal impedance of flax is obtained.  
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3. Results 

3.1. Evolution of temperature and density of heat flux in flax  

Figures (3) and (4) respectively show changes in temperature and heat flow density on the base (or lid) of the 

calorimeter. Figures (5) and (6) show changes in temperature and heat flow density on side wall of the 

calorimeter In these different evolutions, we highlight influence of excitatory pulsation. 

 
 

Figure 3: Evolution of temperature on cover of 

calorimeter. 

r= 0.055 m; h1Z= 25 W/ (m
2
.K); h2Z= 0.05 W/ 

(m
2
.K). 

Figure 4: Evolution of heat flow density on calorimeter 

cover. 

r= 0.055 m; h1Z= 25 W/ (m
2
.K) ; h2Z= 0.05 W/ (m

2
.K). 

  
Figure 5: Evolution of temperature on lateral face 

of calorimeter. 

z= 0.002 m ; h1Z= 25 W/ (m
2
.K) ; h2Z= 0.05 W/ 

(m
2
.K) 

Figure 6: Evolution of heat flow density on side face of 

calorimeter. 

z= 0.002 m ; h1Z= 25 W/ (m
2
.K) ; h2Z= 0.05 W/ (m

2
.K) 

Evolution of temperature curves, Figures (3) and (5), shows existence of a considerable contact resistance 𝑅𝐶  

between the aluminum assumed at the temperature of solution (Ti = 90°C) et and flax at temperature TF ≈

40°𝐶. 

TF − Ti = RC .   

Flax material thus has a good thermal inertia to these excitatory pulsations and can be well insulation High 
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pulsations corresponding to relatively short periods of measurement give a better behavior of the thermal 

insulation. 

 

3.2. Bode diagrams and Nyquist representations 

Figures (7) and (8) respectively represent Bode diagrams of impedance and its phase for different values of 

depth of flax material. Figure 9 shows evolution of imaginary part of thermal impedance as a function of its real 

part. Phenomena are highlighted for different values of the depth of flax. 

  

Figure 7: Variation of thermal impedance of material 

as a function to excitatory pulsation. 

r= 0.055 m h1Z= 25 W/ (m
2
.
0
C); h2Z= 0.05 W/ 

Figure 8: Variation of thermal phase as a function of 

exciter frequency. 

r= 0.055 m ; h1Z= 25 W/ (m
2
.
0
C) ; h2Z= 0.05 W/ 

(m
2
.
0
C) 

 
Figure 9 : Nyquist representations for different values of the depth of the material 

 

Table 2 : Maximum values of module of thermal impedance. 

Thickness z (m) 0.002 0.005 0.011 

Pulsation ω (rad/s)  1,499 x 10
-3

 1,898 x 10
-3

 4.096 x 10
-3 

Thermal impedance module (
0
C.m

2
.W

-1
)    0.06576 0.20491 1.12310 

 

Table 3: Algebraic values of series resistance and shunt resistance 

Thickness z (m) Rs  (
0
C.W

-1
) Rsh  (

0
C.W

-1
) Rth  (

0
C.W

-1
) RL  (

0
C.W

-1
) 

0.002 0.02464 0.04446 0.06874 0.06444 

0.0035 0.04148 0.10270 0.14421 0.11972 

0.004 0.04699 0.11314 0.16017 0.13909 
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Figure 10: Evolution of resistance as function to thickness of flax material 

 
Figure 11: Equivalent electrical model of inductive phenomena of flax 

For high excitation pulsations ( > 10−3𝑟𝑎𝑑. 𝑠−1), thermal impedance is relatively high (Figure 7), which allows a 

significant retention of heat. This gives the material thermal stability. Table 2 gives some values of thermal impedance 

module. 

Phase of impedance remains positive and has a maximum for   ≈ 10−3𝑟𝑎𝑑. 𝑠−1 (figure 8), This behavior is translated 

into electricity by inductive phenomena (Figure 11) corresponding to a return of heat to the solution in calorimeter. 

This phenomenon leads to an increase in calorimeter's performance. 

Values of resistances given in Table 3 are obtained from the exploitation of Nquist representations (Figure 9). Figure 

10 gives an evolution of resistances as a function of depth. Phenomena of thermal insulation increase linearly with the 

thickness of the thermal insulation.   

 

4. Conclusion 

Study shows that use of flax as a thermal insulator has considerable efficiency due to the contact resistance between 

aluminum and flax. 

Spectroscopy of thermal impedance shows that for high excitatory pulsations we have an important module of thermal 

impedance.  

Thermal resistance characterizes the phenomena of conduction inside the material. Quality of thermal insulator is all 

more important as thermal resistance is important. Thermal resistance varies linearly with thermal impedance. 
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