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Abstract Zadeh [1], 1965, introduced the concept of fuzzy sets by defining them in terms of mapping from a set 

into the unit interval on the real line. Fuzzy sets were introduced to provide means to describe situations 

mathematically which give rise to ill-defined classes, i.e., collections of objects for which there is no precise 

criteria for membership. 
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Zadeh [1], 1965, introduced the concept of fuzzy sets by defining them in terms of mapping from a set into the 

unit interval on the real line. Fuzzy sets were introduced to provide means to describe situations mathematically 

which give rise to ill-defined classes, i.e., collections of objects for which there is no precise criteria for 

membership. Collections of this type have vague or ”fuzzy” boundaries; there are objects for which it is 

impossible to determine whether or not they belong to the collection. The classical mathematical theories, by 

which certain types of certainty can be expressed, are the classical set theory and the probability theory. In terms 

of set theory, uncertainty is expressed by any given set of possible alternatives in situations where only one of 

the alternatives may actually happen. Uncertainty expressed in terms of sets of alternatives results from the 

nonspecificity inherent in each set. Probability theory expresses uncertainty in terms of a classical measure on 

subsets of a given set of alternatives. The set theory, introduced by Zadeh, presents the notion that membership 

in a given subset is a matter of degree rather than that of totally in or totally out. With fuzzy set theory, one 

obtains a logic in which statements may be true or false to different degrees rather than the bivalent situation of 

being true or false; consequently, certain laws of bivalent logic do not hold, e.g. the law of the excluded middle 

and the law of contradiction. This results in an enriched scientific methodology. Chang [2], introduced the 

notion of a fuzzy topology of a set in 1968, and our work is based on the study of the properties of fuzzy 

topological spaces. 

Throughout this paper, L will be a Hutton algebra, i.e. complete and completely distributive lattice which has an 

order-reversing involution ' : L L , the smallest element 0 and the largest element 1 ( 0 1 ). We assume that 

a reader is familiar with the usual notions and basic concepts of L- topology and the lattice theory. For all 

undefined basic concepts are given in [1-6]. Let : L R  be a monotone decreasing mapping.  
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1. Auxiliary lemmas. 

Lemma 1.1 If    0 0t t    for some 0t R , then for 0    0 0 0,s t t   :  0t 
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Hence, the relation    0 0t t     is contrary to the hypothesis.  

Lemma 1.2 If    0 0t t    for some 0t R , then for 0 ,  0 0 0,s t t  
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Proof. By Lemma 1.1  0 0 0,s t t   :  0t   0s  or  0t 
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Since   is monotone decreasing we have 
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i.e.     0 0t s    . Hence, since  0t   0s  , we have  0s   0s  . Therefore, 

   0 0s s    .

  

 The following lemma is proved similarly.  

Lemma 1.3 If    0 0t t     for some 0t R , then for 0 ,  0 0 0, :s t t   

   0 0s s    .  

 

2. Metrics on  R L . 

Theorem 2.1 The map      *: ,d R L R L    R , defined as  
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If ,0  then it is clear that 2' : 't B t t    . Therefore,  't k   and 2 't t  . Since 

      and  is monotone decreasing, then    ' 't t     and    ' 't t   . Therefore,  

     ' ' 'k t t t       , 

 i.e.  'k t  . It is clear that 2*: * 't t t t    . Hence, from  
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and *t A . Because of the arbitrariness of k we have 
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