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Abstract The present paper present a nonlinear mathematical model, which analyzes the spread and stability of 

the model epidemic. In the first model a population of size )(tN  at time t, is divided into three subclasses, 

where )(tS , )(tI , and )(tQ  denote the sizes of the population susceptible to disease, and infectious 

members, quarantine members, then the second model we introduce two classes )(1 tI , and )(2 tI . 

This paper deals with the equilibrium and stability, for the two models. 
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1. Introduction 

This paper, discuss the equilibrium and stability of two non linear models with temporary immunity and the 

different positives parameters. We have made the following contributions: 

 The equilibrium and stability of the firts model, we obtain a disease-free equilibrium in the absence of 

infection but in the presence of infection, it was a unique positive endemic equilibrium and we define 

the basic reproduction number of the infection 0R . 

 The equilibrium and stability of the first model with age, we obtain a the unique positive equilibrium 

point. 

 Next, we modified the previous model, then we have the population is divided into five subclasses, we 

study the equilibrium and stability of the model and we define the basic reproduction number of the 

infection  
10R . 

 Finally we find the relationship betwen the basic reproduction number of both epidemic models.  

 

2.  SIQ Model 

This paper considers the following epidemic model with temporary immunity: 
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 (1.1) 

Consider a population of size )(tN  at time t , this population is divided into three subclasses, with 

);()()(=)( tQtItStN   where ),(tS  ),(tI  and )(tQ  denote the sizes of the population susceptible to 

disease, and infectious members, quarantine members with the possibility of infection through temporary 
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immunity, respectively. The positive constants 1 , ,2  and 3  represent the death rates of susceptible, 

infectious and quarantine. Biologically, it is natural to assume that  .,min 321    The positive constant 

d   is natural mortality rate. The positive constants   represent rate of insidence. The positive constant   

represent the recovery rate of infection. The positive constant   is the average numbers of contacts infective 

for S  and I . k  the rate of unknown persons infected with are detected by the system.   the positive constant 

is the parameter of immigration.   the positive constant is the parameter of emigration. The term 

)()(2 





tQtSe  reflects the fact that an individual has recovered from infection and still are alive after 

infectious period  , where   is the length of immunity period. 

The initial condition of (1.1)  is given as. 

 

             0,,=,=,= 321   QIS  (1.2) 

Where C T),,(= 321  such that       0,0== 11  S        0,0== 22  I  

      0.0== 33  Q  

Let C  denote the Banach space ),0],([ 3RC  of continuous functions mapping the interval ,0][   into 

3R . With a biological meaning, we further assume that     00=  ii   for 1,2,3.=i  
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 (1.3) 

With the initial conditions. 

             0,,=,=,= 321   QIS  (1.4) 

Where       0.0,00,00,0 321    

The region ,),,{(= 3

 RQIS  }<
1 d

NQIS








 is positively invariant set of (3) . 

2.1. Equilibrium and stability 

An equilibrium point of system (1.3)  satisfies  
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 (1.5) 

We calculate the points of equilibrium in the absence and presence of infection. 

In the absence of infection 0=I , the system  1.5  has a disease-free equilibrium 0E : 
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The eigenvalues can be determined by solving the characteristic equation of the linearization of  1.3  near 0E  

is  
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 (1.6) 

So the eigenvalues are  
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    .=,= 2211 dAdA    

In order for ,1A  ,2A  to be negative, it is required that. 
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 (1.7) 

Then the basic reproduction number of the infection 0R as follows. 
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 (1.8) 

 

In the presence of infection 0I , substituting in the system,   also contains a unique positive, 

endemic equilibrium  TQISE 

 ,,=  where  
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 (1.9) 

So  TQISE 

 ,,=  is the unique positive endemic equilibrium point which exists if 1.>0R  

Theorem 1 The disease-free equilibrium 0E  is locally asymptotically stable if 1<0R  and unstable if 1.>0R   

Theorem 2 With 1,>0R  system (1.3)  has a unique non-trivial equilibrium 


E is locally asymptotically 

stable.  

 

3. SIR Model with Age 

The age distributions of the numbers in the classes are denoted by ),( taS , ),( taI , and ),( taQ , denote the 

sizes of the population susceptible to disease, and infectious members, quarantine members with the possibility 

of infection through temporary immunity, respectively of age ,a  at time t , )(ad  is the age-specific death rate, 

The system of partial equations for the age distributions is 

 

 

 

 











































),,()(),()(=

),,()(),()(),()(=

),,()(),()(=

31

121

11

taQadtaSt
a

Q

t

Q

taSttaIadtaSt
a

I

t

I

taSttaSad
a

S

t

S







 (1.10) 

With  

   1.11),(=)(1 dataQkt    (1) 

 dataQet ),(=)( 2
1 





 

3.1. Equilibrium and stability 

Assume that sub population does not depend on the time when the system  1.10  is written as follows    
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 (1.12) 

The initial condition of (1.12)  is given as 

 111 =(0),=(0),=(0) QQIISS  (1.13) 

Differential equations of the system  1.12  are solved with different methods of resolutions and with  1.13 , 

so 
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Where 

  daada )(exp=)(   (1.17) 

The system  1.12  has the unique positive equilibrium point ,1P   

     .0,0,0=ˆ,ˆ,ˆ= 1111

TT

QISP  

We calculate the Jacobian matrix according to the system (12)  with 1P  

       )(00)()00(= 3020111 adadadcccPJ    

 The epidemic is locally asymptotically stable if and only if all eigenvalues of the Jacobian matrix  1PJ  have 

negative real part. The eigenvalues can be determined by solving the characteristic equation of the linearization 

of  13  near 1P  is  

      0=)(00)(00)(det 302011 AadAadAadccc    (1.18) 

So the eigenvalues are 

    )(=,)(=),(= 3322111 adAadAadA    

In order to ,, 21 AA and 3A  will be negative, it is required that  

 )(< 11 ad  

The basic reproduction number 0R  is defined as the total number of infected population in the resulting sub-

infected population where almost all of the uninfected. The basic reproduction number of the infection 0R is 

defined as follows: 
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The time during which people remain infective is defined as  
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The doubling time dt  of the epidemic can be obtained as 
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T
td  (1.20) 

Theorem The disease-free equilibrium 1P  is locally asymptotically stable if 1<0R  and unstable if 1.>0R  

Proof 

Let  ,14  so if 1<0R  then 0,>11    so )(aS  converges to zero. 

Let  ,15  so 
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If 1<0R , )(aI  converges to zero. 

Let  ,17  so 
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If 1,<0R  )(aQ  converges to zero. 

 

4. Modified SIQ Model 

 

This paper considers the modified epidemic model with temporary immunity: 
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 (2.1) 

The modified epidemic model is divided into five subclasses, ),(tS  ),(tI  ),(1 tI  ),(2 tI  and )(tQ  denote 

the sizes of the population susceptible to disease, and infectious members, quarantine members with the 

possibility of infection through temporary immunity, respectively. 1 constant rate from I  to ;1I and 2  

constant rate from I  to .2I The positive constants 
2

2

1

2 ,  represent the death rates of 
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The initial condition of (2.1)  is given as. 

                     0,,=,=,=,=,= 5423121   QIIIS  (2.2) 

Where C T),,,,(= 54321  such that       0,0== 11  S  

              423122 =0,=0,0==  III        0.0== 35  Q  

Let C  denote the Banach space ),0],([ 5RC  of continuous functions mapping the interval ,0][   into 

5R . With a biological meaning, we further assume that     00=  ii   for 1,2,3,4,5.=i  
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 (2.3) 

With the initial conditions. 

                    0,,=,=,=,=,= 5423121   QIIIS  (2.4) 

Where           0.000,00,00,00,0 54321    
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4.1. Equilibrium and stability 

An equilibrium point of system (2.3)  satisfies  
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 (2.5) 

We calculate the points of equilibrium in the absence and presence of infection. 

In the absence of infection 0=I , the system  2.5  has a disease-free equilibrium  
10E : 
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The eigenvalues can be determined by solving the characteristic equation of the linearization of  2.3  near 0E . 

So the eigenvalues are  
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In order for ,1A  ,2A  ,3A  4A  to be negative, then the basic reproduction number of the infection  
10R as 

follows. 
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In the presence of infection 0I , substituting in the system, 1  also contains a unique positive, endemic 

equilibrium       TQIIISE 

 ,,,,= 211
 where  
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 (2.8) 

So       TQIIISE 

 ,,,,= 211
 is the unique positive endemic equilibrium point which exists if 

1.>0R  

Theorem 3 0R  is the basic reproduction number of system  ,2.3 and  
10R  is the basic reproduction number 

of system  ,2.3 then 
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Proof 
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Theorem 4 The disease-free equilibrium  
10E  is locally asymptotically stable if 
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5. Conclusion 

This paper addresses a the equilibrium and stability of the first epidemic model with temporary immunity, in the 

absence of infection, the system has a disease-free equilibrium, in the presence of infection the system, has a 

unique positive, endemic equilibrium. Then we study equilibrium of the first model  with âge. 

Both systems have the unique positive equilibrium point locally asymptotically stable if 1,<0R    1<
10R and 

has a unique non-trivial equilibrium is locally asymptotically stable, if   1.>1,>
100 RR  
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