List-Chromatic Number and Chromatically Unique of the Graph $K_{2}^{r}+O_{k}$.
 Número de lista cromática y cromáticidad única del grafo $K_{2}^{r}+O_{k}$.

Le Xuan Hung*

Received, Apr. 17, 2019
Accepted, Jun. 22, 2019
DOI: http://dx.doi.org/10.17268/sel.mat.2019.01.04

Abstract

In this paper, we determine list-chromatic number and characterize chromatically unique of the graph $G=K_{2}^{r}+$ O_{k}. We shall prove that $\operatorname{ch}(G)=r+1$ if $1 \leq k \leq 2$, G is χ-unique if $1 \leq k \leq 3$.

Keywords. Chromatic number, list- chromatic number, chromatic polynomial, chromatically unique graph, complete r-partite graph.

\section*{Resumen}

En este artículo, determinamos el número de lista cromática y caracterizamos cromáticamente el grafo $G=$ $K_{2}^{r}+O_{k}$. Probaremos que ch $(G)=r+1$ si $1 \leq k \leq 2$, G es χ-único si $1 \leq k \leq 3$.

Palabras clave. Número Cromático, polinomio cromático, grafo único cromaticmente grafo completo r-partido.

1. Introduction. All graphs considered in this paper are finite undirected graphs without loops or multiple edges. If G is a graph, then $V(G)$ and $E(G)$ (or V and E in short) will denote its vertex-set and its edge-set, respectively. The set of all neighbours of a subset $S \subseteq V(G)$ is denoted by $N_{G}(S)$ (or $N(S)$ in short). Further, for $W \subseteq V(G)$ the set $W \cap N_{G}(S)$ is denoted by $N_{W}(S)$. If $S=\{v\}$, then $N(S)$ and $N_{W}(S)$ are denoted shortly by $N(v)$ and $N_{W}(v)$, respectively. For a vertex $v \in V(G)$, the degree of v (resp., the degree of v with respect to W), denoted by $\operatorname{deg}(v)$ (resp., $\operatorname{deg}_{W}(v)$), is $\left|N_{G}(v)\right|$ (resp., $\left|N_{W}(v)\right|$). The subgraph of G induced by $W \subseteq V(G)$ is denoted by $G[W]$. The empty and complete graphs of order n are denoted by O_{n} and K_{n}, respectively. Unless otherwise indicated, our graph-theoretic terminology will follow [2].

A graph $G=(V, E)$ is called r-partite graph if V admits a partition into r classes $V=V_{1} \cup V_{2} \cup \ldots \cup V_{r}$ such that the subgraphs of G induced by $V_{i}, i=1, \ldots, r$, is empty. An r-partite graph in which every two vertices from different partition classes are adjacent is called complete r-partite graph and is denoted by $K_{\left|V_{1}\right|,\left|V_{2}\right|, \ldots,\left|V_{r}\right|}$. The complete r-partite graph $K_{\left|V_{1}\right|,\left|V_{2}\right|, \ldots,\left|V_{r}\right|}$ with $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{r}\right|=s$ is denoted by K_{s}^{r}

Let $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs such that $V_{1} \cap V_{2}=\emptyset$. Their union $G=G_{1} \cup G_{2}$ has, as expected, $V(G)=V_{1} \cup V_{2}$ and $E(G)=E_{1} \cup E_{2}$. Their join defined is denoted $G_{1}+G_{2}$ and consists of $G_{1} \cup G_{2}$ and all edges joining V_{1} with V_{2}.

Let $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. We call G_{1} and G_{2} isomorphic, and write $G_{1} \cong G_{2}$, if there exists a mapping $f: V_{1} \rightarrow V_{2}$ with $u v \in E_{1}$ if and only if $f(u) f(v) \in E_{2}$ for all $u, v \in V_{1}$.

Let $G=(V, E)$ be a graph and λ is a positive integer.
A λ-coloring of G is a mapping $f: V(G) \rightarrow\{1,2, \ldots, \lambda\}$ such that $f(u) \neq f(v)$ for any adjacent vertices $u, v \in V(G)$. The smallest positive integer λ such that G has a λ-coloring is called the chromatic number of G and is denoted by $\chi(G)$. We say that a graph G is n-chromatic if $n=\chi(G)$.

Two λ-colorings f and g are considered different if and only if there exists $u \in V(G)$ such that $f(u) \neq g(u)$. Let $P(G, \lambda)$ (or simply $P(G)$ if there is no danger of confusion) denote the number of distinct λ-colorings of G. It is well-known that for any graph $G, P(G, \lambda)$ is a polynomial in λ, called the chromatic polynomial of G. The notion of chromatic polynomials was first introduced by Birkhoff [4] in 1912 as a quantitative approach to tackle

[^0]the four-color problem. Two graphs G and H are called chromatically equivalent or in short χ-equivalent, and we write in notation $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. A graph G is called chromatically unique or in short χ-unique if $G^{\prime} \cong G$ (i.e., G^{\prime} is isomorphic to G) for any graph G^{\prime} such that $G^{\prime} \sim G$. For examples, all cycles are χ-unique [10]. The notion of χ-unique graphs was first introduced and studied by Chao and Whitehead [7] in 1978. The readers can see the surveys [10], [11] and [13] for more informations about χ-unique graphs.

Let $\left(S_{v}\right)_{v \in V}$ be a family of sets. We call a coloring f of G with $f(v) \in S_{v}$ for all $v \in V$ is a list coloring from the lists S_{v}. The graph G is called λ-list-colorable, or λ-choosable, if for every family $\left(S_{v}\right)_{v \in V}$ with $\left|S_{v}\right|=\lambda$ for all v, there is a coloring of G from the lists S_{v}. The smallest positive integer λ such that G has a λ-choosable is called the list-chromatic number, or choice number of G and is denoted by $\operatorname{ch}(G)$.

In this paper, we shall determine list-chromatic number and characterize chromatically unique for the graph $G=K_{2}^{r}+O_{k}$. Namely, we shall prove that $\operatorname{ch}(G)=r+1$ if $1 \leq k \leq 2$ (Section 2), G is χ-unique if $1 \leq k \leq 3$ (Section 3).
2. List colorings. We need the following lemmas $1-4$ to prove our results.

Lemma 1 ([3]). If K_{n} is a complete graph on n vertices then $\chi\left(K_{n}\right)=n$.
Lemma 2. If $G=K_{n_{1}, n_{2}, \ldots, n_{r}}$ is a complete r-partite graph then $\chi(G)=r$.
Proof. It is clear that the complete graph K_{r} is a subgraph of $G=K_{n_{1}, n_{2}, \ldots, n_{r}}$. So $\chi(G) \geq r$. Let $V(G)=V_{1} \cup V_{2} \cup \ldots \cup V_{r}$ is a partition of $V(G)$ such that for every $i=1, \ldots, r,\left|V_{i}\right|=n_{i}$ and the subgraphs of G induced by V_{i}, is empty graph. Set mapping

$$
f: V(G) \rightarrow\{1,2, \ldots, r\}
$$

such that $f(v)=i$ if $v \in V_{i}$ for every $i=1,2, \ldots, r$. Then f is a r-coloring of G, ie., $\chi(G) \leq r$. Thus, $\chi(G)=r$. -

Lemma 3 ([9]). If G is a graph then $\operatorname{ch}(G) \geq \chi(G)$.
Lemma 4 ([9]). If G_{1} is a subgraph of G_{2} then $\operatorname{ch}\left(G_{1}\right) \leq \operatorname{ch}\left(G_{2}\right)$.
We determine list-chromatic number for complete graphs.
Lemma 5. If K_{n} is a complete graph on n vertices then $\operatorname{ch}\left(K_{n}\right)=n$.
Proof. By Lemma 1 and Lemma 3, $\operatorname{ch}\left(K_{n}\right) \geq n$. Set $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $S_{v_{i}}$ is a list of colors of V_{i} such that $\left|S_{v_{i}}\right|=n$ for every $i=1,2, \ldots, n$. Let f be a coloring of K_{n} such that

$$
f\left(v_{1}\right) \in S_{v_{1}}, f\left(v_{2}\right) \in S_{v_{2}} \backslash\left\{f\left(v_{1}\right)\right\}, \ldots, f\left(v_{n}\right) \in S_{v_{n}} \backslash\left\{f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{n-1}\right)\right\}
$$

Then f is a n-choosable for K_{n}, ie., $\operatorname{ch}\left(K_{n}\right) \leq n$. Thus, $\operatorname{ch}\left(K_{n}\right)=n$. \square
Now we determine list-chromatic number for the graph $G=K_{2}^{r}$.
Theorem 6.
List-chromatic number of $G=K_{2}^{r}$ is

$$
\operatorname{ch}(G)=r
$$

Proof. By Lemma 2 and Lemma 3, we have $c h(G) \geq r$. Now we prove $c h(G) \leq r$ by induction on r. For $r=1$ the assertion holds, so let $r>1$ and assume the assertion for smaller values of r.

Let $V(G)=V_{1} \cup V_{2} \cup \ldots \cup V_{r}$ is a partition of $V(G)$ such that for every $i=1, \ldots, r,\left|V_{i}\right|=2$ and the subgraphs of G induced by V_{i}, is empty graph. Set

$$
V_{i}=\left\{v_{i 1}, v_{i 2}\right\}
$$

for every $i=1, \ldots, r$. Let $S_{v_{i j}}$ be the lists of colors of $v_{i j}$ such that $\left|S_{v_{i j}}\right|=r$ for every $i=1,2, \ldots, r ; j=1,2$. Now we consider separately two cases.

Case 1: There exists $i \in\{1,2, \ldots, r\}$ such that $S_{v_{i 1}} \cap S_{v_{i 2}} \neq \emptyset$.
Without loss of generality we may assume that $S_{v_{11}} \cap S_{v_{12}} \neq \emptyset$ and $a \in S_{v_{11}} \cap S_{v_{12}}$. set $G^{\prime}=G-V_{1}$. It is clear that G^{\prime} is a graph K_{2}^{r-1}. Again set

$$
S_{v_{i j}}^{\prime} \subseteq S_{v_{i j}} \backslash\{a\}
$$

such that $\left|S_{v_{i j}}^{\prime}\right|=r-1$ for every $i=2,3, \ldots, r ; j=1,2$.

By the induction hypothesis, there exists $(r-1)$-choosable g of G^{\prime} with the lists of colors $S_{v_{i j}}^{\prime}$ for every $i=$ $2,3, \ldots, r ; j=1,2$.
Let f be the coloring of G such that
$f\left(v_{i j}\right)=g\left(v_{i j}\right)$ for every $i=2,3, \ldots, r ; j=1,2$,
$f\left(v_{1 j}\right)=a$ for every $j=1,2$.
Then f is a r-choosable for G, ie., $\operatorname{ch}(G) \leq r$.
Case 2: $S_{v_{i 1}} \cap S_{v_{i 2}}=\emptyset$ for every $i=1,2, \ldots, r$.
Let $b \in S_{v_{11}}$. Set $G^{\prime}=G-V_{1}=K_{2}^{r-1}$ and

$$
S_{v_{i j}}^{\prime} \subseteq S_{v_{i j}} \backslash\{b\}
$$

such that $\left|S_{v_{i j}}^{\prime}\right|=r-1$ for every $i=2,3, \ldots, r ; j=1,2$.
By the induction hypothesis, there exists $(r-1)$-choosable g of G^{\prime} with the lists of colors $S_{v_{i j}}^{\prime}$ for every $i=$ $2,3, \ldots, r ; j=1,2$. Since $\left|S_{v_{11}} \cup S_{v_{12}}\right|=2 r$ and $\mid V\left(G^{\prime} \mid=2(r-1)\right.$, it follows that

$$
\left|\left(S_{v_{11}} \cup S_{v_{12}}\right) \backslash g\left(V\left(G^{\prime}\right)\right)\right| \geq 2
$$

We again divide this case into two subcases.
Subcase 2.1: $\left(\left(S_{v_{11}} \cup S_{v_{12}}\right) \backslash g\left(V\left(G^{\prime}\right)\right)\right) \cap S_{v_{12}} \neq \emptyset$.
Let $c \in\left(\left(S_{v_{11}} \cup S_{v_{12}}\right) \backslash g\left(V\left(G^{\prime}\right)\right)\right) \cap S_{v_{12}}$. Let f be the coloring of G such that
$f\left(v_{i j}\right)=g\left(v_{i j}\right)$ for every $i=2,3, \ldots, r ; j=1,2$,
$f\left(v_{11}\right)=b, f\left(v_{12}\right)=c$.
Then f is a r-choosable for G, ie., $\operatorname{ch}(G) \leq r$.
Subcase 2.2: $\left(\left(S_{v_{11}} \cup S_{v_{12}}\right) \backslash g\left(V\left(G^{\prime}\right)\right)\right) \cap S_{v_{12}}=\emptyset$.
By $\left|\left(S_{v_{11}} \cup S_{v_{12}}\right) \backslash g\left(V\left(G^{\prime}\right)\right)\right| \geq 2$, there exists $d \in\left(S_{v_{11}} \cup S_{v_{12}}\right) \backslash g\left(V\left(G^{\prime}\right)\right), d \neq b$. It is clear that $b, d \in S_{v_{11}}$. Since $\left|S_{v_{12}}\right|=r$ and $\left|g\left(V\left(G^{\prime}\right)\right)\right| \leq 2(r-1)$, there exists $i \in\{2,3, \ldots, r\}$ such that $g\left(v_{i 1}\right), g\left(v_{i 2}\right) \in S_{v_{12}}$. Without loss of generality we may assume that $g\left(v_{21}\right), g\left(v_{22}\right) \in S_{v_{12}}$. Let $e \in\left(S_{v_{21}} \cup S_{v_{22}}\right) \backslash g\left(V\left(G^{\prime}\right)\right)$. First assume that $e \in S_{v_{21}}$. If $e \neq b$ then coloring f of G such that
$f\left(v_{i j}\right)=g\left(v_{i j}\right)$ for every $i=3,4, \ldots, r ; j=1,2$,
$f\left(v_{22}\right)=g\left(v_{22}\right), f\left(v_{21}\right)=e$,
$f\left(v_{11}\right)=b, f\left(v_{12}\right)=g\left(v_{21}\right)$.
is a r-choosable for G. If $e=b$ then coloring f of G such that
$f\left(v_{i j}\right)=g\left(v_{i j}\right)$ for every $i=3,4, \ldots, r ; j=1,2$,
$f\left(v_{22}\right)=g\left(v_{22}\right), f\left(v_{21}\right)=e$,
$f\left(v_{11}\right)=d, f\left(v_{12}\right)=g\left(v_{21}\right)$.
is a r-choosable for G. By symmetry, we can show that $\operatorname{ch}(G) \leq r$ if $e \in S_{v_{22}}$.
Theorem 7.
If $1 \leq k \leq 2$ then list-chromatic number of $G=K_{2}^{r}+O_{k}$ is

$$
\operatorname{ch}(G)=r+1
$$

Proof. It is not difficult to see that $G=K_{2}^{r}+O_{k}$ is a complete $(r+1)$-partite graph. By Lemma 2 and Lemma 3, we have $\operatorname{ch}(G) \geq r+1$. Now we prove $\operatorname{ch}(G) \leq r+1$. By $1 \leq k \leq 2$, it follows that $G=K_{2}^{r}+O_{k}$ is a subgraph of K_{2}^{r+1}. By Lemma 4 and Theorem 6, $\operatorname{ch}(G) \leq r+1$. Thus, $\operatorname{ch}(G)=r+1$.
3. Chromatic uniqueness. The results of the following lemmas were proved in [12]. So we omit their proofs here.

Lemma 8 ([12]). Let G and H be two χ-equivalent graphs. Then
(i) $|V(G)|=|V(H)|$;
(ii) $|E(G)|=|E(H)|$;
(iii) $\chi(G)=\chi(H)$;
(iv) G is connected if and only if H is connected;
(v) G is 2-connected if and only if H is 2-connected.

We need the following lemmas 9-11 to prove our results.
Lemma 9. Let $G=\left(V_{1} \cup V_{2} \cup \ldots \cup V_{r+1}, E\right)$ be a $(r+1)$-partite graph with $\left|V_{1}\right| \geq\left|V_{2}\right| \geq \ldots \geq\left|V_{r+1}\right|$ and $\left|V_{1}\right|+\left|V_{2}\right|+\ldots+\left|V_{r+1}\right|=2 r+1$. Then

$$
|E| \leq 2 r^{2}
$$

$|E|=2 r^{2}$ if and only if G is a complete $(r+1)$-partite graph $K_{\left|V_{1}\right|,\left|V_{2}\right|, \ldots,\left|V_{r+1}\right|}$ with

$$
\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{r}\right|=2,\left|V_{r+1}\right|=1
$$

Proof. We prove lemma by induction on r. For $r=1$ the assertion holds, so let $r>1$ and assume the assertion for smaller values of r. If $\left|V_{r+1}\right| \geq 2$ then $\left|V_{1}\right|+\left|V_{2}\right|+\ldots+\left|V_{r+1}\right| \geq 2 r+2$, a contradiction. So, $\left|V_{r+1}\right|=1$. If $\left|V_{r}\right| \geq 3$ then $\left|V_{1}\right|+\left|V_{2}\right|+\ldots+\left|V_{r+1}\right| \geq 3 r+1$, a contradiction. Therefore, $\left|V_{r}\right| \leq 2$. Now we consider separately two cases.

Case 1: There exists $i \in\{1,2, \ldots, r\}$ such that $\left|V_{i}\right|=2$.
Set $G^{\prime}=G-V_{i}$. It is clear that G^{\prime} is a r-partite graph

$$
\left(V_{1} \cup V_{2} \cup \ldots \cup V_{i-1} \cup V_{i+1} \cup \ldots \cup V_{r+1}, E^{\prime}\right)
$$

By the induction hypothesis,

$$
\left|E^{\prime}\right| \leq 2(r-1)^{2}
$$

We have

$$
\begin{aligned}
|E| & \leq\left|E^{\prime}\right|+\left|V_{i}\right|\left(\left|V_{1}\right|+\ldots+\left|V_{i-1}\right|+\left|V_{i+1}\right|+\ldots+\left|V_{r+1}\right|\right) \\
& \leq 2(r-1)^{2}+2(2 r-1) \\
& =2 r^{2}
\end{aligned}
$$

It is not difficult to see that $|E|=2 r^{2}$ if and only if G is a complete $(r+1)$-partite graph $K_{\left|V_{1}\right|,\left|V_{2}\right|, \ldots,\left|V_{r+1}\right|}$ with

$$
\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{r}\right|=2,\left|V_{r+1}\right|=1
$$

Case 2: $\left|V_{i}\right| \neq 2$ for every $i=1,2, \ldots, r$.
In this case, $\left|V_{1}\right| \geq 3$. Let $h \in\{1,2, \ldots, r\}$ such that $\left|V_{h}\right|=1$ and $\left|V_{h-1}\right| \geq 3$. Let $G_{1}=K_{p_{1}, p_{2}, \ldots, p_{r+1}}$ be a complete $(r+1)$-partite graph such that $p_{h}=\left|V_{h}\right|+1, p_{h-1}=\left|V_{h-1}\right|-1$ and $p_{i}=\left|V_{i}\right|$ for every $i \in\{1,2, \ldots, r\} \backslash\{h-1, h\}$. By Case 1,

$$
\left|E\left(G_{1}\right)\right| \leq 2 r^{2}
$$

We have

$$
\begin{aligned}
\left|E\left(G_{1}\right)\right| & =\sum_{1 \leq i<j \leq r+1} p_{i} p_{j} \\
& =\sum_{i, j \in\{1, \ldots, r+1\} \backslash\{h-1, h\}} p_{i} p_{j}+\sum_{i \in\{1, \ldots, r+1\} \backslash\{h-1, h\}} p_{i} p_{h-1}+ \\
& +\sum_{i \in\{1, \ldots, r+1\} \backslash\{h-1, h\}} p_{i} p_{h}+p_{h-1} p_{h} \\
& =\sum_{i, j \in\{1, \ldots, r+1\} \backslash\{h-1, h\}}\left|V_{i}\right|\left|V_{j}\right|+\sum_{i \in\{1, \ldots, r+1\} \backslash\{h-1, h\}}\left|V_{i}\right|\left(\left|V_{h-1}\right|-1\right)+ \\
& +\sum_{i \in\{1, \ldots, r+1\} \backslash\{h-1, h\}}\left|V_{i}\right|\left(\left|V_{h}\right|+1\right)+\left(\left|V_{h-1}\right|-1\right)\left(\left|V_{h}\right|+1\right) \\
& =\sum_{1 \leq i<j \leq r+1}\left|V_{i}\right|\left|V_{j}\right|+\left|V_{h-1}\right|-\left|V_{h}\right|-1 \\
& \geq|E|+1 .
\end{aligned}
$$

It follows that $|E|<2 r^{2}$. \square
By argument similar to Lemma 9, we can prove the lemmas below also are true. We omit their proof here.
Lemma 10. Let $G=\left(V_{1} \cup V_{2} \cup \ldots \cup V_{r+1}, E\right)$ be a $(r+1)$-partite graph with $\left|V_{1}\right|+\left|V_{2}\right|+\ldots+\left|V_{r+1}\right|=2 r+2$. Then

$$
|E| \leq 2 r(r+1)
$$

$|E|=2 r(r+1)$ if and only if G is a complete $(r+1)$-partite graph $K_{\left|V_{1}\right|,\left|V_{2}\right|, \ldots,\left|V_{r+1}\right|}$ with

$$
\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{r}\right|=\left|V_{r+1}\right|=2 .
$$

Lemma 11. Let $G=\left(V_{1} \cup V_{2} \cup \ldots \cup V_{r+1}, E\right)$ be a $(r+1)$-partite graph with $\left|V_{1}\right| \leq\left|V_{2}\right| \leq \ldots \leq\left|V_{r+1}\right|$ and $\left|V_{1}\right|+\left|V_{2}\right|+\ldots+\left|V_{r+1}\right|=2 r+3$. Then

$$
|E| \leq 2 r(r+2)
$$

$|E|=2 r(r+2)$ if and only if G is a complete $(r+1)$-partite graph $K_{\left|V_{1}\right|,\left|V_{2}\right|, \ldots,\left|V_{r+1}\right|}$ with

$$
\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{r}\right|=2,\left|V_{r+1}\right|=3 .
$$

Now we characterize chromatically unique for the graph $G=K_{2}^{r}+O_{k}$.
Theorem 12. The graph $G=K_{2}^{r}+O_{k}$ is χ-unique if $1 \leq k \leq 3$.
Proof. Suppose that $1 \leq k \leq 3$. Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a graph such that $G^{\prime} \sim G$. Since Lemma 2 and (iii) of Lemma 8 we have

$$
\chi\left(G^{\prime}\right)=\chi(G)=r+1
$$

Let G^{\prime} has a coloring f using $r+1$ colors $1,2, \ldots, r+1$. Set

$$
V_{i}^{\prime}=\left\{u \in V^{\prime} \mid f(u)=i\right\} .
$$

for every $i=1,2, \ldots, r+1$. It follows that G^{\prime} is a $(r+1)$-partite graph $\left(V_{1}^{\prime} \cup V_{2}^{\prime} \cup \ldots \cup V_{r+1}^{\prime}, E^{\prime}\right)$. By (i) and (ii) of Lemma 8 we have

$$
\left|V\left(G^{\prime}\right)\right|=|V(G)|,\left|E\left(G^{\prime}\right)\right|=|E(G)| .
$$

By Lemma 9, Lemma 10 and Lemma 11, it is not difficult to see that $G^{\prime} \cong G$. Thus G is χ-unique.
\square

REFERENCES

[1] Behzad,M. - Graphs and thei chromatic number, Doctoral Thesis (Michigan State University), 1965.
[2] Behzad, M. and Chartrand,G.; Introduction to the theory of graphs, Allyn and Bacon, Boston 1971.
[3] Behzad, M., Chartrand G. and Cooper,J.; The coloring numbers of complete graphs, J. London Math. Soc. 42 (1967), 226 - 228.
[4] Birkhoff, G. D. A determinant formula for the number of ways of coloring a map, Annals of Math. 14 (2) (1912) 42-46.
[5] Bondy, J.A. and Murty, U.S.R.; Graph theory with applications, MacMillan, 1976.
[6] Brandstädt, A., Hammer, P.L., Le, V.B. and Lozin, V.V. Bisplit graphs, Discrete Math. 299 (2005) 11-32.
[7] Chao, C.Y., Whitehead, Jr.E.G.; On chromatic equivalence of graphs. In: Theory and Applications of Graphs, ed. Y. Alavi and D.R. Lick, Springer Lecture Notes in Math. 642 (1978) 121-131.
[8] Chvatal, V. and Hammer, P.L. ; Aggregation of inequalities in integer programming, Annals Disc. Math. 1 (1977) 145-162.
[9] Diestel, R.; Graph Theory, Springer - Verlag New Your 2000.
[10] Koh, K.M. and Teo, K.L.; The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259-285.
[11] Koh, K.M. and Teo, K.L. The search for chromatically unique graphs II, Discrete Math. 172 (1997) 59-78.
[12] Read,R.C. An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71.
[13] Ngo Dac Tan and Le Xuan Hung, On colorings of split graphs, Acta Mathematica Vietnammica, Volume 31, Number 3, 2006, pp. 195 - 204.
[14] Vizing, V.G. On an estimate of the chromatic class of a p-graph, Discret. Analiz. 3 (1964) 23-30. (In Russian)
[15] Wilson, R.J. Introduction to graph theory, Longman group ltd, London (1975).

[^0]: *HaNoi University for Natural Resources and Environment 41 A, Phu Dien Road, Phu Dien precinct, North Tu Liem district, Hanoi, Vietnam(lxhung@hunre.edu.vn).
 This work is licensed under the Creative Commons Attribution-NoComercial-ShareAlike 4.0.

