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Abstract
In this paper we introduce the generalized Helmholtz equation and present explicit solutions to this generalized
Helmholtz equation, these solutions depend on three holomorphic functions. As an application we present explicit
solutions to the Helmholtz equation. We note that these solutions are not necessarily limited to certain domains of
the complex plane C.
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Resumen
En este artı́culo introducimos la ecuación de Helmholtz generalizada y presentamos soluciones explı́citas para
esta ecuación de Helmholtz generalizada, estas soluciones dependen de tres funciones holomorfas. Como apli-
cación presentamos soluciones explı́citas para la ecuación de Helmholtz. Observamos que estas soluciones no
necesariamente estan limitadas a ciertos dominios del plano complejo C.
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1. Introduction. The reduced Helmholtz equation is an elliptic differential equation allowing to describe
physical phenomena related to oscillatory problems. As such, it is a classical problem for diverse fields of physics
and engineering such as vibration mechanics, electro-magnetics, acoustics or quantum mechanics [2], [5], [8].
Solution of the two-dimensional (2D) Helmholtz equation allows to identify vibration modes for a two-dimensional
domain. Analytical solutions are limited to domains with a particular shape such as a rectangle or circle [5], [7].
In general, solving this differential equation relies on numerical methods, see e.g. [12]-[14].

In [4], the Helmholtz equation is transformed to account for a conformal map between the shape of the physical
domain and the unit disk as canonical domain. This way, the transformed Helmholtz equation is solved exploiting
well known analytical solutions for a circular domain and the solution in the physical domain is obtained by
applying the conformal map. In [5] the authors study the Helmholtz equation by the method of fundamental
solutions (MFS) using Bessel and Neumann functions. The bounds of errors are derived for bounded simply-
connected domains, while the bounds of condition number are derived only for disk domains.

In [11], by using conformal mappings of a plane with elliptic hole and a plane with cross-shaped hole into
the exterior of the unit disk, we construct functions playing the role of bases in the spaces of functions analytic in
these domains. In addition, on the basis of expansions of analytic functions in series in these bases, we construct
solutions of the Helmholtz equation in a plane with holes whose boundary values coincide with the boundary
values of these functions.

∗ID ORCID: https://orcid.org/0000-0002-1206-7072, Departamento de Matemática, Universidade de Brası́lia, 70910-900,
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In [7], is proposed the Galerkin boundary element method for exterior problems of 2D Helmholtz equation
with arbitrary wavenumber. In [10], the authors present a new boundary integral method for solving the general
Helmholtz equation is developed. This new formulation is developed for the two dimensional Helmholtz equation
with the method of moments Laplacian solution. The main feature of this new formulation is that the boundary
conditions are satisfied independent of the region node discretizations.

In the papers [4], [6] and [7] is considered the Helmholtz equation given by

∆u(x, y) + (K(x, y))2u(x, y) = 0,

where K is a wavenumber.
In this paper we introduce the generalized Helmholtz equation and present explicit solutions to this generalized

Helmholtz equation. As an application we present explicit solutions to the Helmholtz equation, these solutions
depend on three holomorphic functions. We note that these solutions are not necessarily limited to certain domains
of the complex plane C, as in [4], [5], [7] and [11].

2. Preliminaries. In this section we present the definitions and results that will be used in the work. In this
paper the inner produt 〈, 〉 : C× C→ R is definined by

〈f, g〉 = f1g1 + f2g2, where f = f1 + if2, g = g1 + ig2,

are holomorphic functions.
In the computation we use the following properties: if f, g : C → C are holomorphic functions of z = u1 + iu2,
then

〈f, g〉,1 = 〈f ′, g〉+ 〈f, g′〉, 〈f, g〉,2 = 〈if ′, g〉+ 〈f, ig′〉,

(2.1) 〈f, g〉 = 〈1, f̄g〉, ∆〈f, g〉 = 4〈f ′, g′〉.

Here 〈f, g〉,i denotes the derivative of 〈f, g〉 with respect to ui, i = 1, 2.

In [10], the authors consider the following two-dimensional elliptic equation for a smooth function Ψ(u1, u2)
defined in a 2D region defined by R which is bounded by a contour C so that

(2.2) ∆Ψ(u1, u2) + λ(u1, u2)Ψ(u1, u2) = F (u1, u2),

where λ(u1, u2) and F (u1, u2) are known functions in the domain R. The general form of (2.2) includes, as
specializations, the following cases:

1. Laplace’s equation, with λ = 0 and F = 0,
2. Poisson’s equation, with λ = 0 and F 6= 0,
3. Helmholtz’s equation, with λ 6= 0 and F 6= 0 (F = 0).

In this paper we consider the two-dimensional Helmholtz equation for h(z) defined by

(2.3) ∆h(z) + c(K(z))2h(z) = 0,

where K(z) indicates the wavenumber and c is a real non-zero constant.

Definition 1. The two-dimensional generalized Helmholtz equation for h(z) is defined as

(2.4) ∆

{
1

(K(z))2
(
∆h(z) + c(K(z))2h(z)

)}
= 0

where K(z) is a function and c is a real non-zero constant.

3. Main results. In this section, we present our main results that provide explicit solutions for the generalized
Helmholtz equation and explicit solutions are also obtained for the Helmholtz equation, these solutions depend on
three holomorphic functions.

Theorem 1. Let g be a holomorphic function, c a real non-zero constant and K =
2
√

2|g′|
c+ |g|2

. Then the

functions h =
〈1, A〉+ 〈g,B〉

c+ |g|2
are solutions of the generalized Helmholtz equation, where A,B are holomorphic
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functions.
Proof: Consider

(3.1) h =
f

T
, where T = c+ |g|2.

Calculating the Laplacian of h we have

∆h =
∆f

T
+ 2

〈
∇f,∇

(
1

T

)〉
+ f∆

(
1

T

)
.

Using the expression of T given in (3.1), we get

∆h =
∆f

T
− 4

〈
∇f, gg

′

T 2

〉
+ f

(
−4|g′|2

T 2
+

8|gg′|2

T 3

)
=

∆f

T
− 4

〈
∇f, gg

′

T 2

〉
+ 4f |g′|2

(
1

T 2
− 2c

T 3

)
.

This equation can be written as

(3.2) ∆h+
8c|g′|2

T 2
h =

|g′|2

T 2

(
T

∆f

|g′|2
− 4

〈
∇f, g

g′

〉
+ 4f

)
.

Therefore, h =
f

T
is a solution of the generalized Helmholtz equation if and only if

∆

{
T

∆f

|g′|2
− 4

〈
∇f, g

g′

〉
+ 4f

}
= T∆

(
∆f

|g′|2

)
= 0.

On the other hand, the solutions of the equation ∆

(
∆f

|g′|2

)
= 0 are given by f = 〈1, A〉+ 〈g,B〉, where A,B are

holomorphic functions. Thus, the proof is complete.

Remark 1. We observe that every solution of the Helmholtz equation is the solution of the generalized
Helmholtz equation. The following result provides conditions for a solution of the generalized Helmholtz equation
to be solved from the Helmholtz equation.

Corollary 1. Let g be a holomorphic function, c a real non-zero constant and K =
2
√

2|g′|
c+ |g|2

. Then the

functions h =
〈1, A〉+ 〈g,B〉

c+ |g|2
are solutions of the Helmholtz equation, where A is a holomorphic function and B

is a holomorphic function such that B =
1

c

∫
(A′g −Ag′ + ic1g

′)dz, c1 is a real constant.

Proof: From Theorem 1, the solutions of the generalized Helmholtz equation are given by h =
f

c+ |g|2
, where

(3.3) f(z) = 〈1, A〉+ 〈g,B〉.

From (3.2), h is a solution of the Helmholtz equation if and only if

(3.4) T
∆f

|g′|2
− 4

〈
∇f, g

g′

〉
+ 4f = 0.

Differentiating (3.4) using (2.1), we obtain that the equation (3.4) is equivalent to

4

〈
1, c

B′

g′
− A′g

g′
+A

〉
= 0.

Therefore there is a real constant c1 such that

c
B′

g′
− A′g

g′
+A = ic1,

thus, the result follows from this expression.
Corollary 2. Let g be a holomorphic function, c a real non-zero constant. Then the equation

(c+ |g|2)
∆f

|g′|2
− 4

〈
∇f, g

g′

〉
+ 4f = 0,



22 Riveros, C. and Corro, A.- Selecciones Matemáticas. 06(01): 19-25 (2019)

admits solutions given by

f = 〈1, A〉+ 〈g,B〉, where B =
1

c

∫
(A′g −Ag′ + ic1g

′)dz

onde c1 é uma constante real.
Proof: The proof follows from Corollary 1.

4. Examples of solutions of the generalized Helmholtz equation. In this section, we present graphics of
some solutions of the generalized Helmholtz equation.

Example 1 Considering g(z) =
cos z

z
, A(z) = z2, B(z) = log z in Theorem 1, we obtain

h(z) =
2(u41 − u42) + log

(
u21 + u22

)
A1(u1, u2)− 2 arctan

(
u2

u1

)
A2(u1, u2)

2c (u21 + u22) + cos(2u1) + cosh(2u2)
,

K(z) =
4
√

(1 + u21 + u22) cosh(2u2)− (−1 + u21 + u22) cos(2u1) + 2u1 sin(2u1)− 2u2 sinh(2u2)

2c (u21 + u22) + cos(2u1) + cosh(2u2)
.

where

A1(u1, u2) = u1 cosu1 coshu2 − u2 sinu1 sinhu2, A2(u1, u2) = u2 cosu1 coshu2 + u1 sinu1 sinhu2.

The graphics of the functions h(z) and K(z) for c = 1
2 are given in the figures 4.1 and 4.2, respectively.

FIGURE 4.1. c = 1
2

FIGURE 4.2. c = 1
2

Example 2 Considering g(z) = z3, A(z) = sin z, B(z) = cos z in Theorem 1, we obtain

h(z) =
coshu2

(
u1
(
u21 − 3u22

)
cosu1 + sinu1

)
+ u2

(
u22 − 3u21

)
sinu1 sinhu2

c+ (u21 + u22)
3 ,

K(z) =
6
√

2
(
u21 + u22

)
c+ (u21 + u22)

3 .

i) The graphics of the functions h(z) and K(z) for c = 6 are given in the figures 4.3 and 4.4, respectively.

FIGURE 4.3. c = 6 FIGURE 4.4. c = 6

ii) The graphics of the functions h(z) and K(z) for c = −27 are given in the figures 4.5 and 4.6, respectively.
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FIGURE 4.5. c = −27 FIGURE 4.6. c = −27

Example 3 Considering g(z) = cosh2(2z), A(z) = ez + z, B(z) = cosh z in Theorem 1, we obtain

h(z) =
4u1 + 6 cosu2 coshu1 + cos(5u2) cosh(3u1) + cos(3u2) cosh(5u1) + 4 cosu2 sinhu1

4c+ cos2(4u2) + 2 cos(4u2) cosh(4u1) + cosh2(4u1)
,

K(z) =
4
√

cosh(8u1)− cos(8u2)

c+ 1
4 (cos(4u2) + cosh(4u1))2

.

The graphics of the functions h(z) and K(z) for c = 2 are given in the figures 4.7 and 4.8, respectively.

FIGURE 4.7. c = 2 FIGURE 4.8. c = 2

5. Examples of solutions of the Helmholtz equation. In this section, we present graphics of some solutions
of the Helmholtz equation.

Example 1 Considering g(z) = z, A(z) = ez, B(z) =
1

c
(ez(z − 2) + ic1z) in Corollary 2, we obtain

h(z) =
eu1
((
c− 2u1 + u21 + u22

)
cosu2 − 2u2 sinu2

)
c (c+ u21 + u22)

,

K(z) =
2
√

2

c+ u21 + u22
.

The graphics of the functions h(z) and K(z) for c = 1
18 are given in the figures 5.1 and 5.2, respectively.
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FIGURE 5.1. c = 1
18

FIGURE 5.2. c = 1
18

Example 2 Considering g(z) = sin z, A(z) = z, B(z) =
1

c
(z sin z − 2 cos z + ic1z) in Corollary 2, we

obtain

h(z) =
u1(2c− cos(2u1)) + u1(1 + 2 sinh2 u2)− 2 sin(2u1) + 2c1(u1 cosu1 sinhu2 − u2 coshu2 sinu1)

c(2c+ cos(2u1) + cosh(2u2))
,

K(z) =
4
√

cosh(2u2)− cos(2u1)

2c+ cos(2u1) + cosh(2u2)
.

The graphics of the functions h(z) with c = 1, c1 = −2 and K(z) with c = 1 are given in the figures 5.3 and 5.4,
respectively.

FIGURE 5.3. c = 1, c1 = −2 FIGURE 5.4. c = 1

Example 3 Considering g(z) = cosh z, A(z) = sinh z, B(z) =
1

c
(−z + ic1 cosh z) in Corollary 2, we obtain

h(z) = −2(u1 cosu2 coshu1 + (−c cosu2 + u2 sinu2) sinhu1)

c(2c+ cos(2u2) + cosh(2u1))
,

K(z) =
4
√

cosh(2u1)− cos(2u2)

2c+ cos(2u2) + cosh(2u1)
.

i) The graphics of the functions h(z) and K(z) for c = 2 are given in the figures 5.5 and 5.6, respectively.
ii) The graphics of the functions h(z) and K(z) for c = −3 are given in the figures 5.7 and 5.8, respectively.
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FIGURE 5.5. c = 2 FIGURE 5.6. c = 2

FIGURE 5.7. c = −3 FIGURE 5.8. c = −3

6. Conclusions. In this paper, we present a different way of obtaining solutions to the Helmholtz equation
without imposing boundary conditions, that is, the solutions are not necessarily limited to certain domains of the
complex plane C. These solutions depend on three holomorphic functions. Only when c is negative because of the
regularity of the solution, we need to restrict the solution to a certain domain of C (see Figures 4.5, 4.6, 5.7 and
5.8).
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