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Abstract In this work, a spectral method is applied to the Favre-averaged Navier-Stokes equations in two-

dimensions, employing a structured spatial discretization, and using a conservative and finite volume 

approaches. Turbulence is taken into account considering the implementation of five k- two-equation 

turbulence models, based on the works of Coakley 1983; Wilcox; Yoder, Georgiadids and Orkwis; Coakley 

1997; and Rumsey, Gatski, Ying and Bertelrud. The numerical experiments are performed using the Van Leer 

numerical algorithm. The Euler backward method is applied to march the scheme in time. The spectral method 

presented in this work employs collocation points and variants of Chebyshev and Legendre interpolation 

functions are analyzed. Chemical non-equilibrium is studied using a five species chemical model. The “hot gas” 

hypersonic flows around a blunt body, and around a reentry capsule, in two-dimensions, are simulated. The 

results have indicated that the Chebyshev collocation point variants are more accurate in terms of stagnation 

pressure estimations. In the blunt body problem such errors are inferior to 16.0%, being 2.66% the best result, 

while in the reentry capsule problem such errors are inferior to 8.0%, being 3.88% the best result. The Legendre 

collocation point variants are more accurate in terms of the lift coefficient estimations. Moreover, the Legendre 

collocation point variants are more computationally efficient and cheaper. 

Keywords Spectral method, k- two equation models, Reentry flows, Favre-averaged Navier-Stokes equations, 

Chemical non-equilibrium, Five species chemical model, Van Leer scheme. 

1. Introduction 

There are several approaches for computationally modeling fluid dynamics. These include finite difference, 

finite element, and spectral methods to name a few. Finite element and finite difference methods are frequently 

used and offer a wide range of well-known numerical schemes. These schemes can vary in terms of 

computational accuracy but are typically of lower order of accuracy. If a more accurate solution is desired, it is 

common practice to refine the mesh either globally or in a region of interest. This can often be a complicated or 

time consuming process as global mesh refinement will greatly increase the computation time while local 

refinement requires an elaborated refinement operation [1]. 

Alternatively, polynomial refinement has been used to improve the solution accuracy and has been shown to 

converge more quickly than mesh refinement in some cases [2-3]. For finite difference methods, polynomial 

refinement is performed by including neighboring node values in a higher order polynomial [4]. This can 

increase the complexity of the scheme especially near the boundaries where nodes do not exist to construct the 

higher order polynomials. Finite element methods instead increase the number of unknown values within the 

cell itself to construct a higher order solution [5]. 

A scheme with a very high formal order of accuracy will not necessarily always produce the highest resolution. 

[6] demonstrated that a spectral-like scheme with a formal fourth-order accuracy produced a much more highly 

resolved solution than schemes with higher formal orders of accuracy when comparing modified wave numbers. 
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Therefore, formal order of accuracy does not provide a comprehensive basis for selecting the best solution 

procedure. State-of-art methods such as spectral methods fall into this category. 

Spectral methods are considered a class of solution techniques using sets of known functions to solve 

differential equations [7]. Such methods are generally considered high order and capable of obtaining solutions 

with a high resolution. Unlike finite-difference and finite-element methods, spectral methods utilize an 

expansion in terms of global, rather than local, basis functions to represent the solution of a differential 

equation. When properly applied, these techniques accurately resolve phenomena on the scale of the mesh 

spacing. The order of truncation error decay with mesh refinement is also higher than which can be achieved 

with finite-difference and finite-element methods. For problems with smooth solutions, it is possible to produce 

spectral method whose truncation error goes to zero as faster than any finite power of the mesh spacing 

(exponential convergence). 

Spectral methods may be viewed as an extreme development of the class of discretization schemes known by 

the generic name of method of weighted residuals (MWR) [8]. The key elements of the MWR are the trial 

functions (also called the expansion or approximating functions) and the test functions (also known as weighted 

functions). The trial functions are used as the basis functions for a truncated series expansion of the solution 

that, when substituted into the differential equation, produces the residual. The test functions are used to enforce 

the minimization of the residual. 

The choice of the trial functions is what distinguishes the spectral methods from the element and finite 

difference methods. The trial functions for spectral methods are infinitely differentiable global functions 

(Typically, they are tensor products of the eigenfunctions of singular Sturm-Liouville problems). In the case of 

finite element methods, the domain is divided into small elements and a trial function is specified in each 

element. The trial functions are thus local in character and well suited for handling complex geometries. The 

finite difference trial functions are likewise local. 

The choice of test function distinguishes between Galerkin and collocation approaches. In the Galerkin 

approach, the test functions are the same as the trial functions, whereas in the collocation approach the test 

functions are translated Dirac delta functions. In other words, the Galerkin approach is equivalent to a least-

square approximation, whereas the collocation approach requires the differential equations to be solved exactly 

at the collocation points. 

The collocation approach is the simplest of the MWR and appears to have been first used by [9] in his study of 

electronic energy bands in metals. A few years later, [10] applied this method to the problem of torsion in square 

prism. [11] developed it as a general method for solving ordinary differential equations. They used a variety of 

trials functions and an arbitrary distribution of collocation points. The work of [12] established for the first time 

that a proper choice of the trial functions and the distribution of collocation points are crucial to the accuracy of 

the solution. Perhaps he should be credited with laying down the foundation of the orthogonal collocation 

method.  

Spectral methods have been used on one-dimensional, compressible flow problems with piecewise linear 

solutions by [13-14]. These reports demonstrated that spectral methods, when combined with appropriate 

filtering techniques, can capture one-dimensional shock waves in otherwise featureless flows. A different sort of 

demonstration was provided by [15]. They exhibited spectral solutions of compressible flows with nontrivial 

structures in the smooth regions. 

Renewed interest in the area of hypersonic flight has brought computational fluid dynamics (CFD) to the 

forefront of fluid flow research [16]. Many years have seen a quantum leap in advancements made in the areas 

of computer systems and software which utilize them for problem solving. Sophisticated and accurate numerical 

algorithms are devised routinely that are capable of handling complex computational problems. Experimental 

test facilities capable of addressing complicated high-speed flow problems are still scarce because they are too 

expensive to build and sophisticated measurements techniques appropriate for such problems, such as the non-

intrusive laser, are still in the development stage. As a result, CFD has become a vital tool, in some cases the 

only available tool, in the flow research today. 

The study of hypersonic flows has gained momentum with the advent of concepts like the National AeroSpace 

Plane (NASP) and similar trans-atmospheric vehicles. Under the very high velocity and temperature conditions 
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experienced by hypersonic vehicles, departure from chemical and thermal equilibrium occurs. Properties of air 

change dramatically as new chemical species are produced at the expense of others. The simple one temperature 

model used to describe the energy of air becomes inapplicable, and it becomes necessary to consider one or 

more additional temperatures (corresponding to vibrational and electronic energies). Determination of 

aerothermal loads on blunt bodies in such an environment is of great importance. 

In high speed flows, any adjustment of chemical composition or thermodynamic equilibrium to a change in local 

environment requires certain time. This is because the redistribution of chemical species and internal energies 

require certain number of molecular collisions, and hence a certain characteristic time. Chemical non-

equilibrium occurs when the characteristic time for the chemical reactions to reach local equilibrium is of the 

same order as the characteristic time of the fluid flow. Similarly, thermal non-equilibrium occurs when the 

characteristic time for translation and various internal energy modes to reach local equilibrium is of the same 

order as the characteristic time of the fluid flow. Since chemical and thermal changes are the results of collisions 

between the constituent particles, non-equilibrium effects prevail in high-speed flows in low-density air. 

In chemical non-equilibrium flows the mass conservation equation is applied to each of the constituent species 

in the gas mixture. Therefore, the overall mass conservation equation is replaced by as many species 

conservation equations as the number of chemical species considered. The assumption of thermal non-

equilibrium introduces additional energy conservation equations – one for every additional energy mode. Thus, 

the number of governing equations for non-equilibrium flow is much bigger compared to those for perfect gas 

flow. A complete set of governing equations for non-equilibrium flow may be found in [17-18]. 

In spite of the advances made in the area of compressible turbulence modeling in recent years, no universal 

turbulence model, applicable to such complex flow problems has emerged so far. While the model should be 

accurate it should also be economical to use in conjunction with the governing equations of the fluid flow. 

Taking these issues into consideration, k- two-equation models have been chosen in the present work [19-23]. 

These models solve differential equations for the turbulent kinetic energy and the vorticity. Additional 

differential equations for the variances of temperature and species mass fractions have also been included. These 

variances have been used to model the turbulence-chemistry interactions in the reacting flows studied here. 

In the current work, a spectral method is applied to the Favre-averaged Navier-Stokes equations, employing 

structured spatial discretization, and using a conservative and finite volume approaches. Turbulence is taken into 

account considering the implementation of five k- two-equation turbulence models, based on the works of [19-

23]. The numerical algorithm of [24] is used to perform the reentry flow numerical experiments, which give us 

an original contribution to the CFD community. The Euler backward method is applied to march the scheme in 

time. The spectral method presented in this work employs collocation points and variants of Chebyshev and 

Legendre interpolation functions are analyzed. The “hot gas” hypersonic flows around a blunt body and around 

a reentry capsule, in two-dimensions, are simulated. The convergence process is accelerated to steady state 

condition through a spatially variable time step procedure, which has proved effective gains in terms of 

computational acceleration [25-26]. The reactive simulations involve Earth atmosphere chemical model of five 

species and seventeen reactions, based on the [27] model. N, O, N2, O2, and NO species are used to perform the 

numerical comparisons. The results have indicated that the Chebyshev collocation point variants are more 

accurate in terms of stagnation pressure estimations. In the blunt body problem such errors are inferior to 16.0%, 

being 2.66% the best result, while in the reentry capsule problem such errors are inferior to 8.0%, being 3.88% 

the best result. The Legendre collocation point variants are more accurate in terms of the lift coefficient 

estimations. Moreover, the Legendre collocation point variants are more computationally efficient and cheaper. 

 

2. Spectral Method 

Two classes of techniques for spectral discretization are referred to as tau and collocation methods [28]. The 

latter technique is used here. In this scheme, the approximation series is determined by satisfying the differential 

equation exactly at a set of distinct collocation points. The locations of these points in the domain are linked to 

the choice of basis function. In this study, arbitrary collocation points are implemented. The collocation method 

is used here since enforcement of boundary conditions and evaluations of nonlinear terms are straightforward. 

Additionally, some accuracy advantage is seen in the collocation method over the tau method for a number of 

problems [28]. The series expansion for a function Q(x) may be represented as 
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where Bn(x) are the basis functions and N is the total number of nodes employed in the interpolation process (it 

is also the order of accuracy of the spectral method). The coefficients 
n

Q̂  are often termed the spectrum of 

QN(x). One common technique used to evaluate the spectrum is to consider Eq. (1) as an interpolation series 

representing Q(x). The interpolation “nodes” of such series are the collocation points of the method.  For a 

scheme based on Chebyshev collocation, the basis functions are: 
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with: P0(x) = 1 and P1(x) = x. The Chebyshev-Gauss-Lobatto standard collocation points are 
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The Chebyshev collocation points result from a simple change of variables, which relates the Chebyshev 

interpolation series to a Fourier cosine series [28]. To evaluate the 
n

Q̂ , the inverse relation is required. This is 





N

0l
j,ilnlnn
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expressions to a Chebyshev interpolation: 
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Legendre collocation is based on using Legendre polynomials as the basis function in Eq. (1), e.g.,  
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where: P0(x) = 1 and P1(x) = x. Interpolation via Legendre series cannot easily be related to trigonometric 

interpolation, so there is no simple expression to evaluate the 
n

Q̂ coefficients. Appeal must be made to the 

theory of numerical quadrature to form an approximation to the integrals which result from analytic Legendre 

interpolation [29]. Considering Eq. (4), the normalized weights and constant of the Legendre-Gauss-Lobatto 

collocation points are 
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In this work, it was assumed that the Legendre-Gauss-Lobatto collocation points are the same as the Chebyshev-

Gauss-Lobatto ones. It was also adopted the following collocation points and normalized weights for the 

Chebyshev-Gauss-Radau interpolation, based on the work of [30]: 
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For the Legendre-Gauss-Radau interpolation, also based in [30], the collocation points are defined by Eq. (8) 

and the normalized weights are described by: 
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The same calculation to the vector of conserved variables Q is applied to the vector of flux C, to be defined in 

section 5. 

Hence, we have two collocation point options and two normalized weight functions to be considered by the 

Chebyshev and the Legendre methods, namely: Chebyshev-Gauss-Radau, Chebyshev-Gauss-Lobatto, Legendre-

Gauss-Radau and Legendre-Gauss-Lobatto. 
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3. Favre Average 

The Navier-Stokes equations and the equations for energy and species continuity which governs the flows with 

multiple species undergoing chemical reactions have been used [31-33] for the analysis. Details of the present 

implementation for the chemical model, and the specification of the thermodynamic and transport properties are 

described in [34-37]. Density-weighted averaging [38] is used to derive the turbulent flow equations from the 

above relations. For a detailed description of the Favre equations, the g’s equations and the modeling are 

presented in [39-40]. The interested reader is encouraged to read these papers. 

 

4. Favre-Averaged Navier-Stokes Equations 

The flow is modeled by the Favre-averaged Navier-Stokes equations in the condition of chemical non-

equilibrium. Details of the five species model implementation are described in [34-37], and the interested reader 

is encouraged to read these works to become aware of the present study. 

The reactive Navier-Stokes equations in chemical non-equilibrium were implemented on conservative and finite 

volume formulations, in the two-dimensional space. In this case, these equations in integral and conservative 

forms can be expressed by: 
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where: Q is the vector of conserved variables, V is the volume of a computational cell, F


 is the complete flux 

vector, n


 is the unity vector normal to the flux face, S is the flux area, G is the k- two-equation model source 

term, SC is the chemical source term, Ee and Fe are the convective flux vectors or the Euler flux vectors in the x 

and y directions, respectively, Ev and Fv are the viscous flux vectors in the x and y directions, respectively. The 

i


 and j


 unity vectors define the Cartesian coordinate system. Twelve (12) conservation equations are solved: 

one of general mass conservation, two of linear momentum conservation, one of total energy, four of species 

mass conservation, two of the k- turbulence model, and two of the g-equations. Therefore, one of the species is 

absent of the iterative process. The CFD literature recommends that the species of biggest mass fraction of the 

gaseous mixture should be omitted, aiming to result in a minor numerical accumulation error, corresponding to 

the biggest mixture constituent (in the case, the air). To the present study, in which is chosen a chemical model 

to the air composed of five (5) chemical species (N, O, N2, O2, and NO) and seventeen (17) chemical reactions, 

being fifteen (15) dissociation reactions (endothermic reactions) and two (2) of exchange or recombination, this 

species can be the N2 or the O2. To this work, the N2 was chosen. The vectors Q, Ee, Fe, Ev, Fv, SC and G can, 

hence, be defined as follows: 
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in which:  is the mixture density; u and v are Cartesian components of the velocity vector in the x and y 

directions, respectively; p is the fluid static pressure; e is the fluid total energy; 1, 2, 4 and 5 are densities of 

the N, O, O2 and NO, respectively; k is the turbulent kinetic energy;  is the turbulent vorticity; Qh is the 

product of fluctuating enthalpy, 
""hh ;Qs is the sum of the product of fluctuating mass fraction, 



ns

1i
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i
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icc ; H is 

the mixture total enthalpy; the ’s are the components of the Reynolds stress tensor; the t’s are the components 

of the viscous stress tensor; fx and fy are viscous work and Fourier heat flux functions; svsx and svsy represent 

the species diffusion flux, defined by the Fick law; x and y are the terms of mixture diffusion; x, y, x, y, x, 

y, x and y are two-equation turbulence model parameters; sx and sy are diffusion terms function of the mass 

fraction gradients; 
s

  is the chemical source term of each species equation, defined by the law of mass action; 

Gk and G are k- source terms; µM is the molecular viscosity; T is the turbulent viscosity or vorticity 

viscosity; PrdL is the laminar Prandtl number; PrdT is the turbulent Prandtl number; Sc is the laminar Schmidt 

number with value 0.22; ScT is the turbulent Schmidt number with value 1.0; h is the static enthalpy; Re is the 

laminar Reynolds number; and cT is the total mass fraction sum. 
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The viscous stresses, in N/m
2
, are determined, according to a Newtonian fluid model, by: 

  ; yvxu32xu2t MMxx   

 xvyut Mxy  ;                                                           (15) 

  yvxu32yv2t MMyy  , 

The components of the turbulent stress tensor (Reynolds stress tensor) are described by the following 

expressions: 

   ;k 2/3Re-yvxu32xu2 TTxx   

 xvyu Txy  ;                                   (16) 

   k2/3Re-yvxu32yv2 TTyy  . 
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Expressions to fx and fy are given below: 

    xxxyxyxxxxx kqvtutf  ;                                  (17) 

    ;kqvtutf yyyyyyxyxyy 
       

(18) 

where qx and qy are the Fourier heat flux components and are given by: 

  ;xhdPrdPrq TTLMx 
        

(19) 

  yhdPrdPrq TTLMy  ,        (20) 

The last terms in Eqs. (17)-(18) are kx and ky and are defined as follows: 

,xkk
k

T
Mx 












 ykk

k

T
My 












 .      (21) 

The diffusion terms related to the k- equations are defined as: 

  xkkTMx  ,   ykkTMy  ;      (22)
 

  xTMx   ,   yTMy   ;      (23) 

  xQdPrdPr hTTLMx  ,   ;yQdPrdPr hTTLMy 
    

(24)
 

  xQScSc STTMx  ,   .yQScSc STTMy 
    

(25) 

The terms of species diffusion, defined by the Fick law, to a condition of chemical non-equilibrium, are 

determined by [41]: 

x

c
Dv s

ssxs



 and

y

c
Dv s

ssys



 ,       (26) 

with “s” referent to a given species, cs being the mass fraction of the species, defined as: 




 s

sc

           

(27) 

and Ds is the species-effective-diffusion coefficient. 

The diffusion terms x and y which appear in the energy equation are defined by [27]: 





ns

1s

ssxsx hv and 



ns

1s

ssysy hv ,         (28) 

being hs the specific enthalpy (sensible) of the chemical species “s” and “ns” is the number of species. Finally, 

the ’s terms of Eq. (12) are described as, 

  xcScSc STTMsx  and   ycScSc STTMsy  .      (29) 

 

5. Numerical Scheme 

Considering the two-dimensional and structured case, the algorithm follows that described in [34-37]. The speed 

of sound takes into account the turbulent kinetic energy by the following expression: 

k
p

a mixture 


 ,                                                                (30) 

where
mixture
  is the ratio of mixture specific heats calculated in each interaction. In other words, the mixture cp 

is calculated by a weighted average involving the cp of each species and the mass fraction of each species 

considered as weight; in the same form, the mixture cv is calculated. Finally, the mixture γ is defined as the ratio 

of mixture cp and mixture cv calculated as described above. 

The system is solved in two parts separately, according to [42]. The first part takes into account the dynamic 

part, which considers the Navier-Stokes equations plus the turbulence equations, the second one takes into 
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account the chemical part involving the chemical contributions. Hence, the discrete-dynamic-convective flux, 

which solves the dynamic and turbulent parts, is given by: 
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and the discrete-chemical-convective flux is defined by: 
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The same definitions presented in [34-37] are valid to this algorithm. The Sx and Sy terms are normal area 

components, defined in Tab. 1. For better comprehension, Fig. 1 exhibits the computational cell adopted for the 

simulations, as well its respective nodes and flux interfaces. C can be defined as the sum of the fluxes at each 

interface. 

The definition of the dissipation term  determines the particular formulation of the convective fluxes. The 

choice below corresponds to the [24] scheme, according to [43]: 
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.0M1if,1M5.0M
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j,2/1ij,2/1i

VL

j,2/1ij,2/1i

    

(33) 

This scheme is first-order accurate in space and in time. The high-order spatial accuracy is obtained, in the 

current study, by the spectral method described in Section 2. 

The viscous formulation follows that of [44], which adopts the Green theorem to calculate primitive variable 

gradients. The viscous gradients at the flux interfaces are obtained by arithmetical average between cell (i,j) and 

its neighbors. As was done with the convective terms, there is a need to separate the viscous flux in two parts: 

dynamic viscous flux, and chemical viscous flux. The dynamic part corresponds to the first four equations of the 

Navier-Stokes ones plus the four equations of the turbulence model, and the chemical part corresponds to the 

four equations immediately below the energy equation. 

The Euler backward method is used to perform time integration. This method is first-order accurate in time, to 

the two types of complete flux. To the convective dynamic component, this method can be represented in 

general form by: 

    )n(

j,ij,ij,i

)n(

j,i

)1n(

j,i QCVtQQ 
,              (34) 

and to the convective chemical component, it can be represented in general form by: 

    )n(

j,iCj,i

)n(

j,ij,i

)n(

j,i

)1n(

j,i QSVQCtQQ 
,                                          (35) 

where the chemical source term SC is calculated with the translational/rotational temperature (one temperature 

model). 
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6. Turbulence Models 

Five turbulence models were implemented according to a k-ω and k
1/2

-ω formulations. Two turbulence models 

due to Coakley were implemented. 

 

6.1. Coakley Turbulence Model – 1983 

The [19] model is a k
1/2

- one. The turbulent Reynolds number is defined as 

MNkR  ,                                          (36) 

where: N is the normal distance from the wall to the cell under study and M is the cinematic viscosity. The 

production term of turbulent kinetic energy is given by 

Re
y

u
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P 
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
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











 .                                  (37) 

The function  is defined as 

1PC 2   .                                        (38) 

The damping function is given by 








1

e1
D

R

.                                           (39) 

The turbulent viscosity is defined by 

  kDCReT ,                                      (40) 

with: C a constant to be defined. According to the [19] model, the Gk and G terms have the following 

expressions: 

kkk DPG  and   DPG ,                       (41) 

where: 
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  RePCCP 22
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 ,   (43) 

where 045.0D405.0C1  . The closure coefficients adopted by the [19] model are: 0.1k  , 3.1 ,

09.0C  , 92.0C2  , 5.0 , 0065.0 ,PrdL = 0.72 and PrdT = 0.9. 

 

6.2. Wilcox Turbulence Model 

The turbulent viscosity is expressed in terms of k and  as: 

 kReT
.                                                                  (44) 

In this model, the quantities 
k  and   have the values 

*1  and 1 , respectively, where 
* and  are 

model constants. According to the [20] model, the Gk and G terms have the following expressions: 

kkk DPG  and   DPG ,                      (45) 

where: 
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k  ;               (46) 
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kP
k

P 






 
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; ReD 2 ,                     (47) 

where the closure coefficients adopted for the [20] model are: 09.0*  , 403 , 5.0*  , 5.0 ,

95 ,PrdL = 0.72 and PrdT = 0.9. 

6.3. Yoder, Georgiadids and Orkwis Turbulence Model 

According to the [21] model, the turbulent Reynolds number is specified by: 

  mT /kRe .                                      (48) 

The parameter * is given by: 

   kTkT

*

0

* RRe1RRe  .                         (49) 

The turbulent viscosity is specified by: 

 /kRe *

T .                                             (50) 

The source term denoted by G in the governing equations contains the production and dissipation terms of k and 

. To the [21] model, the Gk and G terms have the following expressions: 

kkk DPG  and   DPG .                            (51) 

To define the production and dissipation terms, it is necessary firstly to define some parameters. The turbulent 

Mach number is defined as: 

2

T a/k2M  .                                            (52) 

It is also necessary to specify the function F: 

 0.0,MMMAXF 2

0,T

2

T  .                              (53) 

The 
*  parameter is given by: 

     4

ST

4

ST

* R/Re1R/Re18/509.0  .                 (54) 

Finally, the production and dissipation terms of Eq. (51) are given by 

y

u
P xyk




 and   Re/F1kD k

*

k  ;                (55) 

kkP/P  and   ReFD *2

  ,               (56) 

with: 

   *

TT0 RRe1RRe9/5   .                    (57) 

The [21] turbulence model adopts the following closure coefficients: Rs = 8.0, Rk = 6.0, R = 2.7, k = 1.0,  = 

0.0,  = 3/40, MT,0 = 0.0, 0 = 0.1, 3/*

0  , 0.2k   and 0.2 . 

 

6.4. Coakley Turbulence Model - 1997 

In the [22] turbulence model, the turbulent viscosity is expressed in terms of k and  as: 

  kCReT .                                            (58) 

In this model, the quantities 
k  and   have the values *1  and 1 , respectively, where 

* and  are 

model constants. 

The source term denoted by G in the governing equations contains the production and dissipation terms of k and 

. To the [22] model, the Gk and G terms have the following expressions: 

kkk DPG  and   DPG .                     (59) 

To define the production and dissipation terms, it is necessary to define firstly some parameters. The Si,j gradient 

is defined as 
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The gradient S is expressed as 

ijijSS2S  .                                          (61) 

The  parameter is defined as 

 S .                                                 (62) 

The divergent and the parameter  are determined by 
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The coefficients k and  are defined by 

  C1
3

2
k

  

and k .                         (64) 

The terms of production and destruction of kinetic energy are defined as 

RekCP 2

k     
and   Rek1D kk  .           (65) 

In relation to the terms of production and destruction of vorticity, new terms are defined. The characteristic 

turbulent length is expressed as 

 kl .                                               (66) 

The coefficients k and   are defined as 
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The turbulent Reynolds number is determined by 




m

T

k
R .                                                                    (69) 

Some others parameters are given by 

oT RRCR  , )R(TANHD  , 



 


D

k ;         (70) 

  TANH ,  dxdp
k

1
f ii


 , 

2

iii ff  ;             (71) 

 ii fTANHf  ,  4D11w  ;                      (72) 

    wf25.035.0w1675.0C i1  ;                     (73) 

2

12w C)CC(   ,  kw wC2dw .                 (74) 

Finally, the production and destruction terms of vorticity are defined as 

ReCCP 22

1    
and   RedwCCD 2

21   .        (75) 

The closure coefficients assume the following values: 09.0C  , 833.0C2  , 0.5 , 0.1k  , 

5.0 , 5.0*  , 41.0 , 0.10Ro  , 72.0dPr L   and 9.0dPr T  . 
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6.5. Rumsey, Gatski, Ying and Bertelrud Turbulence Model 

Finally, the k- model detailed in [23] has been tested. The equilibrium eddy-viscosity term employed in the 

diffusion terms is given by 

  kcRe **

T ,                                     (76) 

where .081.0c*   The explicit nonlinear constitutive equation that is used to close the Reynolds-averaged 

Navier-Stokes equations is expressed (after regularization) by 
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and 
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are the mean-rate-of-strain tensor and the mean-vorticity tensor, respectively. The turbulent viscosity T is 

  kcReT .                                       (80) 

and 

1662222

662

663

)(2.0)1(3
c 




 ;                                            (81) 

2

1

ijij2 )SS)(/(  and 2

1

ijij3 )WW)(/(  ,                                     (82) 

where: 

1 = (4/3-C2)(g/2); 2 = (2-C3)(g/2); 3 = (2-C4)(g/2);             (83) 

g = (C1/2+C5-1)
-1

.                                                                (84) 

The constants that govern the pressure-strain correlation model of [23] are C1 = 6.8, C2 = 0.36, C3 = 1.25, C4 = 

0.4 and C5 = 1.88. The 
'

T  terms considered in Eqs. (77-78) are given by 

  kcRe ''

T ,                                        (85) 

where 

1662222

2
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)1(3
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


 .                                          (86) 

The source term denoted by G in the governing equation contains the production and dissipation terms of k and 

. To the [23] model, the Gk and G terms have the following expressions: 

kkk DPG  and   DPG ,                     (87) 

where: 
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k
y

u
P xy 












 ,  and ReD 2 .               (89) 

The closure coefficients adopted to the [23] model assume the following values: 83.0 , 41.0 ,

4.1k  , 2.2 , PrdL = 0.72, PrdT = 0.9 and  *2 c/  . 

 

7. Spatially Variable Time Step 

The spatially variable time step has proved efficient gains in terms of convergence acceleration, as proved by 

[25-26].The total pressure of the gaseous mixture is determined by Dalton law, which indicates that the total 

pressure of the gas is the sum of the partial pressure of each constituent gas, resulting in: 

TRcp sss  and 



ns

1s

spp .         (90) 

The speed of sound to a reactive mixture and considering turbulence modeling can be, hence, determined by Eq. 

(30). Finally, the spatially variable time step is defined from the CFL (Courant-Friedrichs-Lewis) definition: 

j,i

2

j,i

2

j,i

j,i

j,i

avu

sCFL
t




 ,                                                        (91) 

where j,is  is the characteristic length of each cell (defined between the minimum cell side length and the 

minimum centroid distance between each cell and its neighbors). 

 

8. Dimensionless, Initial and Boundary Conditions 

8.1. Dimensionless 

The dimensionless employed to the chemical non-equilibrium case consisted in: Rs is dimensionless by achar, 

where charcharchar pa  ; cv is dimensionless by achar; hs and 
0

sh  are dimensionless by 
2

chara ; T, 

translational/rotational temperature, is dimensionless by achar; s and  are dimensionless by char; u and v are 

dimensionless by achar;  is dimensionless by char; D, diffusion coefficient, dimensionless by 
2

chara dtchar, where 

dtchar is the minimum time step calculated in the computational domain at the first iteration;  is dimensionless 

by   3

charchar 10xdt  ; e and p are dimensionless by 
2

charchara . The characteristic properties are obtained 

from [45]. 

 

8.2. Initial Condition 

The initial conditions to the blunt body and reentry capsule problems, for a five species chemical model, are 

presented in Tabs. 2-3. LREF is the reference length, equal to L in the present study. The Reynolds number is 

obtained from data provided in [45]. 

 

8.3. Boundary Conditions 

The boundary conditions are basically of four types: solid wall, entrance, exit and continuity. These conditions 

are implemented with the help of ghost cells. 

 

Wall condition 

At a solid boundary the non-slip condition is enforced. Therefore, the tangent velocity component of the ghost 

volume at wall has the same magnitude as the respective velocity component of its real neighbor cell, but 

opposite signal. In the same way, the normal velocity component of the ghost volume at wall is equal in value, 

but opposite in signal, to the respective velocity component of its real neighbor cell. 



Maciel ESG                                               Journal of Scientific and Engineering Research, 2018, 5(5):395-430 

 

Journal of Scientific and Engineering Research 

408 

 

The normal pressure gradient of the fluid at the wall is assumed to be equal to zero in a boundary-layer like 

condition. The same hypothesis is applied for the normal temperature gradient at the wall, assuming an adiabatic 

wall. From the above considerations, density and translational/rotational temperature are extrapolated from the 

respective values of its real neighbor volume (zero order extrapolation). 

With the species mass fractions and with the definition of the internal energy for each gas, it is possible to obtain 

the mixture internal energy of the ghost volume. The mixture formation enthalpy is extrapolated from the real 

cell. The mixture total energy to the ghost cell is calculated by: 

  2

g

2

g

0

g,mixtureg,igg vu5.0hee  ,                  (92) 

where “g” reports to “ghost” cell and ei,g is the ghost internal energy. To the species density, the non-catalytic 

condition is imposed, what corresponds to zero order extrapolation from the real cell species densities. 

The turbulent kinetic energy and the turbulent vorticity at the ghost volumes are determined by the following 

expression, for all models: 

0.0kghost  and     2

nMghost d338  ,                                             (93) 

where   assumes the value 3/40 and dn is the distance of the first cell to the wall. Values to Qh and Qs at the 

boundary are the same as the initial condition. 

 

Entrance condition 

It is divided in two flow regimes: 

(a) Subsonic flow: Seven properties are specified and one extrapolated in the boundary conditions of the 

dynamic part of the algorithm. This approach is based on information propagation analysis along characteristic 

directions in the calculation domain ([46]). In other words, for subsonic flow, seven characteristic propagate 

information point into the computational domain. Thus seven flow properties must be fixed at the inlet plane. 

Just one characteristic line allows information to travel upstream. So, one flow variable must be extrapolated 

from the grid interior to the inlet boundary. The total energy was the extrapolated variable from the real 

neighbor volumes, for the studied problems. Density and velocity components adopted values of initial flow. 

The turbulence kinetic energy and the vorticity are prescribed and receive the following values: k = 0.01kff and 

10u/LREF, respectively, where kff = 0.5u
2
. For the [19] turbulence model, consider k = ffk01.0 . Qh and Qs 

are also fixed with the values 10
-6 2

initialh  and 10
-3



ns

1s

2

initial,sc , respectively. To the chemical part, four 

information propagate upstream because it is assumed that all four equations are conducted by the eigenvalue 

“(qn-a)”. In the subsonic flow, all eigenvalues are negative and the information should be extrapolated. Hence, 

all of them should be extrapolated. 

(b) Supersonic flow: In this case no information travels upstream; therefore all variables are fixed with their 

initial values. 

 

Exit condition 

It is also divided in two flow regimes: 

(a) Subsonic flow: Seven characteristic propagate information outward the computational domain. Hence, the 

associated variables should be extrapolated from interior information. The characteristic direction associated to 

the “(qnormal-a)” velocity should be specified because it points inward to the computational domain [46]. In this 

case, the ghost volume total energy is specified from its initial value. Density, velocity components and 

turbulent variables are extrapolated. To the chemical part, the eigenvalue “(qn-a)” is again negative and the 

characteristics are always flowing into the computational domain. Hence, the four chemical species under study 

should have their densities fixed by their initial values. 

(b) Supersonic flow: All variables are extrapolated from interior grid cells, as no flow information can make its 

way upstream. In other words, nothing can be fixed. 
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Continuity condition 

This condition imposes continuity of the flow at the trailing edge of the reentry capsule configuration. This is 

done considering the Kutta condition in this region. In terms of numerical implementation, it is obtained 

considering the vector of conserved variables above the wake as equal to the vector of conserved variables 

below the wake. 

 

9. Physical Problems and Meshes 

Two physical problems were solved in this work, namely: blunt body, and reentry capsule. The first problem 

considers the geometry of a blunt body with 1.0 m of nose ratio and parallel rectilinear walls. The far field is 

located at 20.0 times the nose ratio in relation to the configuration nose. A mesh composed of 2,548 rectangular 

cells and 2,650 nodes with an exponential stretching of 5.0% was studied. This mesh is equivalent in finite 

differences to a one of 53x50 points. Figure 2 shows the detail of the geometry and Figure 3 exhibit the viscous 

mesh. 

The second problem is the geometry of the reentry capsule. Details of the configuration are presented in Fig. 4. 

The far field is located at 20.0 unities. A mesh of 3,136 rectangular cells and 3,250 nodes with an exponential 

stretching of 5.0% was used for the viscous simulations. This mesh is equivalent in finite differences to a one of 

65x50 points. Figure 5 show this viscous mesh. 

 

10. Results 

Tests were performed in a Core i7 processor of 2.8GHz and 6.0Gbytes of RAM microcomputer, in a Windows 

7.0 environment. Three (3) orders of reduction of the maximum residual in the field were considered to obtain a 

converged solution. The residual was defined as the value of the discretized conservation equation. In the 

dynamic part of the [24] scheme, such definition results in: 

j,ij,ij,i CVtsidualRe  .                                            (94) 

The attack angle was adopted equal to zero. In this work, the blunt body turbulent results were obtained for a 4
th

 

order of accuracy of the spectral method, whereas the reentry capsule turbulent solutions were obtained for an 

16
th

 order of accuracy of the spectral method. For a matter of simplicity, the following abbreviations were used: 

[24] scheme = VL, [19] model = C83, [20] model = W88, [21] model = YGO96, [22] model = C97, [23] model 

= RGYB98, Chebyshev-Gauss-Radau = CGR, Chebyshev-Gauss-Lobatto = CGL, Legendre-Gauss-Radau = 

LGR, and Legendre-Gauss-Lobatto = LGL. 

 

10.1. Blunt Body Problem 

Figures 6 to 13 show the pressure and temperature contours obtained by the VL scheme as using the CGR, CGL, 

LGR, and LGL collocation points coupled with the C83 turbulence model. All solutions capture the shock wave 

and good symmetry properties are observed as in pressure contours as in temperature contours. The most intense 

pressure field when considering only the C83 model is obtained as using the CGR collocation points. The most 

intense temperature field considering only the C83 model is detected as using the LGR collocation points. 

Figures 14 to 21 show the pressure and temperature contours obtained by the VL scheme when using the CGR, 

CGL, LGR, and LGL collocation points coupled with the W88 turbulence model. The maximum-pressure peak 

considering only W88 model is obtained when using the CGR collocation points. Good symmetry properties are 

observed, and the normal shock wave is well captured by the numerical scheme. 

Figures 22 to 29 exhibit the pressure and temperature contours calculated with the VL scheme when using the 

CGR, CGL, LGR, and LGL collocation points coupled with the YGO96 turbulence model. As can be verified, 

good shock resolution is observed in the figures. The viscous layer is well captured in the temperature contours, 

highlighting the good transport of viscous properties, like viscosity and thermal conduction. Good symmetry 

properties are observed in all figures. Some pressure oscillations are observed in Fig. 24. 

Figures 30 to 37 present the pressure and temperature contours generated by the VL scheme as using the CGR, 

CGL, LGR, and LGL collocation points coupled with the C97 turbulence model. Some pressure oscillations are 

observed in Fig. 32, but the shock wave is well captured by the numerical scheme. Good transport of viscous 
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properties is observed in the viscous layer, as shown in Figs. 31, 33, 35, and 37. The maximum pressure peak is 

obtained by the VL scheme as using the CGR collocation points. 

Finally, Figs. 38 to 45 show the pressure and temperature contours obtained by the VL scheme as using the 

CGR, CGL, LGR and LGL collocation points coupled with RGYB98 turbulence model. Good symmetry 

properties are observed in all figures. No pressure oscillations are observed in these figures. Good transport of 

viscous properties is verified. The shock wave is well captured by the numerical scheme in its variants. 

 

10.2. Reentry Capsule Problem 

Figures 46 to 53 present the pressure and temperature contours generated by the VL scheme as using the CGR, 

CGL, LGR, and LGL collocation points coupled with the C83 turbulence model. The maximum-pressure peak 

for this turbulence model is obtained by the CGR collocation points. Good symmetry properties are observed in 

all figures. The shock wave is well captured by the numerical scheme. 

Figures 54 to 61 exhibit the pressure and temperature contours calculated by the VL scheme when using the 

CGR, CGL, LGR, and LGL collocation points coupled with the W88 turbulence model. Solutions free of 

oscillations are verified. Good symmetry properties are verified in all figures. 

Figures 62 to 69 show the pressure and temperature contours obtained by the VL scheme as using the CGR, 

CGL, LGR, and LGL collocation points coupled with the YGO96 turbulence model. Some oscillations are 

verified in Fig. 64, but the shock wave is well captured. The wake is well captured, highlighting the excellent 

treatment of this frontier by the boundary condition. 

Figures 70 to 77 presents the pressure and temperature contours calculated by the VL scheme when using the 

CGR, CGL, LGR, and LGL collocation points coupled with the C97 model. Homogeneous solutions are 

observed in the field. The maximum-pressure peak for this turbulence model is obtained when using CGR 

collocation points. Good symmetry properties are again verified. The wake and the shock wave are well 

detected by the numerical scheme. 

Figures 78 to 85 exhibit the pressure and temperature contours generated by the VL scheme as using the CGR, 

CGL, LGR, and LGL collocation points coupled with the RGYB98 model. The maximum-pressure peak with 

this turbulence model is obtained as using the CGR collocation points. Good symmetry properties are observed. 

As can be observed, the CGR collocation points always pointed to the maximum-pressure peak in the field in all 

cases studied in this work. On the other hand, the maximum temperature peak is generally obtained by the LGR 

collocation points. 

 

10.3. Other Results 

Figure 86 shows the convergence history of the VL schem to a 4
th

 order spectral method using LGR for 

collocation points and to an ENO solution also of 4
th

 order using Newton interpolation function, both coupled 

with the C83 turbulence model, to the blunt body viscous case. The LGR collocation points were chosen 

because they provide the best convergence of the VL scheme for the turbulent case coupled with the C83 model 

for a formal 4
th

 order of accuracy. The ENO procedure was implemented by the author and was used for 

numerical comparisons. To details of the implementation of the ENO procedure on a context of chemical non-

equilibrium and with turbulence actuation, the reader is encouraged to read [47, 48]. As can be seen in Fig. 86, 

the spectral LGR method coupled with the VL scheme and the C83 turbulence model was the most efficient 

converging in 754 iterations, with a maximum CFL of 0.30. The ENO solution was inefficient compared with 

the spectral method. The maximum allowable CFL number employed in the ENO solution was 0.10, converging 

in 2,750 iterations. 

As conclusion, the correct implementation of the proposed spectral method guide us to an efficient high order 

scheme, converging in less than 800 iterations in the turbulent case, for the blunt body problem, when 

programmed coupled with the VL scheme. The LGR variant of the spectral method for the turbulent case was 

the most efficient in the studies performed by the author and ratified the fast convergence as expected. 

 

10.4. Quantitative Analysis 

In order to perform a quantitative analysis, the present reactive results are compared to the perfect gas solutions. 
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The stagnation pressures at the blunt body nose, and at the reentry capsule nose were evaluated assuming the 

perfect gas formulation. Such parameter calculated at this way is not the best comparison, but in the absence of 

practical reactive results, this constitutes the best available solution. 

To calculate the stagnation pressure at the nose of these two configurations, [49] presents in its B Appendix 

values of the normal shock wave properties ahead of the configuration. The ratio pr0/pr∞ is estimated as function 

of the normal Mach number and the stagnation pressure pr0 can be determined from this parameter. Hence, 

Table 4 gives the theoretical stagnation pressure values obtained for the two configurations at the initial-normal-

Mach number. The value of pr∞ is determined by the following expression: 

2

charchar

initial

a

pr
pr




,                                                                 (95) 

where, for example, for the blunt body case, prinitial = 687N/m
2
, char = 0.004kg/m

3
 and achar = 317.024m/s. 

Considering these values, one concludes that pr∞ = 1.709 (non-dimensional). Using the ratio obtained from [49], 

the stagnation pressure ahead of the configuration nose is estimated as 170.87 unities. Table 5 compares values 

of the stagnation pressure obtained from the simulations with the theoretical values and show the percentage 

errors. As can be seen, the best result for the blunt body problem is provided by the CGL collocation points, 

with an error of 2.66%, when coupled with the VL scheme and the C83 turbulence model; and by the CGL 

collocation points again, with an error of 3.88%, when coupled with the VL scheme and the YGO96 turbulence 

model, for the reentry capsule problem. 

As the hypersonic flows around the blunt body, and reentry capsule configurations were simulated with a zero 

value to the attack angle, a zero lift coefficient, due to geometry symmetry, is the expected value for this 

aerodynamic coefficient. Table 6 presents an analysis of the lift aerodynamic coefficient, based only on pressure 

contribution, in this study. As can be observed, the best value to the lift coefficient for the blunt body problem is 

obtained by the LGR collocation points, coupled with the VL scheme and the C83 turbulence model; and by the 

LGL collocation points, coupled with the VL scheme and the C83 turbulence model again, for the reentry 

capsule problem. 

 

10.5 . Computational Performance 

Table 7 presents the computational data of the VL scheme for the blunt body, and for the reentry capsule 

problems. It shows the CFL number and the number of iterations to convergence for all studied cases in the 

current work. It can be verified that the best performance of the VL scheme for the blunt body problem is 

obtained coupled with the C83 turbulence model as using the LGR collocation points, employing a CFL of 0.30, 

and converging in 754 iterations. On the other hand, the best performance of the VL scheme for the reentry 

capsule problem occurred again when using the LGR collocation points, employing a CFL of 0.30, and 

converging in 630 iterations, when coupled with the C83 turbulence model. 

As final conclusion, it is possible to highlight that, for the blunt body problem, the VL scheme coupled with the 

C83 turbulence model using CGL collocation points had the best performance in estimating the stagnation 

pressure, and the lift aerodynamic coefficient was better estimated by the VL scheme as using the LGR 

collocation points also coupled with the C83 turbulence model; and for the reentry capsule problem, the VL 

scheme coupled with the YGO96 turbulence model using CGL collocation points had the best performance in 

estimating the stagnation pressure, and the lift aerodynamic coefficient was better estimated by the VL scheme 

as using the LGL collocation points also coupled with the C83 turbulence model. Moreover, the best 

performance of the numerical scheme, for the 4
th

 order of accuracy, was coupled with the C83 turbulence model, 

when using the LGR collocation points, employing a CFL of 0.30, and converging in 754 iterations, whereas for 

the 16
th

 order of accuracy, the best performance of the numerical scheme was coupled with the C83 turbulence 

model, when using the LGR collocation points, employing a CFL of 0.30, and converging in 630 iterations. 

Finally, to close this work, the computational cost of the numerical scheme using the several types of collocation 

points is presented in Tabs. 8-9. For the 4
th

 order of accuracy, the cheapest combination was the VL scheme 

coupled with W88 turbulence model and using LGL collocation points with a cost of 0.0002292 sec/per-

volume/per-iteration, whereas for the 16
th

 order of accuracy the cheapest was due to the VL scheme coupled 
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with the YGO96 turbulence model and using the CGR collocation points with a cost of 0.0005523 sec/per-

volume/per-iteration. 

Table 1: Values of Sx and Sy 

Surface Sx Sy 
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

 

 

Table 2: Initial conditions to the blunt body problem 

Property Value 

Minitial 8.78 

initial 0.00326 kg/m
3
 

prinitial 687 Pa 

Uinitial 4,776 m/s 

Tinitial 694 K 

Altitude 40,000 m 

cN 10
-9

 

cO 0.07955 

cO2 0.13400 

cNO 0.05090 

LREF 2.0 m 

Rechar 2.386x10
6
 

kinitial 10
-6

 

initial 10Uinitial/LREF 

Qh,initial 10
-4 2

initialh
 

 

Qs,initial 10
-2



ns

1i

2

initial,ic
 

 

Table 3: Initial conditions to the reentry capsule problem 

Property Value 

Minitial 10.6 

initial 0.02863 kg/m
3
 

prinitial 3,885 Pa 

Uinitial 4,628 m/s 

Tinitial 473 K 

Altitude 40,000 m 

cN 10
-9

 

cO 0.07955 

cO2 0.13400 

cNO 0.05090 

LREF 3.0 m 

Rechar 3.468x10
6
 

kinitial 10
-6

 

initial 10Uinitial/LREF 



Maciel ESG                                               Journal of Scientific and Engineering Research, 2018, 5(5):395-430 

 

Journal of Scientific and Engineering Research 

413 

 

Qh,initial 10
-4 2

initialh
 

 

Qs,initial 10
-2



ns

1i

2

initial,ic
 

 

Table 4: Values of theoretical stagnation pressure 

Problem: Minitial: pr0/pr∞: pr∞: pr0 (Theoretical): 

Blunt body 8.78 99.98 1.709 170.87 

Reentry capsule 10.6 145.46 9.664 1,405.73 

 

Table 5: Values of stagnation pressure and respective errors 

Physical Problem: Turbulence Model: Spectral Method: pr0: (Numerical) Error: 

  CGR 186.57 9.19 

 Coakley (1983) CGL 166.32 2.66 

  LGR 142.97 16.33 

  LGL 152.36 10.83 

  CGR 198.05 15.91 

 Wilcox (1988) CGL 177.20 3.70 

  LGR 143.10 16.25 

  LGL 151.58 11.29 

Blunt Body  CGR 197.97 15.86 

(4
th

 Order) YGO (1996) CGL 177.13 3.66 

(pr0 = 170.87)  LGR 143.06 16.28 

  LGL 151.56 11.30 

  CGR 197.97 15.86 

 Coakley (1997) CGL 177.14 3.67 

  LGR 143.06 16.28 

  LGL 151.56 11.30 

  CGR 197.98 15.87 

 RGYB (1998) CGL 177.15 3.68 

  LGR 143.06 16.28 

  LGL 151.56 11.30 

  CGR 1,516.87 7.91 

 Coakley (1983) CGL 1,463.45 4.11 

  LGR 1,110.72 20.99 

  LGL 1,113.53 20.79 

  CGR 1,512.70 7.61 

 Wilcox (1988) CGL 1,462.22 4.02 

  LGR 1,109.06 21.10 

  LGL 1,111.94 20.90 

Reentry Capsule  CGR 1,511.91 7.55 

(16
th

 Order) YGO (1996) CGL 1,460.23 3.88 

(pr0 = 1405.73)  LGR 1,108.42 21.15 

  LGL 1,111.19 20.95 

  CGR 1,512.23 7.58 

 Coakley (1997) CGL 1,460.48 3.89 

  LGR 1,108.51 21.14 

  LGL 1,111.28 20.95 

  CGR 1,492.55 6.18 

 RGYB (1998) CGL 1,461.51 3.97 
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  LGR 1,108.63 21.13 

  LGL 1,111.55 20.93 

 

Table 6: Values of lift aerodynamic coefficient 

Physical Problem: Turbulence Model: Spectral Method: cL: 

  CGR 3.4539x10
-13

 

 Coakley (1983) CGL 1.4063x10
-13

 

  LGR 3.7615x10
-14

 

  LGL 5.9045x10
-14

 

  CGR 1.4758x10
-11

 

 Wilcox (1988) CGL 6.7084x10
-12

 

  LGR 2.0571x10
-12

 

  LGL 2.7263x10
-12

 

  CGR 4.3244x10
-13

 

Blunt Body YGO (1996) CGL 1.9694x10
-13

 

(4
th

 Order)  LGR 5.6360x10
-14

 

  LGL 7.2430x10
-14

 

  CGR 3.6155x10
-12

 

 Coakley (1997) CGL 1.2655x10
-12

 

  LGR 3.4263x10
-13

 

  LGL 4.6925x10
-13

 

  CGR -6.5017x10
-06

 

 RGYB (1998) CGL -2.2084x10
-06

 

  LGR -3.5759x10
-06

 

  LGL -2.9655x10
-06

 

  CGR -2.6933x10
-09

 

 Coakley (1983) CGL -1.5419x10
-08

 

  LGR 3.8242x10
-11

 

  LGL 3.0848x10
-11

 

  CGR 2.7734x10
-06

 

 Wilcox (1988) CGL -5.9709x10
-07

 

  LGR -5.6410x10
-07

 

  LGL -2.8482x10
-07

 

  CGR -1.9102x10
-07

 

Reentry Capsule YGO (1996) CGL -1.7173x10
-07

 

(16
th

 Order)  LGR -7.4149x10
-09

 

  LGL -7.4846x10
-09

 

  CGR -4.4359x10
-08

 

 Coakley (1997) CGL -4.3042x10
-08

 

  LGR -3.2714x10
-08

 

  LGL -3.2832x10
-08

 

  CGR -8.3037x10
-06

 

 RGYB (1998) CGL -5.9528x10
-06

 

  LGR -47125x10
-06

 

  LGL -5.0541x10
-06

 

 

Table 7: Computational data 

Physical Problem: Turbulence Model: Spectral Method: CFL: Iterations: 

  CGR 0.70 961 

 Coakley (1983) CGL 0.50 782 
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  LGR 0.30 754 

  LGL 0.30 882 

  CGR 0.70 1,005 

 Wilcox (1988) CGL 0.50 786 

  LGR 0.30 773 

  LGL 0.30 904 

  CGR 0.70 1,004 

Blunt Body YGO (1996) CGL 0.50 780 

(4
th

 Order)  LGR 0.30 772 

  LGL 0.30 903 

  CGR 0.70 995 

 Coakley (1997) CGL 0.50 777 

  LGR 0.30 769 

  LGL 0.30 900 

  CGR 0.70 995 

 RGYB (1998) CGL 0.50 777 

  LGR 0.30 769 

  LGL 0.30 900 

  CGR 0.50 854 

 Coakley (1983) CGL 0.50 782 

  LGR 0.30 630 

  LGL 0.08 1,398 

  CGR 0.10 3,371 

 Wilcox (1988) CGL 0.10 3,139 

  LGR 0.08 1,308 

  LGL 0.08 1,330 

  CGR 0.10 3,345 

Reentry Capsule YGO (1996) CGL 0.10 3,117 

(16
th

 Order)  LGR 0.08 1,339 

  LGL 0.08 1,329 

  CGR 0.10 3,342 

 Coakley (1997) CGL 0.10 3,108 

  LGR 0.08 1,338 

  LGL 0.08 1,329 

  CGR 0.10 3,312 

 RGYB (1998) CGL 0.10 3,104 

  LGR 0.08 1,309 

  LGL 0.08 1,334 

 

Table 8: Computational cost (4
th

 Order) 

Turbulence Model: Spectral Method: Cost 

(sec/per-volume/per-iteration) 

Coakley (1983) Chebyshev-Gauss-Radau 0.0003455 

Chebyshev-Gauss-Lobatto 0.0002324 

Legendre-Gauss-Radau 0.0002321 

Legendre-Gauss-Lobatto 0.0003391 

Wilcox (1988) Chebyshev-Gauss-Radau 0.0003308 

Chebyshev-Gauss-Lobatto 0.0002302 

Legendre-Gauss-Radau 0.0003412 

Legendre-Gauss-Lobatto 0.0002292 
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YGO (1996) Chebyshev-Gauss-Radau 0.0003510 

Chebyshev-Gauss-Lobatto 0.0002380 

Legendre-Gauss-Radau 0.0003401 

Legendre-Gauss-Lobatto 0.0002308 

Coakley (1997) Chebyshev-Gauss-Radau 0.0003538 

Chebyshev-Gauss-Lobatto 0.0002399 

Legendre-Gauss-Radau 0.0003358 

Legendre-Gauss-Lobatto 0.0003323 

RGYB (1998) Chebyshev-Gauss-Radau 0.0002339 

Chebyshev-Gauss-Lobatto 0.0003425 

Legendre-Gauss-Radau 0.0003430 

Legendre-Gauss-Lobatto 0.0003423 

 

Table 9: Computational cost (16
th

 Order) 

Turbulence Model: Spectral Method: Cost 

(sec/per-volume/per-iteration) 

Coakley (1983) Chebyshev-Gauss-Radau 0.0005663 

Chebyshev-Gauss-Lobatto 0.0005816 

Legendre-Gauss-Radau 0.0005823 

Legendre-Gauss-Lobatto 0.0005593 

Wilcox (1988) Chebyshev-Gauss-Radau 0.0005798 

Chebyshev-Gauss-Lobatto 0.0005598 

Legendre-Gauss-Radau 0.0005573 

Legendre-Gauss-Lobatto 0.0005778 

YGO (1996) Chebyshev-Gauss-Radau 0.0005523 

Chebyshev-Gauss-Lobatto 0.0005779 

Legendre-Gauss-Radau 0.0005604 

Legendre-Gauss-Lobatto 0.0005931 

Coakley (1997) Chebyshev-Gauss-Radau 0.0005633 

Chebyshev-Gauss-Lobatto 0.0005627 

Legendre-Gauss-Radau 0.0005596 

Legendre-Gauss-Lobatto 0.0005607 

RGYB (1998) Chebyshev-Gauss-Radau 0.0005676 

Chebyshev-Gauss-Lobatto 0.0006452 

Legendre-Gauss-Radau 0.0005790 

Legendre-Gauss-Lobatto 0.0005610 

 
Figure 1: Computational cell 
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Figure 2. Blunt body geometry 

 
Figure 3. Blunt body viscous mesh 

 
Figure 4: Reentry capsule geometry 

 
Figure 5: Reentry capsule viscous mesh 

BLUNT BODY TURBULENT SOLUTIONS – 4
th

 ORDER 

 
Figure 6: Pressure contours (CGR-C83) 

 
Figure 7: Temperature contours (CGR-C83) 

 
Figure 8: Pressure contours (CGL-C83) 

 
Figure 9: Temperature contours (CGL-C83) 
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Figure 10: Pressure contours (LGR-C83) 

 
Figure 11: Temperature contours (LGR-C83) 

 
Figure 12: Pressure contours (LGL-C83) 

 
Figure 13: Temperature contours (LGL-C83) 

 
Figure 14: Pressure contours (CGR-W88) 

 
Figure 15: Temperature contours (CGR-W88) 

 
Figure 16: Pressure contours (CGL-W88) 

 
Figure 17: Temperature contours (CGL-W88) 
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Figure 18: Pressure contours (LGR-W88) 

 
Figure 19: Temperature contours (LGR-W88) 

 
Figure 20: Pressure contours (LGL-W88) 

 
Figure 21: Temperature contours (LGL-W88) 

 
Figure 22: Pressure contours (CGR-YGO96) 

 
Figure 23: Temperature contours (CGR-YGO96) 

 
Figure 24: Pressure contours 

(CGL-YGO96) 

 
Figure 25: Temperature contours 

(CGL-YGO96) 
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Figure 26: Pressure contours (LGR-YGO96) 

 
Figure 27: Temperature contours (LGR-YGO96) 

 
Figure 28: Pressure contours (LGL-YGO96) 

 
Figure 29: Temperature contours (LGL-YGO96) 

 
Figure 30: Pressure contours (CGR-C97) 

 
Figure 31: Temperature contours (CGR-C97) 

 
Figure 32: Pressure contours (CGL-C97) 

 
Figure 33: Temperature contours (CGL-C97) 
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Figure 34: Pressure contours (LGR-C97) 

 
Figure 35: Temperature contours (LGR-C97) 

 
Figure 36: Pressure contours (LGL-C97) 

 
Figure 37: Temperature contours (LGL-C97) 

 
Figure 38: Pressure contours (CGR-RGYB98) 

 
Figure 39: Temperature contours (CGR-RGYB98) 

 
Figure 40: Pressure contours (CGL-RGYB98) 

 
Figure 41: Temperature contours (CGL-RGYB98) 
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Figure 42: Pressure contours (LGR-RGYB98) 

 
Figure 43: Temperature contours (LGR-RGYB98) 

 
Figure 44: Pressure contours (LGL-RGYB98) 

 
Figure 45: Temperature contours (LGL-RGYB98) 

REENTRY CAPSULE TURBULENT SOLUTIONS – 16
th

 ORDER 

 
Figure 46: Pressure contours (CGR-C83) 

 
Figure 47: Temperature contours (CGR-C83) 

Figure 48: Pressure contours (CGL-C83) 
 

Figure 49: Temperature contours (CGL-C83) 
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Figure 50: Pressure contours (LGR-C83) 

 
Figure 51: Temperature contours (LGR-C83) 

 
Figure 52: Pressure contours (LGL-C83) 

 
Figure 53: Temperature contours (LGL-C83) 

 
Figure 54: Pressure contours (CGR-W88) 

 
Figure 55: Temperature contours (CGR-W88) 

 
Figure 56: Pressure contours (CGL-W88) 

 
Figure 57: Temperature contours (CGL-W88) 
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Figure 58: Pressure contours (LGR-W88) 

 
Figure 59: Temperature contours (LGR-W88) 

 
Figure 60: Pressure contours (LGL-W88) 

 
Figure 61: Temperature contours (LGL-W88) 

 
Figure 62: Pressure contours (CGR-YGO96) 

 
Figure 63: Temperature contours (CGR-YGO96) 

 
Figure 64: Pressure contours (CGL-YGO96). 

 
Figure 65: Temperature contours (CGL-YGO96) 
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Figure 66: Pressure contours (LGR-YGO96) 

 
Figure 67: Temperature contours (LGR-YGO96) 

 
Figure 68: Pressure contours (LGL-YGO96) 

 
Figure 69: Temperature contours (LGL-YGO96) 

 
Figure 70: Pressure contours (CGR-C97) 

 
Figure 71: Temperature contours (CGR-C97) 

 
Figure 72: Pressure contours (CGL-C97) 

 
Figure 73: Temperature contours (CGL-C97) 
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Figure 74: Pressure contours (LGR-C97) 

 
Figure 75: Temperature contours (LGR-C97) 

 
Figure 76: Pressure contours (LGL-C97) 

 
Figure 77: Temperature contours (LGL-C97) 

 
Figure 78: Pressure contours (CGR-RGYB98) 

 
Figure 79: Temperature contours (CGR-RGYB98) 

 
Figure 80: Pressure contours (CGL-RGYB98) 

 
Figure 81: Temperature contours (CGL-RGYB98) 
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Figure 82: Pressure contours (LGR-RGYB98) 

 
Figure 83: Temperature contours (LGR-RGYB98) 

 
Figure 84: Pressure contours (LGL-RGYB98) 

 
Figure 85: Temperature contours (LGL-RGYB98) 

 
Figure 86: Convergence histories 

11. Conclusions 

This work analyzed a spectral method applied to the Favre-averaged Navier-Stokes equations in two-

dimensions, employing a structured spatial discretization, and using a conservative and finite volume 

approaches. Turbulence was taken into account considering the implementation of five k- two-equation 
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turbulence models, based on the works of [19-23]. The numerical experiments were performed using the [24] 

numerical algorithm. The Euler backward method was applied to march the scheme in time. The spectral 

method presented in this work employed collocation points and variants of Chebyshev and Legendre 

interpolation functions were analyzed. Chemical non-equilibrium was studied using a five species chemical 

model. The “hot gas” hypersonic flows around a blunt body, and around a reentry capsule, in two-dimensions, 

were simulated. The results have indicated that the Chebyshev collocation point variants were more accurate in 

terms of stagnation pressure estimations. In the blunt body problem such errors were inferior to 16.0%, being 

2.66% the best result, while in the reentry capsule problem such errors were inferior to 8.0%, being 3.88% the 

best result. The Legendre collocation point variants were more accurate in terms of the lift coefficient 

estimations. Moreover, the Legendre collocation point variants were more computationally efficient and 

cheaper. 

As final conclusion, it is possible to highlight that, for the blunt body problem, the [24] scheme coupled with the 

[19] turbulence model using Chebyshev-Gauss-Lobatto collocation points had the best performance in 

estimating the stagnation pressure, and the lift aerodynamic coefficient was better estimated by the [24] scheme 

as using the Legendre-Gauss-Radau collocation points also coupled with the [19] turbulence model; and for the 

reentry capsule problem, the [24] scheme coupled with the [21] turbulence model using Chebyshev-Gauss-

Lobatto collocation points had the best performance in estimating the stagnation pressure, and the lift 

aerodynamic coefficient was better estimated by the [24] scheme as using the Legendre-Gauss-Lobatto 

collocation points also coupled with the [19] turbulence model. Moreover, the best performance of the 

numerical scheme, for the 4
th

 order of accuracy, was coupled with the [19] turbulence model, when using the 

Legendre-Gauss-Radau collocation points, employing a CFL of 0.30, and converging in 754 iterations, whereas 

for the 16
th

 order of accuracy, the best performance of the numerical scheme was coupled with the [19] 

turbulence model, when using the Legendre-Gauss-Radau collocation points, employing a CFL of 0.30, and 

converging in 630 iterations. 

Finally, to close this work, the computational cost of the numerical scheme using the several types of collocation 

points was presented in Tabs. 8-9. For the 4
th

 order of accuracy, the cheapest combination was the [24] scheme 

coupled with [20] turbulence model and using Legendre-Gauss-Lobatto collocation points with a cost of 

0.0002292 sec/per-volume/per-iteration, whereas for the 16
th

 order of accuracy the cheapest was due to the [24] 

scheme coupled with the [21] turbulence model and using the Chebyshev-Gauss-Radau collocation points with a 

cost of 0.0005523 sec/per-volume/per-iteration. 
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