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1. Introduction 

Let A  be the class of analytic functions ( )f z  in the open unit disk  :  1U z z   , normalized by 

(0) 0 (0) 1f f     of the form 
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          .                              (1.1) 

Also, let us define by T  the subclass of all functions ( )f z  in A  of the form 
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        .                            (1.2) 

It is well-known that a function :f   is said to be univalent if the following condition is satisfied: 

1 2 1 2 if  ( ) ( )z z f z f z   or 1 2 1 2( ) ( ) if f z f z z z  . We denote by S  the subclass of A  consisting of 

functions which are also univalent in U .  

Also, we will denote by 
*  and S C  the subclasses of S  that are, respectively, starlike and convex functions in 

the open unit disk U .   

By definition (see for details, [3, 4], also [6])     
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It is easy to verify that 
*C S S  . For details on these classes, one could refer to the monograph by 

Goodman [4].      

An interesting unification of the functions classes 
*  and S C  is provided by the class  *S C   of functions 

f S , which also satisfies the following condition: 

   

     
 

2)
Re 0, 0,1 ,  

1
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. 

Also, we will denote    * *TS C T S C   . Note that the class  *TS C   has been examined by 

Altıntaş et al [1, 2]. 

In special case, for 0 and 1   , respectively, we have  * *0  S C S and   * 1S C C , in terms of 

the simpler classes 
*  and S C , defined by (1.2) and (1.3), respectively.  

e define a subclass of analytic functions as follows. 

Definition 1.1. A function f S  given by (1.1) is said to be in the class  * ,S C   , 

 *0, 0      if the following condition is satisfied 
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.                       (1.4) 

In special case, we have    * *,1S C S C   for 1  .  

The object of the present paper is to obtained upper bound estimates for the first three coefficients for the 

functions belonging to the class  * , ,  0,S C      
*  . 

To prove our main results, we need require the following lemma. 

Lemma 1.1 ([5]). If p , then the estimates 2, 1,2,3,...np n   are sharp, where   is the family of all 

functions p , analytic in U  for which (0) 1p   and  Re ( ) 0 ( )p z z U  , and  

2

1 2( ) 1  , p z p z p z z U     .                                             (1.5) 

 

2. Upper bound estimates for the coefficients  

In this section, we will obtain upper bound estimates for the first three coefficient of the functions belonging to 

the class  * , , 0,S C    
*  . 

The following theorem is on upper bound estimates for the coefficient of the functions belonging to this class. 

Theorem 2.1. Let the function ( )f z  given by (1.1) be in the class  * , , 0S C     , 
*  . Then, 
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Proof. Let  * *, ,  0,f S C       . It follows that 
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where function 

1

( ) 1  n

n

n

p z p z




  is in the class  . 

The equation (2.1), we can write as follows: 
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       (2.2) 

Comparing the coefficients of the like power of  z  in both sides of (2.2), we have 

  2 11 a p   ,                                                                             (2.3) 

   3 2 1 22 1 2 1a a p p        ,                                               (2.4) 

     4 3 1 2 2 33 1 3 1 2 1a a p a p p           .                       (2.5) 

From these, we get 
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Since 1 2p  , from (2.6), we obtain 
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.                                                                 (2.9) 

Using triangle inequality and applying the inequalities 2, 1,2np n  , from (2.7) we obtain 
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Similarly, from (2.8), we have 
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Thus, from (2.9)-(2.11) the proof of Theorem2.1 is completed.  

Setting 1   in Theorem 2.1, we can readily deduce the following result. 

Corollary 2.1. Let the function ( )f z  given by (1.1) be in the class  * , 0S C    . Then, 
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Setting 0 and 1    in Corollary 2.1, we can readily deduce the following results, respectively. 



MUSTAFA N & ÖZTÜRK T                Journal of Scientific and Engineering Research, 2018, 5(6):133-136 

 

Journal of Scientific and Engineering Research 

136 

 

 

Corollary 2.2. Let the function ( )f z  given by (1.1) be in the class 
*S . Then, 

,  2,3,4na n n  . 

Corollary 2.3. Let the function ( )f z  given by (1.1) be in the class C . Then, 

1,  2,3,4na n  . 

Note 2.1. As you can see, Corollary 2.2 confirmed that the Bieberbach's Conjecture (see for example [3])

na n  has been provided for 2,3,4n  . 

Remark 2.1. Using this work, we can be examined 
2

3 2a a  the Fekete - Szegö problem for the coefficients 

of the function class  * ,S C   . Also, using this work we can be find   2

2 2 4 32H a a a   second Hankel 

determinant for the functions belonging in the class  * ,S C   . Hence, we find upper bound estimate for the 

2

2 4 3a a a .   
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