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A GENETIC ALGORITHM FOR A MULTI-

PRODUCT DISTRIBUTION PROBLEM 

 
Abstract: This paper addresses a distribution problem involving a 

set of different products that need to be distributed among a set of 

geographically disperse retailers and transported from the single 

warehouse to the aforementioned retailers. The distribution and 

transportation are made in order to satisfy retailers’ demand while 

satisfying storage limits at both the warehouse and the retailers, 

transportation limits between the warehouse and the retailers, and 

other operational constraints. This problem is combinatorial in 

nature as it involves the assignment of a discrete finite set of objects, 

while satisfying a given set of conditions. Hence, we propose a 

genetic algorithm that is capable of finding good quality solutions. 

The genetic algorithm proposed is used to a real case study involving 

the distribution of eight products among 108 retailers from a single 

warehouse. The results obtained improve on those of company’s 

current practice by achieving a cost reduction of about 13%. 

Keywords: Genetic Algorithms; Multi-Product; Distribution 

Problem. 

 

 

1. Introduction  
 

Physical distribution of products has been 

grown significantly over time, particularly in 

the last decades. This can be explained by the 

growing market of e-commerce, increasing 

customer service expectations, globalization, 

among other factors. Due to the highly 

competitive environment of physical 

distribution systems, several decision 

elements must be optimized in order to 

achieve efficiency and effectiveness, namely: 

transportation, inventory, warehousing, and 

order handling. These decision elements, 

typically, involve several issues from which 

many problems stem. For example, 

transportation problems may involve fleet 

management, fleet routing, transportation 

mode choices, to name but a few. Addressing 

simultaneously all the issues that may arise in 

each of the elements mentioned is often 

impossible due to the excessive complexity 

involve.  

This work considers a supply chain, 

consisting of a single warehouse and multiple 

retailers facing deterministic demands, under 

a vendor managed inventory (VMI) policy. 

The vertical collaboration in the distribution 

network can enhance its efficiency. In this 

system, the vendor has dynamic information 

from the retailers about their inventory levels 

and is able to take decisions when and how 

much to deliver (Waller et al., 1999). 

Moreover, the problem being addressed falls 

into the inventory routing category. The basic 

inventory routing problem (IRP) is defined as 

"the repeated distribution of single product, 

from a single facility, to a set of customers 

over a given planning horizon" (Campbell et 

al., 1998). Several operational constraints 

related to inventory holding, transportation, 

and product supply capacities, as well as 

demand restrictions must be considered while 

planning the inventory and transportation 

operations.  
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The inventory routing problem is not new, 

and it has been the subject of research for over 

30 years, during which a multitude of 

versions arose. Many of the considered 

versions have their original, or at least are 

inspired, on real applications that require the 

consideration of aspects such as the planning 

period (single, multiple, infinite), the demand 

type (deterministic and stochastic), the route 

type (direct only, with transshipment), the 

inventory strategies (allowed/not allowed 

backlog and shortages), the timing of delivery 

(on time, early, late), among many others. A 

comprehensive discussion on inventory 

routing problems, including models and 

limitations can be found in (Moin & Salhi, 

2007) and (Bertazzi & Speranza, 2012) and 

thorough reviews, based on a new 

classification of the problem, with respect the 

structural variants, and the availability of 

information on customer demand are 

provided by Coelho et al. (2013), Roldán et 

al. (2017), and Dong et al. (2017). 

The basic IRP is NP-hard since it includes the 

vehicle routing problem, which is similar to a 

pick-up and delivery problem (Lenstra & 

Rinnooy Kan, 1981). Therefore, many 

researchers proposed heuristic or 

metaheuristic solution approaches for the 

problem. Li et al. (2014) considered the IRP 

in a gasoline distribution network, in which 

stockout avoidance in every station is of 

major importance. The problem has been 

solved using a tabu search algorithm. A 

solution is constructed by a sequence of the 

gas stations in non-decreasing order, and the 

stations are then inserted into the vehicle 

routes in a greedy manner. Coelho et al. 

(2014) defined an IRP that considers 

customer demands to be gradually revealed 

over the time. They propose heuristic 

methods based on proactive and on reactive 

policies over a rolling horizon. Under the 

reactive policy one tracks the state of the 

system, and an order to replenish the 

inventory to a certain level is triggered 

whenever the inventory reaches the reorder 

point. The reorder point is determined taking 

into account both the delivery lead time and 

the stockout risk associated due to the 

stochasticity of the demand. The proactive 

policy, in addition to tracking the state of the 

system also makes predictions regarding the 

following period demand. Recently, Cordeau 

et al. (2015) consider a similar version of the 

IRP, however, in it customers have a 

maximum inventory level for each product 

rather than a total shared capacity for all 

products. The authors propose a three-phase 

heuristic, which decomposes the decision 

process into i) replenishment plans using a 

Lagrangian-based method, ii) delivery 

sequences for the vehicles using a simple 

procedure, and iii) planning and routing 

decisions using a mixed-integer linear 

programming model. More recently, other 

approximate solution approaches have been 

designed for the IRP; for example, a genetic 

algorithm (GA) approach for the IRP of a 

single perishable product by Azadeh et al. 

(2017), a hybrid randomized variable 

neighborhood descent for the multi-vehicle, 

multi-product and multi-period IRP by Peres 

et al. (2017), a GA for location-inventory-

routing model for perishable products by 

Hiassat et al. (2017), a discrete invasive weed 

optimization and a GA for the IRP for a single 

product with allowed backorders by Jahangir 

et al. (2019), to name but a few.  

In recent years, environmental concerns have 

also made their way into the IRP and several 

works have been published. Rahimi et al. 

(2017) developed a multi-objective fuzzy 

mathematical model for the IRP considering 

the economic performance, the service level, 

and the carbon footprint. The authors also 

consider that perishable products have a 

specific expiration date. Further, they 

developed a Non-dominated Sorting GA II 

(NSGA-II), to find solutions for the problem. 

Soysal et al. (2018) consider the benefits of 

horizontal collaboration between multiple 

suppliers and customers of perishable 

products. They developed a mathematical 

formulation of the IRP which minimizes the 

expected inventory cost, the expected waste 

cost, fuel cost from transportation operations, 

and also driver cost. The interested reader is 
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referred to (Malladi & Sowlati, 2018) for a 

recent review on IRPs considering 

conventional performance indicators and 

sustainability objectives. 

In this work, we considered a particular case 

of the IRP, with simpler routing decisions, as 

will be discussed in Section 2. The motivation 

for addressing this problem is a specific 

application from a Portuguese fashion 

company, and it involves 108 retailers and 

eight products (merchandise categories). In 

the version studied here the routing part is 

ignored as the transportation is not done in-

house, that is, a contract has been signed with 

a transportation company, in which the costs 

incurred are proportional to the boxes 

transported. Though, the transportation costs 

and its lower and upper limits are taken into 

account. Therefore, in here and regarding the 

transportation decisions we only determine 

the number of boxes to be transported from 

the warehouse to each retailer. These and 

other approximations have been considered in 

the literature; the more closely related one 

being the consideration of direct shipping 

only. It has been shown that if the quantity to 

deliver to each retailer is close a full truck 

load, then direct delivery is efficient (Gallego 

& Simchi-Levi, 1990). We use both direct 

and clustered shipping in order to minimize 

the overall inventory, transportation, and 

handling costs, while satisfying demand, 

storage capacity, and transportation capacity 

limits. All four above mentioned major 

elements are considered when deciding on 

each product quantities to transport from the 

single warehouse to the several retailers 

involved. Some elements are explicitly 

addressed; while others are considered 

through the relations among the elements, the 

limitations imposed, or the cost minimization. 

The remaining sections of this paper are 

organized as follows. Section 2 provides the 

detailed problem description and, after 

introducing the notation used, the mixed 

integer linear programming model developed. 

In Section 3, the proposed genetic algorithm 

is described in detail. Section 4 reports results 

corresponding to the parameter tuning for the 

proposed GA and comparative results for the 

case study of the Portuguese fashion company 

under consideration. Finally, conclusions are 

drawn in Section 5. 
 

2. Problem Definition and 

Formulation 
 

The problem being addressed consists of a 

single warehouse that supplies a set of 

retailers with known and deterministic 

demand. A fleet of vehicles with limited 

capacity is used to send the products from the 

warehouse to the retailers. The warehouse is 

supplied from outside sources and since these 

supplies are not decided within the scope of 

the problem, they are considered a problem 

parameter. However, warehouse incoming 

supplies have to be coordinated with outgoing 

ones as the warehouse has limited storage 

capacity. Warehouse outgoing shipments 

must also be coordinated with retailers 

incoming shipments (from the warehouse) as 

retailers, in addition to have minimum 

demand requirements also have limited 

storage capacity, and no shortage or backlog 

are allowed for them. Finally, the total cost, 

which is to be minimized, includes inventory 

holding costs and handling costs at both the 

warehouse and the retailers and shipping 

costs (from the warehouse to the retailers). 

Storage capacity at the retailers has a soft and 

a hard constraint. The soft constraint refers to 

the retailer’s own storage space that can be 

used without incurring in additional costs 

since it is part of the retailer and thus, can be 

considered a sunk cost. The hard constraint 

refers to additional storage space, up to 10% 

of the original limit that can be used; 

however, to use this additional space a cost 

per square meter has to be paid. 

Demand at each retailer is calculated based on 

the previous year sales as well as on an 

expected growth rate. Furthermore, due to 

business rules its value must cover for the 

expected demand of the following four 

weeks. An additional complexity that we 

need to deal with comes from the fact that 
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product needs are specified in product units; 

however, product handling, transportation, 

and storage needs are all specified in boxes.  

The company needs to make the product 

allocation decisions every week and usually 

considers a planning horizon of 52 weeks. In 

this work, this multi-period planning problem 

is addressed by a repeated single period 

approach, in which solutions are obtained for 

each week by the genetic algorithm described 

in Section 3. The notation used is provided in 

Table 1, followed by the mathematical 

programming model. 

 

Table 1. Notation Used in the MILP Model 
Indices and 

Sets 

Description 

𝑖 ∈ 𝐼 Set of products, 𝐼 =  {1, … , 𝑛}. 

𝑘 ∈ 𝐾 Set of retailers, including the warehouse, 𝐾 = {1, … , 𝑚}, where 𝑚 is associated 

with the warehouse. 

Variables Description 

𝑥𝑖𝑘  Quantity (in units) of product 𝑖 ∈ 𝐼 sent to retailer 𝑘 ∈ 𝐾\{𝑚}. 

𝑧𝑖𝑘  Number of boxes required to send 𝑥𝑖𝑘 units of product 𝑖 ∈ 𝐼 to retailer 𝑘 ∈ 𝐾\{𝑚}.  

𝑆𝑖𝑘
0  Initial stock (in units) of product 𝑖 ∈ 𝐼 at facility (retailer or warehouse) 𝑘 ∈ 𝐾. 

𝑆𝑖𝑘
1  Final stock (in units) of product 𝑖 ∈ 𝐼 at facility (retailer or warehouse) 𝑘 ∈ 𝐾. 

𝑄𝑖𝑘 Number of boxes required to hold the stock product 𝑖 ∈ 𝐼 in facility (retailer or 

warehouse) 𝑘 ∈ 𝐾. 

𝑒𝑘 Excessive overall stock, in boxes, at facility (retailer or warehouse) 𝑘 ∈ 𝐾. 

Parameters Description 

𝐷𝑖𝑘 Demand (in units) of product 𝑖 ∈ 𝐼 by retailer 𝑘 ∈ 𝐾\{𝑚}. 

𝑃𝑖𝑘 Expected sales (in units) of product 𝑖 ∈ 𝐼 by retailer 𝑘 ∈ 𝐾\{𝑚}. 

𝐴𝑖𝑘 Real sales (in units) of product 𝑖 ∈ 𝐼 by retailer 𝑘 ∈ 𝐾\{𝑚}. 

𝑈𝑆𝑘  Total storage capacity (in boxes) of facility (retailer or warehouse) 𝑘 ∈ 𝐾. 

𝑂𝑂𝑖  On order quantity (in boxes) of product 𝑖 ∈ 𝐼. 

𝐶𝐻 Handling cost per box. 

𝐶𝑅𝑘  Rent cost per square meter for facility (retailer or warehouse) 𝑘 ∈ 𝐾. 

𝑇𝐶 Transportation cost per box. 

𝑈𝑀 Maximum number of boxes that can be transported to a retailer. 

𝑈𝑁𝑖𝑘  Maximum quantity of product 𝑖 ∈ 𝐼 that can be transported to retailer 𝑘 ∈ 𝐾\{𝑚}. 

𝐿𝑁𝑖𝑘  Minimum quantity of product 𝑖 ∈ 𝐼 that needs to be transported to retailer 𝑘 ∈
𝐾\{𝑚}. 

𝐶𝑖  Box capacity (in units) for product 𝑖 ∈ 𝐼. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝐶 = 𝑇𝐶 ∑ ∑ 𝑧𝑖𝑘

𝑘∈𝐾\{𝑚}𝑖∈𝐼

+ 𝐶𝐻 ∑ ∑ 𝑧𝑖𝑘

𝑘∈𝐾𝑖∈𝐼

+ ∑
𝐶𝑅𝑘 ×  𝑒𝑘

2
𝑘∈𝐾

. (1) 

Subject to: 
 

𝑧𝑖𝑘 ≥
𝑥𝑖𝑘

𝐶𝑖
. ∀𝑖 ∈ 𝐼. 𝑘 ∈ 𝐾\{𝑚}, (2) 

𝑧𝑖𝑚 = ∑ 𝑧𝑖𝑘

𝑘∈𝐾\{𝑚},

. ∀𝑖 ∈ 𝐼, (3) 

𝑄𝑖𝑘 ≥
𝑠𝑖𝑘

0 + 𝑥𝑖𝑘

𝐶𝑖
. ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾\{𝑚}, (4) 
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𝑄𝑖𝑚 ≥
𝑠𝑖𝑚

0 − ∑ 𝑥𝑖𝑘𝑘∈𝐾\{𝑚},

𝐶𝑖
 . ∀𝑖 ∈ 𝐼, (5) 

𝑒𝑘 ≥ ∑ 𝑄𝑖𝑘

𝑛

𝑖= 1

− 𝑈𝑆𝑘 . ∀𝑘 ∈ 𝐾\{𝑚}, (6) 

𝑒𝑚 ≥ ∑(𝑄𝑖𝑚 + 𝑂𝑂𝑖)

𝑖∈𝐼,

− 𝑈𝑆𝑚 .  (7) 

𝑠𝑖𝑘
0 + 𝑥𝑖𝑘  ≥ 𝐷𝑖𝑘 , ∀ 𝑖 𝜖 𝐼, 𝑘 𝜖 𝐾\{𝑚}, (8) 

𝑒𝑘 ≤ 0.1 𝑈𝑆𝑘 , ∀𝑘 ∈ 𝐾, (9) 

𝑥𝑖𝑘 ≤ 𝑈𝑁𝑖𝑘 , ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾\{𝑚}, (10) 

𝑥𝑖𝑘 ≥ 𝐿𝑁𝑖𝑘 , ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾\{𝑚}, (11) 

∑ 𝑥𝑖𝑘

𝑖∈𝐼,

≤ 𝑈𝑀 . ∀𝑘 ∈ 𝐾\{𝑚}, (12) 

𝑠𝑖𝑘
1 = 𝑠𝑖𝑘

0 + 𝑥𝑖𝑘 − 𝑃𝑖𝑘 , ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾\{𝑚}, (13) 

𝑠𝑖𝑚
1 = 𝑠𝑖𝑚

0 − ∑ 𝑥𝑖𝑘

𝑘∈𝐾\{𝑚},

,. ∀ 𝑖 𝜖 𝐼, (14) 

𝑥𝑖𝑘 , 𝑧𝑖𝑘 , 𝑄𝑖𝑘 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, ∀𝑖 ∈ 𝐼. 𝑘 ∈ 𝐾, (15) 

𝑠𝑖𝑚
0 , 𝑠𝑖𝑚

1 , 𝑒𝑘 ≥ 0, ∀𝑖 ∈ 𝐼. 𝑘 ∈ 𝐾. (16) 

 

The cost minimization nature of the problem 

is described by Equation (1). There are three 

types of costs, namely transportation costs, 

handling costs, and storage costs. Both the 

transportation costs and the handling costs are 

proportional to the total number of boxes; 

while the storage costs are only incurred with 

excessive storage, i.e., when the total number 

of boxes in inventory is over the pre-defined 

storage capacity but within the 10% allowed.  

Constraints (2) to (5) ensure the required 

number of boxes are used to send the products 

from the warehouse to the retailers, the 

number of boxes leaving the warehouse is the 

same as the total number of boxes arriving at 

the retailers, the correct number of boxes is 

used to hold the inventory at both the 

warehouse and the retailers. Constraints (6) 

and (7) determine the number of boxes 

required to hold the inventory over the 

capacity limits for the warehouse and the 

retailers, respectively. Constraints (8) ensure 

that each retailer has enough of each product 

to satisfy the demand calculated using the 

business rule, while constraints (9) ensure 

that the overall excessive stock in each 

retailer does not exceed the 10% limit over 

the pre-defined storage capacity. Retailer 

incoming shipments, per product, must be 

within retailer upper and lower limits as given 

by inequalities (10) and (11). In addition, an 

upper limit on the total amount of product 

each retailer can handle is imposed by 

inequalities (12). Equations (14) and (15) are 

the usual balance equations for the retailers 

and the warehouse, respectively. Finally, the 

nature of the variables is stated in constraints 

(16) and (17). It should be noticed that, the 

variables associated with stock (𝑠 and 𝑒 

variables) need only to be defined as non-

negative, since they are obtained by adding 

and subtracting integer values. 

Recall that the problem involves the planning 

for 52 weeks, thus the model introduced is to 
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be solved every week. Therefore, the 

inventory held at the retailers and warehouse 

at the beginning of the week is given as any 

other input, while the one at the end of the 

week is an output to be used in the following 

week. Thus, at the beginning of each week the 

inventory needs to be corrected by using the 

real sales rather than the expected sales: 𝑠𝑖𝑘
1 =

𝑠𝑖𝑘
0 + 𝑃𝑖𝑘 − 𝐴𝑖𝑘. Regarding the warehouse, at 

the end of the current week the on-order true 

value becomes known and thus the inventory 

is updated as 𝑠𝑖𝑚
1 = 𝑠𝑖𝑚

0 + 𝑂𝑂𝑖 . 
 

3. The Genetic Algorithm 
 

As mentioned before, the problem being 

addressed is NP-hard; therefore, a 

metaheuristic approach, more specifically a 

genetic algorithm, is proposed. This section 

describes the GA in detail. 

GA is a stochastic search metaheuristic based 

in the principles of natural selection and 

evolution of the species, first proposed by 

Holland and his colleagues (Holland, 1975). 

A population (set of individuals representing 

solutions) is evolved (improved) over several 

generations (iterations) through the use of 

genetic operators (selection, crossover, and 

mutation). The basic idea is to select the fittest 

(best) individuals (solutions) from the 

population to produce offspring (new 

solutions) that inherit the genetic material 

(solution characteristics) of the parents. Fitter 

(better) parents (solutions) are more likely to 

produce fitter (better) offspring (new 

solutions), which in turn will have a better 

chance of surviving and being chosen for 

future reproduction. This process is repeated 

many times with the purposes of finding a 

population with the fittest individuals, i.e. a 

set of very good quality solutions that 

hopefully contains an optimal or at least one 

very close to it. 

Solutions that consist of a set of variables 

represent an individual that consist of a set of 

genes: The set of genes forms a chromosome, 

which in a GA is, usually, encoded as a string. 

The GA works with these strings, which then 

need to be decoded, i.e., converted into a 

solution in order to evaluate its fitness 

(solution quality). This conversion needs to 

be fast as it is carried out for the whole 

population at every generation (iteration). 

The structure of the GA proposed in this work 

is depicted in Figure 1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Structure of the proposed genetic algorithm 
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3.1. Solution Representation 
 

Encoding of chromosomes is one of the 

problems, when you are starting to solve 

problem with GA. Encoding very depends on 

the problem. 

Solution representation, also known as 

encoding is very much problem dependent. 

Several encoding schemes have been 

proposed over the years; in here a solution is 

represented by a matrix of integers. Rows are 

associated with retailers and thus, there are as 

many rows as retailers to be supplied and 

columns are associated with products, i.e., the 

number of columns is given by the number of 

products. Therefore, the genes are the 

quantities of each product to be sent to each 

retailer. This encoding is easy to understand 

and provides a straightforward decoding; 

although feasibility issues may arise. Figure 2 

provides an example of a possible solution for 

an instance involving eight products and four 

retailers to which the products are to be 

delivered to. The first column shows the 

quantities of product 1 to be sent to the 

retailers, in this example: none to retailers 1 

and 2, 72 units to retailer 3, and 147 units to 

retailer 4. If we look at rows, we can read the 

amount of each product that is sent to each 

retailer; for example, the first rows, specifies 

that retailer 1 receives 33 units of product 2, 

530 units of product 4, and three units of 

product 7, but it does not receive any units of 

products 1, 3, 5, 6, and 8. 

 
 Products 

Retailers 1 2 3 4 5 6 7 8 

1 0 33 0 530 0 0 3 0 

2 0 68 77 139 83 434 37 25 

3 72 56 115 225 113 429 126 15 

4 147 0 28 235 241 105 8 34 

Figure 2. Example of a chromosome with 

the chosen representation. 

 

To create an initial population, for each gene 

we generate a random number respecting the 

corresponding transport bounds. This is done 

not only due to feasibility issues, but also to 

prevent the generation of very large numbers 

that would compromise the individuals at the 

start of the execution. However, we allow the 

generation of non-feasible solutions and deal 

with the infeasibilities in the fitness function. 

Nevertheless, in the final generation, a repair 

mechanism is used to ensure feasibility of at 

least the five most promising solutions. The 

repair mechanism addresses one constraint 

type at the time and in the following order 

using the lexicographic rule: warehouse 

capacity, demand, retailers' capacity, and 

transportation limits. Nonetheless, 

transportation limits are an exception. 

The repair mechanism starts by checking if 

the warehouse capacity is exceeded and if 

needed applies a coefficient greater than 1 all 

quantities being sent to the retailers. The 

reason behind this choice is that sending the 

over the limit stock to the retailers is more 

efficient, in terms of costs. The retailers' 

storage capacity is then checked and the 

quantities sent are rectified whenever needed. 

Next, the availability of each product in each 

retailer is checked in order to ensure that 

retailers do not run out of stock. If needed 

additional quantities are sent. In case this 

condition is not met, the quantities to be 

received by these retailers needs to be 

reduced. Lastly, it is ensured that the transport 

limits are met. If the value is above the upper 

limit, then some or all quantities to be sent 

need to be decreased; while if it is below the 

lower limit the reverse is true. Changes to 

satisfy these limits may override previous 

corrections. 

 

3.2. The Fitness Function 

 
The fitness function is used to evaluate the 

quality of solutions. In this work, this is done 

by calculating a score value for each solution 

which is made of two components: one based 

on the solution cost and another based on the 

solution infeasibilities. This way we are able 

to classify the individual’s admissibility and 

alignment with the objective. 
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Cost related points are awarded to each 

solution having a cost below the population 

average cost; that is, a solution gets 50×m 

points, where m is the number of facilities 

(retailers+1).  

Feasibility points are awarded per satisfied 

constraint. Solutions get 10 points for each 

satisfied constraint, except for the ones 

regarding demand satisfaction and excessive 

stock. Regarding the former, 10 points are 

awarded to each retailer for each product, 

whenever demand can be fully satisfied; 5 

points whenever 90% of the expected demand 

is covered; and 0 otherwise. Recall that by 

demand here we mean the 4-weeks expected 

demand imposed by the business rule. 

Finally, regarding the excessive stock, if it 

remains within the 10% allowed, although 

undesirable, 5 points are awarded. 

Additionally, transportation limits are treated 

as an all or nothing, that is, a solution gets 20 

points whenever the quantity of a product sent 

to a retailer falls within both its specified 

upper and lower limits; or 0 otherwise. Note 

that there are (3n+2)×(m-1)+1 constraints. 

 
3.3. Generation of New Population 

 

Once all the chromosomes have been 

evaluated by using the fitness function, the 

current population is sorted in decreasing 

order of such value.  

To generate the next population, first a 

percentage of the top individuals, i.e., 

solutions with the best fitness scores (elites), 

are copied directly onto the next population. 

By preserving the best individuals of each 

generation, we can speed up the performance 

of the GA and ensure that the best solution 

found is kept. The rest of the new population 

is generated using the crossover operator and 

mutation.  

The selection strategy creates a pool with the 

best scoring solutions and then chooses 

randomly two chromosomes from this pool. 

After selecting two chromosomes a two-point 

crossover strategy (see Figure 3) is used to 

generate new chromosomes. This is repeated 

until a predefined number of chromosomes is 

obtained. 

 
 

          

Parents         

          

          

    crossover points   

          

          

Children         

          

Figure 3. A two-point crossover example 

 

To avoid excessive convergence, we 

introduce new randomly generated 

chromosomes, rather than the usual mutation. 

These new chromosomes are generated in the 

same manner as the initial population, 

mimicking the immigration.  

Finally, the new generation is obtained by 

joining together the chromosomes obtained 

through crossover, the newly generated ones, 

and the very best chromosomes of the current 

generation. 

 

4. Computational Experiments 
 

This section reports on the performance of the 

proposed GA, which is evaluated by 

comparing its results to those of the current 

decision strategy of the company. As 

mentioned before, the specific problem under 

consideration is faced a Portuguese major 

player in the fashion industry. The instance 

solved here involves deciding on a weekly the 

quantities of eight products to be sent from a 

single warehouse to 108 retailers, over a 52-

week planning horizon. Products are handled 

and fitted in the boxes prior to shipping. Each 

box can carry up to 6 units of each product, 

except for two of them. In the latter case, 12 

units can be fitted into a box. The boxes are 

transported by the trucks, directly, from the 

warehouse to the retailers. There are limits on 

transported quantities and on both retailers 

and warehouse holding capacities that cannot 

not be exceeded. In addition, holding 

capacities at both the retailers and the 

warehouse above a pre-specified limit, which 
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lower than capacity, are allowed but 

undesirable. The computational tests were 

carried out on a PC with 64 bits @ 2.2GHz 

Intel® Core™ i5-5200U CPUs with 6 GB 

RAM. The algorithm was implemented in 

Python 3.6.0.  

Once a decision has been made regarding the 

quantities of each product to be sent to each 

retailer, the products need to be boxed at the 

warehouse and then loaded on to trucks. 

Recall that no mixed product boxes are 

allowed. Handling costs are incurred at the 

warehouse. Then, the trucks transport the 

boxes to the respective retailers and 

transportation costs are incurred. Both these 

costs are proportional to the number of boxes 

involved. Upon arrival at the retailers, the 

boxes are verified, and the products need to 

be unboxed and properly stored – retailer 

handling costs. The retailer handling costs are 

also proportional to the number of boxes 

received. 

Regarding inventory, as said before there are 

two types of upper limit. Up until the lower 

one, no additional inventory holding costs are 

incurred as they are considered sunk costs.  

However, if the inventory is between this 

value and the maximum admissible one, then 

a holding cost is incurred. This holding cost is 

based on rent cost. More specifically, holding 

costs are paid for each additional square meter 

of space required to retailer the boxes and in 

each square meter up to two boxes can be 

fitted.  

Handling costs are based on the minimum 

wage (3.16 €/ℎ) and on the fact that on 

average each box takes about 10 and 20 

minutes to be handled at the warehouse and at 

the retailers, respectively; thus, the values 

used are 0.53€ and 1.05€, respectively. 

Storage costs use the zone regulated cost per 

square meter, which given the retailers 

location is either 679.35€ or 602.92€. Finally, 

the transportation costs, as mentioned before, 

are fixed and per box and were set to 1 euro. 

Demand varies along the 52-weekss period, 

as well as with retailer and product. 

 

4.1. Parameter Selection for the GA 

 

Parameter values have been empirically 

determined by running the algorithm for 25 

weeks for 27 different testing scenarios, 

corresponding to the combinations of three 

possibilities of crossover, elite, and mutant 

rates, three population sizes, and three 

number of generations as follows: crossover, 

elite, and mutant rates of (0.75, 0.15, 0.1), 

(0.79, 0.2, 0.01), and (0.8, 0.15, 0.05); 

population sizes of 30, 40, and 60 solutions; 

and 200, 800, and 2000 generations.  

The best performing four test settings out of 

the 27 considered are shown in Table 2. These 

l tests have shown the algorithm to converge 

quickly, since three out of the four run only 

for 200 generations. 

Figure 4 compares two of the best four test 

settings (4 and 10) with two other settings (5 

and 12) regarding total costs over the 25-

weeks period considered in the initial test 

settings. 

As it can be seen, in the first weeks the total 

costs as well as their increase are very similar 

for all test settings. However, from week 17 

and until the end costs of test 5 become much 

larger and increase at a faster pace. The same 

happens with test 12 although the magnitude 

of the increase is slightly smaller.

 

Table 2. Top Four Test Out of the 27 Considered 

Test setting Generations Population Crossover Elite Mutants 

2 200 30 0.79 0.20 0.01 

4 200 40 0.75 0.15 0.10 

8 200 60 0.79 0.20 0.01 

10 800 30 0.75 0.15 0.10 

  



 

910                                  B. Cretú, D. B. M. M. Fontes, S. M. Homayouni 

 
Figure 4. Comparison of two good performing combinations with two underperforming 

combinations 

 

Another feature that can be observed in this 

graph is that the costs are always increasing. 

This, as will be discussed later, is due to the 

fact that the company is accumulating stock 

over time, i.e., the quantities purchased are 

larger than needed and, as a consequence, the 

costs, mainly the holding costs, are always 

increasing. However, noting can be done as 

purchasing decisions are out of the problem 

being considered; they are indeed an input 

parameter. 

 

4.2. General Results 
 
As said before, we address the problem by 

solving each week in the isolation. However, 

since the decisions of one week impact the 

following week inventories, there is still a 

connection between the decisions. 

Nevertheless, the optimization done is local 

rather than global, in terms of the time span.  

The quality of the solutions obtained, and in 

particular of the best one, are compared with 

those of current practice in the company. In 

particular, comparisons are made regarding 

weekly costs and accumulated costs over the 

52-weeks time horizon, see the graphs in 

Figures 5 and 6. All results reported refer to 

averages over the ten runs executed for the 

four combinations of parameter values 

corresponding to four test settings described 

in Table 2. 

 

 
Figure 5. Weekly total costs 

 

As it can be seen, all four combinations 

outperform current practice. The latter one 

having higher weekly costs up until week 23 

and then in line with the ones of our approach 

until about week 32. Current practice weekly 

costs are then lower for a couple of weeks and 

in week 35 they spike up, increasing by about 

14 000%. Finally, from week 41 onwards 

current practice leads to smaller weekly costs 

in most weeks. The cumulative weekly costs 
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in our approach, regardless the parameter 

value settings considered, are always lower. 

The overall reduction is at least 6.6% (test 8) 

and can be as large as 12.76% (test 4). 

As said before, and due to the stochastic 

nature of GAs, each test was run 10 times. 

Table 3 reports the average, minimum, and 

maximum total cost and its standard 

deviation, as well as the average 

computational time required to obtain the 

solutions reported. Test setting 4 provides an 

average improvement of 12.76% over current 

practices, ranging from an astonishing 

22.84% to a loss of 12.90%. Therefore, this 

combination of parameter values seems to be 

the less robust. Test setting 2, on the other 

hand, seems to be the most robust one. 

Although it does not always find a better 

solution than the current practice, on average 

it improves on it by 8.46% and in the worst 

case the solution it finds is only 1.28% worse. 

Nevertheless, test setting 10 seems to be the 

most interesting one. In addition to be the one 

that finds the best solution (32.77% better that 

of the current practice), it provides an average 

cost savings of 9.65% with the worst solution 

found being only 2.38% worse than that of 

current practice. Finally, test setting 8 seems 

to be the least interesting one, since it has the 

smallest average improvement (6.59%), 

without being the more robust or the one 

finding the best solution. 

 

 
Figure 6. Accumulated total costs.  

 

Table 3. Summary of the Results Obtained with the Best Four GA Parameter Settings 
Test 

setting 
Average cost 

Minimum 

total cost 

Maximum 

total cost 

Standard 

Deviation 

Average total 

time (Sec) 

2 2,034,499 1,810,830 2,250,966 160,799 3600 

4 1,938,824 1,714,728 2,509,217 301,809 9478 

8 2,075,908 1,801,760 2,322,256 163,918 7920 

10 2,007,966 1,494,040 2,275,324 266,491 14460 

 

To determine the company’s current practice 

policy, a downstream manager spends 7.5 to 

10 hours a week analyzing the quantities, of 

each product, to send to each retailer. 

Although, the number of products being 

analyzed by the manager is greater than the 

number that we used in our algorithm. A 

downstream manager looks at, at least, 30 

products per season. It was not possible to 

access more data than what was used (i.e., 108 

retailers, 8 products, 52 weeks). Furthermore, 

the results can be used to compare with future 

work and to further convince the managers 

that the tool is a good option to what is used 

today. Table 4 reports the runtime of for each 

test settings used. To conclude the analysis of 

the results, we believe that taking into account 

the computational time requirements, test 

settings 2 is the most reliable. With the tests 

that were executed, despite not yielding the 

best results, it has the lowest variance and 

runs faster than the remaining ones, providing 

a solution in about one hour. 
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Table 4. Computation Runtime 
Test 

setting 

Iterations 

per Sec 
Generations 

Time (Sec) 

per iteration 

Total 

Time (Sec) 

2 2.85 200 70 3600 

4 1.10 200 182 9478 

8 1.31 200 153 7920 

10 2.87 800 279 14460 

5. Conclusions 
 

This work addresses a multiproduct 

distribution problem that is closely related to 

the direct shipping inventory routing 

problem. The problem being solved is a real 

application of the apparel industry. Due to the 

combinatorial nature of the problem a genetic 

algorithm approach was proposed. In the GA, 

although the population is generated at 

random, the random values are limited by the 

transportation quotas as lower and upper 

bounds. By seeding this information, the 

individuals achieve good fitness scores at the 

early stages. Further, a specific score system 

to evaluate the chromosomes is proposed. 

The individuals are given points not only for 

fulfillment of the objective function, but also 

for not violating constraints of the problem. 

Thus, admissibility of a solution can also be 

assessed throughout the execution of the 

algorithm. Although, at the end of each run (a 

week), a repair function is used to rectify any 

deviations from the constraints of the problem 

and thus, enforce feasibility. 

The solutions obtained have been compared 

to those of the company’s current practice. In 

addition, to find them quicker and 

autonomously, we were able to obtain total 

costs improvements that on average are 

6.59% to 12.76% lower, depending on the GA 

parameter values. Although in about 20% of 

all solutions obtained by the GA, the total cost 

incurred is 5.27% higher, in the remaining 

80% the total cost was improved by an 

average of 12.93%, ranging from 0.67% up to 

32.78%. 

Future work already undergoing aims at 

solving the mixed integer linear programming 

model developed, either exactly or 

approximately, perhaps via the relaxation of 

some integer variables. 
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