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Abstract
The Zika Virus (ZIKV) is a virus transmitted by Aedes aegypti mosquitoes (same as the one transmitting dengue and
chikungunya fever). The main way of contagion by the ZIKV is caused by the bite of a mosquito that, after feeding
from someone contaminated, can transport the virus throughout its life, transmitting the disease to a population
that does not have the immunity. It can also be transmitted through a person’s sexual relationship with ZIKV to
their partners, even if the infected person does not have the symptoms of the disease. In this work, we present
two mathematical models for the Zika epidemic by using (1) ordinary differential equations and, (2) ordinary
differential equations with temporal delay (discrete), which is the time it takes mosquitoes to develop the virus. We
make a comparison between the two modeling variants. Computational simulations are performed for Suriname
and El Salvador, which are countries that are prone to develop the epidemic in an endemic manner.

Keywords. Ordinary differential equations, models, delay, transmission, ZIKV.

Resumen
El virus Zika (ZIKV) es un virus transmitido por los mosquitos Aedes aegypti (igual que el que transmite el dengue
y la fiebre chikungunya). La principal forma de contagio por el ZIKV es causada por la picadura de un mosquito
que, después de alimentarse de alguien contaminado, puede transportar el virus durante toda su vida y transmitir
la enfermedad a una población que no tiene inmunidad. También se puede transmitir a través de la relación sexual
de una persona con ZIKV a sus parejas, incluso si la persona infectada no tiene los sı́ntomas de la enfermedad. En
este trabajo, presentamos dos modelos matemáticos para la epidemia del Zika mediante el uso de (1) ecuaciones
diferenciales ordinarias y, (2) ecuaciones diferenciales ordinarias con retardo temporal (discreto), que es el tiempo
que tardan los mosquitos en desarrollar el virus. Hacemos una comparación entre las dos variantes de modelado.
Se realizan simulaciones computacionales para Surinam y El Salvador, que son paı́ses propensos a desarrollar la
epidemia de manera endémica.

Palabras clave. Ecuaciones diferenciales ordinarias, modelos, retardo, transmisión, ZIKV.

1. Introduction. Zika fever (also known as Zika virus disease) is an illness caused by the Zika virus. The
disease is spread through the bite of daytime-active Aedes mosquitoes such as the A. aegypti and A. albopictus
(these are the same mosquitoes that spread dengue and chikungunya viruses). Its name comes from Zika forest in
Uganda, where the virus was first isolated from a rhesus monkey in 1947. The first human cases were reported
in Nigeria in 1954. The first documented outbreak among people occurred in 2007, in the Federated State of Mi-
cronesia [15].
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The disease of Zika virus is transmitted from infected Aedes mosquitoes to humans through mosquito bites [8]. It
can also be transmitted from human to human through the blood and semen of an infected human, and through an
infected pregnant woman to the foetus. Zika is a cause of microcephaly and other severe brain defects [4]. The
incubation period (the time from exposure to symptoms) of Zika virus disease is not clear, but is likely to be a few
days to a week. The symptoms are similar to other arbovirus infection such as dengue, and include fever, skin
rashes, conjunctivitis (red eyes), muscle and joint pain, malaise and headache. These symptoms are usually mild
and usually last from 2- 7 days [8].
There is no specific treatment or vaccine currently available for Zika virus disease. Prevention and control relies on
reducing mosquitoes through source reduction (removal and modification of breeding sites), and reducing contacts
between mosquitoes and people.
The use of ODE (ordinary differential equation) and ODE with delay in the study of epidemics can be seen in
[2, 12], in particular for Dengue in [11, 18], for HIV/AIDS in [1, 19], for Ebola in [6] and Zika in [4, 15, 17], these
texts contributed as background in the work that we present.
The objective of this work is to present models for the Zika epidemic based on ODE and ODE with delay. A
theoretical study of the model was made and the <0 was calculated for the sub-model with only contagion by
mosquitoes and with only sexual contagion. Computational simulations are performed in Suriname and El Sal-
vador, where ZIKV can become endemic. We performed a comparison between the two variants of modeling with
respect to the time of epidemic and the number of infected.

2. Model with Exposed Variables . The model variables are susceptible men Hs, susceptible women Ms,
exposed men HE , exposed women ME , infected men HI , infected women MI , recovered men HR, recovered
women MR, susceptible mosquitoes Vs, exposed mosquitoes VE and infected mosquitoes VI .
The Zika have a latent phase during which the individual is infected but not yet infectious. This delay between
the acquisition of infection and the infectious state was incorporated within the model by adding a latent/exposed
population, and letting infected (but not yet infectious) individuals move from susceptible to exposed and from
exposed to infected.
The model is SEIR type (susceptible-exposed-infected-recovered) for humans and SEI (susceptible-exposed-infected)
for mosquitoes, because mosquitoes do not recover.
All model parameters are assumed to be positive. Description of model (2.1) parameters are given in Table 2.1.
Assumptions for the construction of model:

• There is immunity in the recovered state, the infected man can infect women and men susceptible (result
of the study of other epidemics that are transmitted by sexual contact).

• The death by natural causes is equal in any state, the death of mosquitoes will be due to environmental
factors because no control strategy is applied.

• The Hs,Ms, HE ,ME , HI ,MI , HR,MR, Vs, VE and VI are continuous functions and positive or null
(because we work with human and mosquitoes populations).

• The model is defined in an interval [0, tf ], where tf is finite.
Let:
σv : Number of times a single mosquito bites a human per unit time.
βhv : Probability of pathogen transmission from an infectious mosquito to a susceptible human given that a contact
between the two occurs.
βvh : Probability of pathogen transmission from an infectious human to a susceptible mosquito given that a contact
between the two occurs.
Nh : Represent the total population of human.
Then,

βy1 =
σvβhv
Nh

=
βy1∗

Nh
,

βx =
σvβvh
Nh

=
βx∗
Nh

.

To define βy2 and βy3 we did an analogous study but taking into account the sexual contacts (between men and
heterosexual respectively) and the probability of infecting these contacts.

Let l1, l2, l3 the life expectancy of men, women and mosquitoes. We define µ1 =
1

l1
, µ2 =

1

l2
and η =

1

l3
such as

death rates for men, women and mosquitoes respectively.
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Parameters Description
βy1 The force of infection from infected mosquito to susceptible human
βy2 The force of infection from infected man to susceptible man
βy3 The force of infection from infected man to susceptible woman
βx The force of infection from infected human to susceptible mosquito
µ1, µ2, η Man, woman and mosquito mortality rate
ω1, ω2, ω3 The rate of progression of men, women and mosquitoes from the exposed state to the

infectious state
ε1, ε2 Disease-induced death rate for humans (men and women)
r1, r2 Per capital recovery rate for humans from the infectious (men and women)
N1, N2, N3 Recruitment rate of men, women and mosquitoes

TABLE 2.1
Description of parameters used in the model (2.1).

FIGURE 2.1. This schematic representation shows the progression of ZIKV in human and mosquito populations for our model. Susceptible
humans start in Hs, Ms (men and women) and move to HE and ME , the exposed population, once infected by a mosquito carrying the
virus and sexual contact. After an intrinsic incubation period, exposed individuals become infectious population and moves to the infectious
population, HI and MI . Infectious humans will then move to and remain in HR and MR after recovering from the infection. The susceptible
mosquitoes population is denoted Vs. After transmission occurs from biting an infectious human, susceptible mosquitoes transition to the
exposed population, VE . The end of extrinsic incubation period marks the exposed mosquitoes shift to the infectious class VI , where they
remain infectious until death.

The transmission dynamics of the Zika is modeled by the system of ordinary differential equations (2.1).
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dHs

dt
= N1 − βy1

VIHs − βy2
HIHs − µ1Hs,

dMs

dt
= N2 − βy1

VIMs − βy3
HIMs − µ2Ms,

dHE

dt
= βy1VIHs + βy2HIHs − (ω1 + µ1)HE ,

dME

dt
= βy1VIMs + βy3HIMs − (ω2 + µ2)ME ,

dHI

dt
= ω1HE − (ε1 + µ1 + r1)HI ,

dMI

dt
= ω2ME − (ε2 + µ2 + r2)MI ,

dHR

dt
= r1HI − µ1HR,

dMR

dt
= r2MI − µ2MR,

dVs
dt

= N3 − βxHIVs − βxMIVs − ηVs,

dVE
dt

= βxHIVs + βxMIVs − (ω3 + η)VE ,

dVI
dt

= ω3VE − ηVI .(2.1)

Initial Conditions
Hs(0) = hs > 0, Ms(0) = ms > 0, HI(0) = hi > 0,
MI(0) = mi > 0, HR(0) = hr ≥ 0, MR(0) = mr ≥ 0,
HE(0) = he ≥ 0, ME(0) = me ≥ 0, Vs(0) = vs > 0,
VI(0) = vi > 0, VE(0) = ve ≥ 0.

Model Analysis. Let:

Hs +HE +HI +HR = N,(2.2)
Ms +ME +MI +MR = M,(2.3)

Vs + VE + VI = V.(2.4)

We begin by showing all feasible solutions are uniformly bounded in a proper subset of Ω. The feasible region Ω
with

Ω =

{
(Hs, HE , HI , HR,Ms,ME ,MI ,MR, Vs, VI , VR) ∈ <11

+ : N ≤ N1

µ1
,M ≤ N2

µ2
, V ≤ N3

η

}
.

Differentiating both sides of (2.2), (2.3) and (2.4) with appropriate substitutions, we obtained the following differ-
ential equations:

N
′

= N1 − µ1N − ε1HI ≤ N1 − µ1N,(2.5)
M
′

= N2 − µ2M − ε2MI ≤ N2 − µ2M,(2.6)
V
′

= N3 − ηV.(2.7)

Applying Grönwall Inequality in (2.5), (2.6) and (2.7), we obtained:

N(t) ≤ N(0) exp(−µ1t) +
N1

µ1
(1− exp(−µ1t)),

M(t) ≤M(0) exp(−µ2t) +
N2

µ2
(1− exp(−µ2t)),

V (t) ≤ V (0) exp(−ηt) +
N3

η
(1− exp(−ηt)).

where N(0), M(0) and V (0) represents the initial humans and mosquitoes population total.

Therefore, 0 ≤ N ≤ N1

µ1
, 0 ≤ M ≤ N2

µ2
and 0 ≤ V ≤ N3

η
as t → ∞. This implies,

N1

µ1
is an upper bound for
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N(t),
N2

µ2
is an upper bound for ,M(t) and

N3

η
is an upper bound for V (t) provided N(0) ≤ N1

µ1
, M(0) ≤ N2

µ2

and V (0) ≤ N3

η
.

Hence, all feasible solutions of model (2.1) enter the region Ω which is a positively invariant set. Thus, the system
is biologically meaningful and mathematically well-posed in the domain of Ω. In this domain, it is sufficient to
consider the dynamics of the flow generated by the model system described by (2.1). Therefore, we summarized
the results in the following lemma:

Lemma 1. The closed set Ω is positively invariant and attracting with respect to the model described by (2.1)
.
The existence, uniqueness and positivity was demonstrated using the theoretical results presented in [5, 14]

<0 and Local Stability. The basic reproduction number, denoted <0, is ”the expected number of secondary
cases produced, in a completely susceptible population, by a typical infective individual. If <0 < 1, then on
average an infected individual” produces less than one new infected individual over the course of its infectious
period, and the infection cannot grow. Conversely, if <0 > 1 , then each infected individual produces, on average,
more than one new infection, and the disease can invade the population [13].
The disease-free equilibrium point in the model is:

v0 =

(
N1

µ1
, 0, 0, 0,

N2

µ2
, 0, 0, 0,

N3

η
, 0, 0

)
.

We use the theory presented in [9, 13] (next generation matrix method) to relate the local stability at the equilibrium
point free of infection with the value of basic number of reproduction (<0).
To study the <0, we will divide into two sub-models, (1) with sexual contagion (<s

0) and (2) with transmission by
mosquito bites (<m

0 ), with the objective of interpreting the influence of these forms of transmission independently
in the spread of ZIKV.
We eliminate all forms of sexual contagion and the sub-model with contagion by mosquito bites is:

dHs

dt
= N1 − βy1

VIHs − µ1Hs,

dMs

dt
= N2 − βy1

VIMs − µ2Ms,

dHE

dt
= βy1VIHs − (ω1 + µ1)HE ,

dME

dt
= βy1VIMs − (ω2 + µ2)ME ,

dHI

dt
= ω1HE − (ε1 + µ1 + r1)HI ,

dMI

dt
= ω2ME − (ε2 + µ2 + r2)MI ,

dHR

dt
= r1HI − µ1HR,

dMR

dt
= r2MI − µ2MR,

dVs
dt

= N3 − βxHIVs − βxMIVs − ηVs,

dVE
dt

= βxHIVs + βxMIVs − (ω3 + η)VE ,

dVI
dt

= ω3VE − ηVI .(2.8)

We calculate the Jacobian of the sub-model (2.8), and we build

T =


0 0 0 0 0 βy1Hs

0 0 0 0 0 0
0 0 0 0 0 βy1

Ms

0 0 0 0 0 0
0 βxVs 0 βxVs 0 0
0 0 0 0 0 0

 ,
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Σ =


−(ω1 + µ1) 0 0 0 0 0

0 −(ε1 + r1 + µ1) 0 0 0 0
0 0 −(ω2 + µ2) 0 0 0
0 0 0 −(ε2 + r2 + µ2) 0 0
0 0 0 0 −(ω3 + η) 0
0 0 0 0 0 −η


which are the transmission and transition matrix respectively, using the methodology presented in [13].
The −TΣ−1 is defined as the next generation matrix and the basic reproduction number with only mosquito
contagion (<m

0 ) in v0 is given by:

(2.9) <m
0 = ρ(−TΣ−1) =

√
k1 + k2,

where ρ(−TΣ−1) is the spectral radius of −TΣ−1 matrix,

k1 =
βy1N1βxN3ω1ω3

µ1η2(ω1 + µ1)(ε1 + µ1 + r1)(ω3 + η)
and k2 =

βy1N2βxN3ω2ω3

µ2η2(ω2 + µ2)(ε2 + µ2 + r2)(ω3 + η)
.

We have the following lemma for (2.8):
Lemma 2. The disease-free equilibrium is locally asymptotically stable if <m

0 < 1, and unstable if <m
0 > 1

for the sub-model with only mosquito transmission.
The sub-model with sexual contagion is obtained assuming that the ZIKV is transmitted by sexual contact only
(maintaining the considerations in the construction of model (2.1)). We eliminate the presence of mosquitoes in
the model because they do not participate in the transmission dynamics.

dHs

dt
= N1 − βy2HIHs − µ1Hs,

dMs

dt
= N2 − βy3

HIMs − µ2Ms,

dHE

dt
= βy2

HIHs − (ω1 + µ1)HE ,

dME

dt
= βy3

HIMs − (ω2 + µ2)ME ,

dHI

dt
= ω1HE − (ε1 + µ1 + r1)HI ,

dMI

dt
= ω2ME − (ε2 + µ2 + r2)MI ,

dHR

dt
= r1HI − µ1HR,

dMR

dt
= r2MI − µ2MR.(2.10)

Using a methodology analogous to that applied to sub-model (2.8), we have to

T =


0 βy2Hs 0 0
0 0 0 0
0 βy3

Ms 0 0
0 0 0 0

 ,

Σ =


−(ω1 + µ1) 0 0 0

0 −(ε1 + r1 + µ1) 0
0 0 −(ω2 + µ2) 0
0 0 0 −(ε2 + r2 + µ2)

 .
are the transmission and transition matrices respectively and the basic reproduction number with only sexual con-
tagion (<s

0) in v0 is:

(2.11) <s
0 = ρ(−TΣ−1) =

βy2
N1ω1

µ1(ω1 + µ1)(ε1 + µ1 + r1)
.

We have the following result for (2.10):
Lemma 3. The disease-free equilibrium is locally asymptotically stable if <s

0 < 1, and unstable if <s
0 > 1 for

the sub-model with only sexual transmission.
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3. ZIKV Model with Delay. The mosquito becomes infected when it consumes the blood of a sick person.
Then, if the insect bites a healthy person, it transmits the virus, which enters the bloodstream and is incubated for
3 to 12 days, until the symptom begins appearance. The delay τ will refer to the time that the mosquito that delays
in developing the pathogen, 4 to 7 days [8, 9]. The delay is taken into account in the infected compartment and
in the previous model this period was incorporated as exposed variables in humans and mosquitoes. The model is
SIR type (susceptible-infected-recovered) for humans and SI (susceptible-infected) for mosquitoes.
The parameters, variables and initial conditions (taking into account the delay) maintain the definitions and re-
straints of the model (2.1).
The transmission dynamics of ZIKV taking into account the time delay is modeled by the system of differential
equations with delay (discrete) following:

dHs

dt
= N1 − βy1

VIHs − βy2
HIHs − µ1Hs,

dMs

dt
= N2 − βy1

VIMs − βy3
HIMs − µ2Ms,

dHI

dt
= βy1VI(t− τ)Hs + βy2HIHs − (µ1 + r1 + ε1)HI ,

dMI

dt
= βy1

VI(t− τ)Ms + βy3
HIMs − (µ2 + r2 + ε2)MI ,

dHR

dt
= r1HI − µ1HR,

dMR

dt
= r2MI − µ2MR,

dVs
dt

= N3 − βxHIVs − βxMIVs − ηVs,

dVI
dt

= βxHIVs + βxMIVs − ηVI .(3.1)

FIGURE 3.1. Schematic Representation of model with temporal delay.

Model Analysis. In this section we study the properties of the system solution (3.1) (existence, uniqueness
and positivity).

Theorem 1. Let f(t, x, y) and fx(t, x, y) be continuous on Rn, s ∈ R, and let φ : [s− r, s]→ R be continu-
ous. Then there exists p > s and a unique solution of the initial-value problem (3.1) on [s− r, p].
The enunciate and proof is in [10].
Let f(t, x, y) = (F1(t, x, y), F2(t, x, y), ..., F8(t, x, y)), x = (Hs,Ms, HI ,MI , HR,MR, Vs, VI) and y = VI(t−
τ).
The VI(t− τ) is continuous and positive function (by the form of construction of the model).

F1(t, x, y) = N1 − βy1VIHs − βy2HIHs − µ1Hs,
F2(t, x, y) = N2 − βy1

VIMs − βy3
HIMs − µ2Ms,

F3(t, x, y) = βy1
VI(t− τ)Hs + βy2

HIHs − (µ1 + r1 + ε1)HI ,
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F4(t, x, y) = βy1
VI(t− τ)Ms + βy3

HIMs − (µ2 + r2 + ε2)MI ,
F5(t, x, y) = r1HI − µ1HR,
F6(t, x, y) = r2MI − µ2MR,
F7(t, x, y) = N3 − βxHIVs − βxMIVs − ηVs,
F8(t, x, y) = βxHIVs + βxMIVs − ηVI .
Fi(t, x, y), i = 1, 2, .., 8 are continuous functions, then f(t, x, y) is continuous.

∂F1

∂Hs
= −βy1VI − βy2HI − µ1,

∂F1

∂HI
= −βy2Hs,

∂F1

∂VI
= −βy1Hs,

∂F1

∂Ms
=

∂F1

∂MI
=

∂F1

∂HR
=

∂F1

∂MR
=
∂F1

∂Vs
= 0.

∂F2

∂Ms
= −βy1

VI − βy3
HI − µ2,

∂F2

∂HI
= −βy3

Ms,
∂F2

∂VI
= −βy1

Ms,

∂F2

∂Hs
=

∂F2

∂MI
=

∂F2

∂HR
=

∂F2

∂MR
=
∂F2

∂Vs
= 0.

∂F3

∂Hs
= βy1

VI(t− τ) + βy2
HI ,

∂F3

∂HI
= βy2

Hs − (µ1 + r1 + ε1),

∂F3

∂Ms
=

∂F3

∂MI
=

∂F3

∂HR
=

∂F3

∂MR
=
∂F3

∂Vs
= 0,

∂F3

∂VI
= 0.

∂F4

∂Ms
= βy1VI(t− τ) + βy3HI ,

∂F4

∂HI
= βy3Ms,

∂F4

∂MI
= −(µ2 + r2 + ε2),

∂F4

∂Hs
=

∂F4

∂HR
=

∂F4

∂MR
=
∂F4

∂Vs
=
∂F4

∂VI
= 0.

∂F5

∂HI
= r1,

∂F5

∂HR
= −µ1,

∂F5

∂Hs
=

∂F5

∂MI
=

∂F5

∂Ms
=

∂F5

∂MR
=
∂F5

∂VI
=
∂F5

∂Vs
= 0.

∂F6

∂MI
= r2,

∂F6

∂MR
= −µ2,

∂F6

∂Hs
=

∂F6

∂Ms
=
∂F6

∂HI
=

∂F6

∂HR
=
∂F6

∂Vs
=
∂F6

∂VI
= 0.

∂F7

∂HI
= −βxVs,

∂F7

∂MI
= −βxVs,

∂F7

∂Vs
= −βxHI − βxMI − η,

∂F7

∂Hs
=

∂F7

∂Ms
=

∂F7

∂HR
=

∂F7

∂MR
=
∂F7

∂VI
= 0.

∂F8

∂HI
= βxVs,

∂F8

∂MI
= βxVs,

∂F8

∂Vs
= βx(HI +MI),

∂F8

∂VI
= −η,

∂F8

∂Hs
=

∂F8

∂Ms
=

∂F8

∂HR
=

∂F8

∂MR
= 0.

(Fi)x i = 1, 2, ..., 8 are continuous functions then fx is continuous.
The initial conditions are continuous and positive according to the model definition, so by Theorem 1 the solution
of model is unique.

Theorem 2. Suppose that f : R× Rn
+ × Rn

+ → Rn satisfies the hypotheses of Theorem 1 and

∀i, t,∀x, y ∈ Rn
+ : xi = 0⇒ fi(t, x, y) ≥ 0.

If the initial data satisfy φ ≥ 0, then the corresponding solution x(t) of (3.1) satisfies x(t) ≥ 0 for all t ≥ s where
it is defined, see [10].
F1(0,Ms, HI ,MI , HR,MR, Vs, VI) = N1 > 0,
F2(Hs, 0, HI ,MI , HR,MR, Vs, VI) = N2 > 0,
F3(Hs,Ms, 0,MI , HR,MR, Vs, VI) = βy1

VI(t− τ)Hs ≥ 0,
F4(Hs,Ms, HI , 0, HR,MR, Vs, VI) = βy1VI(t− τ)Ms + βy3HIMs ≥ 0,
F5(Hs,Ms, HI ,MI , 0,MR, Vs, VI) = r1HI ≥ 0,
F6(Hs,Ms, HI ,MI , HR, 0, Vs, VI) = r2MI ≥ 0,
F7(Hs,Ms, HI ,MI , HR,MR, 0, VI) = N3 > 0,
F8(Hs,Ms, HI ,MI , HR,MR, Vs, 0) = βxVs(HI +MI) ≥ 0.
The initial conditions are continuous and positive or null then by Theorem 2 the solution of model is positive.

4. Numerical Simulations and discussions. The objective of this subsection is to compare the two mod-
eling techniques, with respect to the behavior of infected humans the time of epidemic and the outbreak pe-
riod. Computational experimentation was carried out for Suriname and El Salvador because they are countries
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with characteristics that the ZIKV can become an endemic problem. The values used for the simulations (pa-
rameters and initial conditions) for each country are presented in the Tables 4.1, 4.2 and 4.3 and the delay
τ is equal to 7 days. It was used for simulations Matlab2017a and to solve the system of ordinary differen-
tial equations, an adaptation of the ode45, which is based on an explicit Runge-Kutta formula, the Dormand-
Prince pair. It is a one-step solver –for the solution in moment n , it needs only the solution at the immedi-
ately preceding time point, n − 1. In general, ode45 is the best function to apply as a first try for most prob-
lems (https://www.mathworks.com/help/matlab/ref/ode45.html) and for the model with tem-
porary delay, an adaptation of the routine DDE23, it tracks the discontinuities and integrates with the explicit
pair of Runge-Kutta (2,3) and the interpolator of ode23. It uses iteration to take steps longer than the delays
(https://www.mathworks.com/help/matlab/ref/dde23.html?s_tid=doc_ta).

Parameters Value Reference
βy1 0.1705 [17]
βx 0.4352 [17]
βy2 0.003 Assumed
βy3 0.003 Assumed
ω3

1
10.2

[16]
ω1 = ω2

1
6

[11, 4]
µ1 = µ2 0.0061 https://www.indexmundi.com/g/g.aspx?c=ns&v=26&l=es
r1 = r2 0.55 Assumed
ε1 = ε2 0.0004 Assumed
η 1

18
[15]

N1 0.65 Assumed
N2 0.75 Assumed
N3 0.60 Assumed

TABLE 4.1
Parameter values for Suriname

Parameters Value Reference
βy1 0.2808 [17]
βx 0.3053 [17]
βy2 0.005 Assumed
βy3 0.007 Assumed
ω3

1
10.2

[16]
ω1 = ω2

1
6

[11, 4]
µ1 = µ2 0.0057 https://www.indexmundi.cboom/g/g.aspx?c=es&v=26&l=es
r1 = r2 0.75 Assumed
ε1 = ε2 0.0004 Assumed
η 1

18
[15]

N1 0.65 Assumed
N2 0.75 Assumed
N3 0.60 Assumed

TABLE 4.2
Parameter values for El Salvador

Variables Suriname El Salvador Reference
Hs 280.298 2.982.221 https://www.datosmacro.com/demografia/poblacion/surinam

(surinam)
Ms 278.070 3.362.501 https://www.datosmacro.com/demografia/poblacion/el-salvador

(el-salvador)
HE 0 0 Assumed
ME 0 0 Assumed
HI 1000 1000 Assumed
MI 1000 1000 Assumed
HR 0 0 Assumed
MR 0 0 Assumed
Vs 44222 152362 [17]
VE 0 0 Assumed
VI 1000 1000 Assumed

TABLE 4.3
Initial Conditions for Suriname and El Salvador, data 2016

https://www.mathworks.com/help/matlab/ref/ode45.html
 https://www.mathworks.com/help/matlab/ref/dde23.html?s_ tid=doc_ta
https://www.indexmundi.com/g/g.aspx?c=ns&v=26&l=es
https://www.indexmundi.cboom/g/g.aspx?c=es&v=26&l=es
https://www.datosmacro.com/demografia/poblacion/surinam
https://www.datosmacro.com/demografia/poblacion/el-salvador
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<0 Study:
We calculate the <m

0 for βy1∗ ∈ [0.04287, 1.1241] (95 % CI) in Suriname and βy1∗ ∈ [0.0119, 0.9244] (95% CI)
in El Salvador (data extracted in [17]). The minimum value is 3.3932 and 6.3882 for El Salvador and Suriname
respectively and shows that the infection will be able to spread in a population. The Figure 4.1 represents the
growth of <m

0 with respect to βy1∗ for Suriname and El Salvador.
The value of <s

0 is 0.638643 and 0.793040 for Suriname and El Salvador respectively shows that the infection will
die out in the long run. This form of contagion does not have a strong influence on the spread of the epidemic.
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20

25

30

 R
0

El Salvador

FIGURE 4.1. <m
0 for Suriname and El Salvador. The basic reproduction number with only mosquito contagion (vertical axe) versus

the product between the number of times a single mosquito bites a human per unit time and the probability of pathogen transmission from an
infectious mosquito to a susceptible human given that a contact between the two occurs βy1∗ = σvβhv (horizontal axe)

Suriname:
The model with temporal delay reports a greater number of infected people in the period in which the epidemic
has greater force respect to model with exposed variables, see Figure 4.2.
For an approximate time of 45 days both models report the same number of men and women infected, see Figure
4.3, but at the end of a year, the model (2.1) reports a greater number of infected, see Figure 4.4. Throughout the
year, the models report infected, demonstrating the endemic nature in these country if an adequate control strategy
is not applied.

0 5 10 15 20 25 30 35 40 45

Time(days)

0

20

40

60

80

100

120

In
fe

ct
ed

 M
en

  (
T

ho
us

an
ds

)

Suriname 

With Delay
With Variable Exposed

0 5 10 15 20 25 30 35 40 45

Time(days)

0

10

20

30

40

50

60

70

80

90

100

In
fe

ct
ed

 W
om

en
  (

T
ho

us
an

ds
)

Suriname 

With Delay
With Variable Exposed

FIGURE 4.2. Comparison between models for Suriname. Number of infected by sex. Graphic of time versus infected number in thousands
of people.
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FIGURE 4.3. First moment of coincidence of the models for Suriname, men and women infected versus time.
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FIGURE 4.4. Number of infected reported by each model at the end of one year (approximately) for Suriname.

El Salvador:
The asymptotic behavior of infected humans is analogous to that of Suriname, see Figure 4.5. Both models report
the same number of infected people after 50 days, a time longer than that reported for Suriname, but the population
of El Salvador is greater than Suriname and the result obtained in the study of <0 is verified because the ZIKV
behaves as endemic, but contrary to Suriname, at the end of the period of time the model with delay reports a
greater number of infected people compared to the model with exposed variables, see Figures 4.6 and 4.7.
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FIGURE 4.5. Comparison between models for El Salvador. Number of infected by sex. Graphic of time versus infected number in
thousands of people.
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FIGURE 4.6. First moment of coincidence of the models for El Salvador. Men and women infected versus time.
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FIGURE 4.7. Number of infected reported by each model at the end of one year (approximately) for El Salvador.

5. Conclusions. We presented mathematical models for ZIKV with exposed variables and with temporal
delay, and a comparison between them was made in relation to the period of the outbreak and the number of
infected. The computational simulations were carried for El Salvador and Suriname because their demographic
and geographic characteristics allow the study to be extended to other regions. The study for these countries showed
that over time the Zika can become endemic and the need for a control strategy with priority in the contacts between
mosquitoes and humans, because with the simulated data, sexual contagion does not exert a strong influence on
the transmission of virus (<s

0 < 1). With the delay, the outbreak is reported for a shorter period of time but with a
greater number of infected people compared to the model with the exposed variables for both countries.
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