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Abstract

In this paper we study the local well-posedness of the initial value problem for a Nutku-Oguz-Burgers system
with time dependent coefficients, formed by two Korteweg-de Vries equations coupled through the non-linear terms.
The system appears as a model of wave propagation in a shallow channel with variable bottom surface, in which
both nonlinear and dispersive effects are relevant. The proof of existence and uniqueness of local solution and the
continuous dependence on the initial data of the local solution in Sobolev spaces H® (R) x H® (R), s > 3/2, are
based on the works [9] and [17].
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Resumen

En este articulo estudiamos la buena formulacion local de valor inicial para un sistema Nutku-Oguz-Burgers
con coeficientes dependientes del tiempo, formado por dos ecuaciones de Korteweg-de Vries acopladas a través
de los términos no lineales. El sistema aparece como un modelo de la propagacion de ondas en un canal de poca
profundidad con la superficie del fondo variable, en el cual tanto los efectos no lineales como los dispersivos son
relevantes. Las demostraciones de la existencia y unicidad de la solucion local y la dependencia continua de la
solucion local respecto de los datos iniciales en los espacios de Sobolev H* (R) x H* (R), s > 3/2, se basan en
los trabajos [9] y [17].

Palabras clave. Problema de valor inicial, Ecuacion de Korteweg-de Vries, Buena formulacién local, Espacios de Sobolev.

1. Introduction. In this paper we analyze the local well-posedness of the initial-value problem associated
with the system

Opu + O2u + a (t) uPOpu + vPO,v + O, (uvP) — pdu =0
0w + 30 + uPdpu + B (t) VP00 + 0, (uPv) — pd2v =0
u(z,0) = ¢ (x)

v(z,0) = (x).

where u = u (x,t) and v = v (x, t) are real value functions, (x,t) € R x [0, 4+00[,  and ¢ are initial data, o (t)
and 3 (t) are real non-negative, continuous and bounded functions « (¢t) + 5 (t) = 1 and the exponent p is an
integer greater than or equal to one.

The system in (1.1) is a generalized version of the system

(1.1)

(1.2) Ou + O2u + audyu + v0,v + 0, (uv) =
‘ 0w + 930 + udyu + Bvdyv + 9, (uv) = 0
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where «, /3 are real positive constants such that o + 3 = 1 stablished by Y. Nutku y O. Oguz [18] studied by
J. Montealegre [15, 16]. The system (1.2), which has the structure of two Korteweg-de Vries equations coupled
by the non-linear terms, it appears as a propagation model of waves in physical systems in which both nonlinear
effects and the dispersives are relevant (see, for example, [4, 5, 14]). Different properties of the system (1.2) have
been studied, including the theory of local well-posedness in spaces of high regularity [15] and its extension to
spaces of low regularity [16].

Our purpose in this paper is to show the local well-posedness of the problem (1.1) in H® = H® x H?® with
s> 3, that is, we will prove that there is 7> O and @ : R x [0, 7 = R?, @ = (u, v) is the unique solution of the
initial value problem (1.1) which depends continuously on the initial data whenever @ = (¢, 1) € H*.

We shall use standard notation: we consider an interval 7 C R, by L (I) we shall denote the space of
measurable essentially bounded functions in I with its usual norm. The Fourier transform of u is defined as u (§) =
(27r)_1/2 Jg €7%" f (x) d, and the inverse Fourier transform of 1 is given by i (z) = (27r)_1/2 Je €7 f (&) dE.
For each s € R, we shall denote by H®* = H* (R) the Sobolev space of order s defined as the completion of the
Schwartz space S = S (R) with respect to the norm

. = / (14+€2)° [a (e de.

and we denote by H* = H*® x H* with the norm ||| ]%IS = ||u1||ils + ||U2||2H for @ = (uq1,uz).

If X is an arbitrary Banach space and T is a positive real number, we denoted by L ([0, 7] : X) the Banach
space of measurable functions v : [0, 7] — X such that ¢t — [ju (¢)|| y belongs to L> ([0,7]) and C ([0, 7] : X)
the vector subspace of L™ ([0, 7] : X) of all continuous functions endowed with their usual norm. We denote by
J® = (I — 8%) and D° = (—8%) 5, the Bessel and Riesz potentials of order —s respectively. Let A and B two
operators, then the commutator is given by [A, B] = AB — BA. Thus, [J*,u]v = J*® (uv) — uJ®v in which w is
regarded as a multiplication operator.

The following lemmas will be useful in the next sections.

Lemma 1.1. Let u,v € S(R") be two real functions, s > 1+ 5 and t > 1. Then, there exists C =
C (s,t,n) > 0 such that

(1.3) [{u,v0%u) g2 | < C [IV0ll aa [[0?|| e + IV 0l g Nll gy Nl e

where || = 1.
Proof. See [11, Lemma A.5.] O

Lemma 1.2. Let u,v € S(R), 1 < p < oo and s > 0, then

(1.4) [7° (o)l o < C (lull por 1501 poa + 1%l s 011 £pa)
and
(1.5) I17° 1 oll o < C (182ull pon || 757 0| g + 156l s ([0l 1a)
where pa, p3 € |1, 00[ and p1, ps are such that p% + p% = % = p%’ + p%.
Proof. See [13] O

The inequality (1.5) is also true if p; = ps = oo and p2 = p3 = p as shown in [13, Lema X1].

2. The linear problem. Consider the linear problem associated with (1.1), which in its vector form is written

{ Ot (t) +Auti(t) =0, 2€R,t>0
2.1

i(0) =¢

—

where i = (u,v), ¢ = (p, ) and A,, is the operator defined by
D(A,) =H*3,5>0
2.2) "
Ayt = (03u — pd2u, 03v — pd2v) , i = (u,v) € H.

Proposition 2.1. The operator —A,, : Hs+3 C H® — H? is m-dissipative in H® , s > 0.
Proof. First we note that — A, @ € H?, since if & = (u,v) € H*"3, then the definition of —A,,, the properties
of the norm and the inner product in H?, the inequality H@’;uHH < |||l jyo+x and because H¥T3 — H*+2 we get

(2.3) I=A,4|

R = (U2 [[|02ull5y. + [1020] | — 26 [(83u, 02u) . + (930,020 ]
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Using integration by parts, in (2.3) we have

-2 —
I=Apillg. < (1+4°) ]

2
Hs+3 -

Therefore — A, € H°.
The definition of —A,,, the properties of the inner product and integration by parts, we obtain

(= Ayt Dy, = = (|0sllfy. + [0:].) <0

Getting that operator —A,, is negative, therefore — A, is dissipative in H”.
The operator I + A,, is surjective, that is, for each ¥ = (u,v) € H* there exists ¥ = (f,g) € H*"3

such that (/ + A,)u = ¥. In fact, let ¥ = (u,v) € H°, then ¥ = (f,g) with f(f) = 14—:5(26)—253 and
g(&) = H:f(f)—zf?’ satisfy (I + A,) (f,9) = (u,v). To conclude the proof it will be shown that @ € H*3.

Indeed, we have

2

-, 2 2
(2.4) l@llgors = 1 F ezovs + Ngllzross

where

~ 2 ~ 2
s [aaey  OP o [ ey BOF o
s = [0 e)™ o0 ae<e [ ey EE = ol

for which the inequalities (1 + ,u§2)2 +&5>C (1 + {2)3 were used. In the same way,
lglzre+s < Clloll-

Hence, in (2.4) we obtain

R 2
o Hs -

2 2 2 -
fovs < C (e + 0l ) = €11

which implies that @ € H*+3, O

Theorem 2.2. If u > 0, the —A,, operator is the generator of a semigroup of contractions {Wu (t)} in
>0

H? with s > 0, such that for any d_; € H? the function
Wi ()6 : Ry —H
is the unique solution of the initial value problem (2.1) in
C ([0, +oo[ : H*) N C* ([0 4 oo : H*72).

Moreover, if&z (p,1) € H? then

—

(2.5) W, ()6 = (W, () o, W, () ¥)

where W, (t) are the Fourier multipliers defined by

—

(2.6) W, (t) ¢ (€) = W€ 15 (¢),

and for each t > 0 we have Wu (t) € L (H® : H5%) for any o > 0 with

—|

1
<K 1+ ——|¢

2.7) . @)

AGE

HHS'

Proof. The first and the second statements are consequences of proposition 2.1, the Lumer-Phillips’s theorem
and the theory of semigroups of linear operators. To obtain (2.5) and (2.6) it is sufficient to take the Fourier
transform in the spatial variable, solve the resulting system of ordinary differential equations and use the function
I/f/# () ¢ which is the unique solution of the problem (2.1).
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Now we will prove the inequality (2.7). If ¢ = (1, p2) € H* we have

2

2
- 2\ s+o
e =2 [0

Since (1 +£2)7 < C (1 +&29) for j = 1,2, we obtain that

-, -
"

LACE: el (o) e

(1+£2)S+0 e(if‘g*“fz)t@(i)r SC(I—Q—&“?)Se*?#E?t |@(§)|2+C§2" (14_52)3672#5%@;@”2
Hence,
Wowd| <o ety (5P + @ EP)d
0|, <C | ) (1B ©F + 12 ©)) de
4 [ e (14 e) (17 (O + 7 O de
R
2.8) =1 + I,
where
n<C [ (+€) swe (G OF + 17 @) de = Csupe 4]
R £€R €ER He

and using the inequality 52"6*252‘“ < ‘(7201 ft; valid for all 4 > 0,7 > 0 and o > 0, we obtain

Co—0 | 2
I, < Co eU '
(2ut) Hs
Then in (2.8) we get
L 2 12 Coe | 2 1 L2
703 < Campe e i+ ST <t (1L
PROL F— supe S|, + ) e <Ko |1 F ) |
where K2 = max {Csup e 2nE%t CU"@“’}, as we wanted to shown. O
£€R

3. The integral equation associated with the initial value problem. The initial value problem (1.1) is
written in vector form

Oyl + Ayl + 0, F (i) = 0
3.1 %
G-b { @(0) =9,

—

where 4 = (u,v), ¢ = (¢, ), the operator A,, was defined in (2.2) and F is the vector function defined by

t 1 1 t
(3.2) F(u) = ﬂu’”rl + —— P P —— Pt &UPJH +uPv .
p+1 p+1 p+1 p+1

It is readily seen that if ;4 > 0 is fixed and @ = (u, v) is solution of (3.1), then # is solution of the integral equation

(3.3) T(t)=W,(t)¢— /0 W, (t —7) 0. F (i (1)) dr.

In this section we show the existence of a solution of the integral equation (3.3) that is solution of the problem
(3.1). In the proof of the main result, theorem 3.2, we use Banach'’s fixed-point theorem to show the existence of
solution of the integral equation and a classical argument of T. Kato and H. Fujita [12] to show the uniqueness of
the solution. . ~

Suppose that ¢ € H® with s > % and ¢ # 0. For T' > 0 any, we define

&)= {ae o1 m): i) - W, ()4

< |l 0 <rs1]
Hs Hs

with the metric

ms» ford,ve & (T),



J. Montealegre, G. Cruz.- Selecciones Matematicas. 05(02): 121-136 (2018) 125

it is readily seen that (&, (T') ,d) is a complete metric space. For ¢ € H* fixed, we define for any @ € &, (T) the
application © by

G.4) i (1) = W, (t)q?_/o W, (t = 1) 0,F (i (7)) dr, ¢ € [0,T).

In the follow proposition we study the properties of the application © defined on & (7).

Proposition 3.1. Ifa,5 € C(R)NL>®(R), u > 0and ¢ € H* with s > 3, then there exists T, =
Ty (Hgi_; . ,a,ﬂ,s,u) [0,T] such that © : & (T,,) — & (T},) is a contraction.

Proof. Let be given any T' > 0, Ot (t) € H* for all t € [0,T]. Indeed, if § € HF, by the theorem 2.2
it holds that Wu (t)¢ € H*. On the other hand, since H* is a Banach algebra, it follows that 8, F (i (-)) €
C ([0,T] : H*~1), then the integral fot W, (t — 1) 0, F (i (1)) dr € H*~'. Moreover, choosing o = 1 in (2.7)
we obtain W, (t — -) 9, F (i (-)) € C ([0, T] : H*) and

2ur
‘ \/1—|- dr sup |0 F (4 (7))]|ge-1 < 00.
Hs T€[0,T]

Hence, Ot (t) € H* forall ¢t € [0, 7.
Now let’s consider the continuity. For ¢y € |0, T] suppose that ¢ < ¢, in this way

/0 W, (t —7) 0, F (i (7)) dr

10 (t) — ©1 (o))

Hs HW )b — W, (to) ¢H

t
+/ (W lt=7) = W (to )] 0. F @(r)|| dr
0 e
to
[t - nocr @) ar
\ s
Then, due to the strong continuity of the semigroup {W ( )} we have
|Witto =) 0ur @ ()| < sup Wi (to = 1) 0P (@ ()|
He " [0,t0] L
then
16 (1) — O (to) 5. < | W () — Wi (1) ]
t
+/ {Wu (t—7) = Wy (to— r)] @F(ﬁ(r))ﬂ o
0
(3.5) + [t —to| sup ||W, (to — 7) 9. F (ﬁ(T))( e

[0,¢0]

The first summation of the second member of (3.5) converges to zero when ¢ — t; by the continuity of the
application Wu ()@ : R{ — H* shown in the theorem 2.2 . The same happens with the second summing for the
same reason and Lebesgue’s dominated convergence theorem. The last addition converges trivially to zero when
t — ty . This shows us the continuity to the left of Zy. The continuity to the right of ¢, is followed in an analogous
way, and hence the continuity in ¢g.

Let’s see now, there is 77 = T} (H(EH o, B, s ,u) [0, T'] such that © defined on &, (77) and it has range
R (O©) contained in & (T1). Letbe T'> 0 and @ € &, (T), then for 0 < ¢ < T, we have

t
H@ﬁ(t)— V. (t)é g/ HW“ (th)amF(ﬁ(T))‘ dr.
H 0 Hs
Using the equality (2.7) with 0 = 1 we have
- 1
- 74 < -~ /., 74 1 9
[t =m0 @, < K14 5 10 @ () e
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t 1 .
e e et )

But, because of the triangular inequality and because H*° is a Banach algebra, we have
|a ( | +1 1 +1
o = (2 o .+

Ly BOL
+<p+1||up i+ g 107 e+ el

L[l ooo, +1 W8 Loo o, +1
< POy 4 SO it 4+

1 1
<c(||u\|p+ ol + Yl

then

| Hs—1 dr.

(3.6) H@ﬁ(t) — W, (t)

10 F (i (7))]

vl + e [lv

|u||H< ||Hs

ol

vlize + [lull

(3.7)

where C' = C' (o, 3, s). We note thatif & € & (T) and as {W# (t)} is a semigroup of contractions by theorem
>0

2.2, we have

<|a—Ww, () V.| <|¢
= = Hu Wi (t)QSHHs + HW” (t)deHs - HQSHHb

I

and using this inequality in (3.7) we obtain

—||p+1
(3.8) |02 F (4 (7))] ¢

g1 S C

Hs

Then, from (3.6) and changing the variable we get

- 5 p+1 ot 1 ip+l 20t 1
6o |eaw -w. 0|, c|d, /0 \/”deSCH‘ﬁHHS /0 YLtz

where C = C («, 8, s, ). We note that

2ut 1
(3.10) / \/1+7d7§2(ut+\/2ut),
0 T
then
p 2/,Lt 1
/ 14+ —dr =0,
Hs 0 T

imply that there exists 77 = T3 (ng?HH ,a, B, s, u) such that C' HQSH 2“T1 14 %dT <1lif 0<t<Th.
Thus, in inequality (3.9) for 0 < ¢ < T} we have

lim C gg

t—0t

[CHORAAG

That is to say, ©1 (t) € & (T1). Therefore, there exists Ty = T (H&HH ,a, B, s,u) € [0,7T] such that R (©) C
Es (Th).
We will now prove that there exists 7, = T}, (H(EHH 7a,5,s,u) [0,T1] such that © : & (T),,) — &5 (T),)

is a contraction. Of course, if @ = (uy,v1),7 = (ugz,v2) € & (1) then

10 () — OF (1) . < /O HWU (t — ) [0.F (i (7)) — 0, F (17(7))]( L T
For the equality (2.7) with o = 1,
B . ! 1 B B
G [8d(t) - 07 (1)l < K1/O T 5= 10F @) = 0P (3 ()
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On the other hand, using the factorizing, the triangular inequality and the algebra properties of H?®, we obtain

102 F (i@ (7)) — O F (T (7)) g

Il Loo o, 1y LHIB® N oo 0,1y

+1 ptl +1 p+l
= s u u HHs pHl ’Uf v HHs
+ luavf = ugvill e + [lufor — uhva| .
pt1
1-
< Cflur =zl e | D Ml Nualife + llozl e Z e 1577 a3 + lloz s
j=1
p+1 P
1
+ Cllor = wallgre | 2 MotllF =7 oallre + el e D Jonll5 ozl + ua I
j=1 j=1

where C' = C(a, B, ). Inequalities maxx {[jus | 7. 0117} < lger max {Juzllyr ol .} < 750 and
(3.8) implies that

—||P
102F (@ (7)) = 0.F (@ (Dllges < C 9] (U = wall e + lor = v2ll ).

Since [Jui — usal| s + ||v1 — v2|| e < ||@ — ||, We obtain

(3.12) 0:F (@ (7)) = 0uF (5 (1))lges < € |8 1 () = 77 s

o [ 1+ 5 180 - 5l ar
N 2ut
Cll¢ / 1+ Ldrd @
Hs Jo T

where C' = C (o, 8, s, ). Taking the supremum in [0, 77] we obtain
2;1,T1
/ \/1+ de (d,7).

Then of (3.11) we have

e (t) -

Ha_

d(67,07) = sup [(07) (1) — (07 (
0<t<Ty

Hc

Now, as lim C HQSH 2”T1 1+ 1 dr = 0, it follows the existence of T), = T, (HQZH ,a, B, s, ,u) €10,71]
T;—0+ Hs
such that
QHTu 1
/ A1+ —-dr <1
Hs 0 T
Thus, we conclude that
d(0u,07) < Ad (4,7) with0 < A < 1,
and we conclude that © is a contraction. O

Theorem 3.2. If o, B € C (R)NL*>® (R), pu > Oandq; ceH® s > % there exists T, = T), (Hd_;HH ,a, B3, 8, N) >
0 and the function

i, € C([0,T,] : H*)
as a unique real solution of the integral equation (3.3).

Proof. By the proposition 3.1 the hypotheses of the Banach fixed-point theorem are satisfied, then there exists
aunique @, € & (T,,) C C([0,7},] : H*) such that ©,, = i, that is,

O, (t) = W, (1) & - / Wi (t - 7) 0, F (i (7)) dr = i, (1)

forallt € [0,7),].
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For uniqueness, let ¢ and ¢ be two solutions in C' ([0,T},] : H®) of the integral equation (3.3). For any
t € [0,7,,], by the inequality (2.7) with o = 1, (3.12), a change of variable and (3.10), we have

i (t) — 5 (1)l < /HW 1 1) [0.F (7))~ 0 F ()|, dr

/ K14 gy 10 (0(7) = 0. (7))
N 2th

— sup |4 (1) — U (7)||ps 1+ —dr

g |11, s 170 =5l / :

w(t) sup [|@ () = 0(7)l| g »
0,2]

TE

Hs—1 dr

—||P
where k (t) = % HqﬁHHS (ut + +/2ut). Since & is continue and increasing in [0, +oo|, & (0) = 0 and t_l}gloo K (t) =

+00, by the mean value theorem, there exists 7 > 0 such that  (T*) = 1. Let be 7 = min {7}, 7*}, then
k() < k(Ty) < k(T*) = § and for t € [0, 7] we have

1 R . 1 . -
pe < 5 sup @ (r) = (7)ll g < 5 sup |l@(r) —7(7)]
T€[0,t] T€[0,71]

1@ (¢) = 7 (2)]

HS 9
and taking the supremun on [0, 73], we obtain

_ " 1 " S
(3.13) sup @ (t) — (). < 5 sup [l@(r) - (r)l
te[0,T1) T€[0,T1]

Hs -

Therefore, sup || (t) — ¥ (t)|x. < 0and thus @ = ¥in [0, T}].
te[0,T4]
If Ty = T, we get the uniqueness, but if 71 = T and defining 75 = min {T#, 2T*} it follows that T} < Ty.
Then, for ¢ € [Tl, T5] we obtain

@ (t) — 7 (1)

wzcld

L[ e 1) Ol
(1) = U(7)|gs dr
H: J1, 2u(t—7) H

¢ Hg‘ " sup [|17(7) — 7(7) e /MTI) Pdr
w H* +¢[0,t] 0 T
<k(t—=T1) sup @ (1) =V (7T)lg
T€[0,T%]
(3.14) <k(Tp—T1) sup ||@(r)—7(7)]gs

TE[O,TZ]
because of 1o, < 27, T} = T™*, we have
I{,(Tg — Tl) S KJ(T*) .

Thus from (3.14) we get

* — — 1 — —
« Swk(TY) sup |u(7) = 0(7)|ly. =5 sup [[a(r)—T(7)]
T€[0,T2] 7€[0,T%]

@ (t) =7 (t)]lg

He -

Taking the supremum on [0, 7>] we obtain (3.13) in [0, T3], then @ = ¥ in [0,T3]. If T» = T, we obtain the
uniqueness, otherwise we repeat the process for 75 = min {7},,37*}. Since [0, T}, is compact, there exists n € N
such that 7, < nT™, hence @ = ¥ in [0, T},]. O
As a consequence of the regularizing property of the semigroup {W# (t)} proved in the theorem 2.2, we

>0
will show that the solution of the integral equation (3.3), obtained in the theorem 3.2, is more regular than the

initial data, that is, if 5 € H* with s > %, then a,, : ]0,T},] — H**" is continue for all » > 0.

Theorem 3.3. Let o, 5 € C(R)NL>® (R), p > 0 and q; € H?, s > % be given. The function U, of the
theorem 3.2 satisfies

i, € C(]0,T,) : H*")
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forallr > 0.
Proof. Lett € ]0,T,,] and we consider the integral equation

t
G.15) B () = W (06— [ W, (= 7) 0. (@, (1)) dr = W, (05— G (1),
0
From the theorem 2.2 we deduce the continuity of the application ¢ € [0, +oo[ — W, (t) ¢ € H**+" for all r > 0,
that is, W, (-) ¢ € C (10, T},] : H*+7).

Suppose that 0 < r < 1, then

dr.

H.§+T

(3.16) 16 Ol < [ [t =008 3 )

Using (2.7) with o = r + 1 we have,

|, ¢ =) 0. (@ (7))

1 r+1
< s -
o S Kr+1\/ 1+ (m o= T)) 10, F (it (7))o -

and from (3.7) we obtain

1 r+1
<C4/1 - . — p—l—l
e 2O (5 0B, 1 ()

IG Oll <C s, (r / Ji+
0<7<T,

[0, 1], the integral fOQH 1+ Tr%dT is convergent, in consequence G (t) € H*™" for any

Wt =) 0.8 @ ()]

Thus we get in (3.16),

re 0,1
Now we show that G € C (]0,7},] : H*™") whenever r € [0,1[. To this end, we consider ¢ € ]0,7),] and
h > 0 such that ¢ + h in ]0, T},], then

dr

Hs+r

|Gt +h) =G ()]

we < [ [t 08 @)

t
(3.17) +/ (Wt b= ) = Wy (= 1) 0 F (@, (7)| dr.
0 Hs+r
Using (2.7) with 0 = r + 1, by (3.7) and changing the variable, we have
t+h
/ [ 6+ =)0 G ()|, ar
1
<KT+1/ 1+ I (712, dt
t+h 7_) H H
\/ r4+1
<C sup |u . ( ) dt
TG}O,T;L] H ”H 2 t + h — T)

2uh
<C sup |@,(r / T+1
7€]0,T]

As lim f02uh \/1+ = d7 = 0 because of “+L € [0,1], we get

h—0t

dr = 0.

Hs+r

h
Jim HWH (t+h—1)F(a, (T))‘

h—0+t Ji

On the other hand, the continuity of the application ¢ € [0, +oo[ — V_V# (t)¢ € H*t" for all r > 0, the
inequality (2.7) and , /1 + ()% € L' (]0,2ut] : R), by the dominated convergence theorem, implies that

dr = 0.

Hs+r

lim/H Wb =) W, (= 7)] 0, F (3 ()]

h—0t
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Thus in (3.17) we have

lim |G (t+ ) = G ()]l = O,

h—0t

so we show that G is continuous by the right of ¢. In the same way the continuity by the left of ¢ is proved. Hence,
from (3.15), we proved that @, € C (]0,T,] : H**")if 0 <r < 1.

Using the results proven and the same procedure, we can show that G € C (]0, T,] : HS+27") and from there
i, € C (]0,T,] : H**2"). An inductive argument proves that G € C (]0,7T},] : H*™") for each n € N and thence
follows the thesis of the theorem. ]

This result will be fundamental to show that the existence interval of the solution of the regularized system is
independent of u, as we will see in the theorem 4.1.

4. Existence and uniqueness of local solution. In this section we will prove that the initial value problem
regularized (3.1) is well possed locally. For this we will first prove that the function ,, of the theorem 3.2 is the
unique solution of the regularized problem in H*~2. The proof is based on the work of R. Iério [9] and the theorem
2.2.

Theorem 4.1. Let o, 3 € C (R) N L>® (R), pn > 0 and ® € H*, s > 2 be given, then the function ,, of the
theorem 3.2 satisfies

i, € C([0,T,] : H*) nC* ([0, T,] : H*?)
and is the unique solution of (3.1). Moreover, for all v > 0

i, € C(]0,T,] : H* ") nC* ([0,T},] : H¥T"2).

Proof. Let’s see the existence of a solution. From the theorem 2.2 and the theory of semigroups we have,
W, (t) 6= —A W, (t) &,
fort > 0in HS2. For x> 0, we consider
t -
@.1) Q1) = / W, (t — 1) 0,F (4, (1)) dr.
0
For 0 <t < T, and h > O such that ¢ + h € ]0, T},] it follows that,

G(t+h) —G(t)
h

- el / W (6= 7) 0F (@, (1) dr + Wi (6 = ) O, F (1 ().
0

where it has been used that Wu (h) — I is a linear operator and the mean value theorem for Bochner integrals in
the interval [t,t + h] with ¢}, € [t, ¢ + h].

As —A,, is the generator of the semigroup {W# (t)} o Ve have
t>

lim % /O W, (t — 1) 8, F (@, (1)) dr = — A, /O W, (t — 1) 8, F (@, (1)) dr.

h—0+t

In addition, it follows from ¢y, € [t,t + k| thatif h — 0T then ¢, — ¢, hence

Hm W, (6 + b — ca) F (1@, (ca)) = W (0) F (3@, (£)) = F (3 (1))

h—0t+
Thus, we get
t
0 G (1) = —A, Vf/u (t—7)(Ft, (r)dr + F (u, (t) = —A,G(t) + F (4, (t))
0

Similarly, for A < 0 we obtain

0, G(t) = _AM/O Wu (t = 7) F (i, (1)) dr + F (), (t)) = —A,G (t) + F (i, (t))

Gt)—G (-
For this, it is enough to take s = —h > 0 and consider 9, G (t) = lim M

s—0t S
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Thus 9,G (t) = 9;7G (t) = 9, G (t) and
Oty (£) = 01 (W, (1)@ = G (1)) = — Ayt (£) = F (@ (1))
Then, since i@, € C ([0, T},] : H?) satisfies (3.1), and given that —A,, € £ (H*,H*~2) and —F (i) € C ([0,T},] : H*™") C

C ([0,T,] : H*=2), it follows that i@, € C* ([0,T},] ,H*~?).
For uniqueness, let

teC([0,T,]:H)NC* ([0,T,] : H*?)
be another solution of (3.1), then the function ¢’ satisfies
4.2) O (t)+A0(@)+F(W()=00<t<T,
in H5~2 (R). Then applying W, (t — 7) to (4.2) for 0 < ¢ < T}, we obtain

O, W, (t—7) 5 (1) =W, (t—7) 0,0 (r) + W, (t — 7) A0 (7) = =W, (t — 7) F (

<y
—

\1
-
=

Integrating from 0 to ¢ and considering that 7 (0) = gi_; we have
- t —
4.3) T(t) =W, (t)®— / W, —71)F(0(r)) dr
0

in HS~2. Then from the theorem 2.2 we obtain as in the proof of the theorem 3.3, since the second member of
(4.3) is in H®. Therefore

e C([0,T,]:H)nC ([0,T,] : H*?)

is solution of the integral equation (3.3). Then the uniqueness established in theorem 3.2 means that ¥ = ,, in
[0,7},] completing the proof of uniqueness.
The last statement follows immediately from the theorem 3.3. ]

We will then establish the existence of an interval [0, T] independent of 1, where all solutions @, can be
defined. This will be an essential result to show the continuous dependence on the initial data of the local solution
of the problem of initial value (3.1).

Theorem 4.2. Let o, 3 € C (R) N L (R), > 0, ® € H* be given with s > 3 and i, the solution of the

initial value problem (3.1) obtained in the theorem 4.1. Then, exists T = T (H(;‘ ,a, 3, s) > 0 such that G,
HS
can be extended to the interval [0, T). Moreover, there exists p € C ([0,T],R) such that

- 2
7 Ol < p(H), 0<E<T

(4.4) ;?%p(t) <C (H&‘H L, B, s,T) :

where p satisfies

3
2

() =20 (1) p
p(0) =

(t), t>0
4.5)

—|

¢

He

Also, lf¢_; € H*Y" for r > 0, then for each u > 0 we have

(46) sup 1, () esr < € (|9, 0 8.5.7)

Proof. Let @i, € C ([0,T,] : H*) N C* ([0,T},] :, H*~2) be the solution of (3.1) given by the theorem 4.1. We
have

O ||ty

=2 <% 8tﬁu>ﬂ-ﬂs =2 <ﬁw _Auﬁu>ﬂ-ﬂs +2 <ﬁuv —F (EH»HS :

2
s
From proposition 2.1 and proposition 3.1, we know that

<ﬁm _A/,Lﬁ/,L>Hs S 0,
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hence

- 12 - — — —
(4-7) 8t Huu| Hs < 2 <uu7 —F (uu)>Hs < 2 ’<u,ua —F (uu)>]}ﬂs

= 2. F (i)
If @, = (u,v), then by (3.2) we have
(i F (1)) = 0 () {11, 000) . + (11,000} g + (0,0, () .
4.8) + (v, U0 W) 5y + B (L) (V,V0,0) s + (v, Oz (WV)) s -
By definition (-, -) ;. = (J*-, J®-) . and equality [J*, f] g = J* (fg) — fJ®g, we have
4.9) (U, V0,0) o = (Jou, J* (V0,0)) 12 = (S u, [J*, 0] Op0) 1o + (J2u, 0J°0pv) 2,

(U, Op (u0)) e = (J%u, [J*,u] 00) 12 + (JPu, uJ*0p0) 12 + (Jou, [J°, 0] Opu) 12 + (JPu,vJ°0zu) 2,
(4.10)

(4.11) (v, u0u) s = (J%0, [J%, u] Oput) 2 + (J°v,uJ*Oput) [ 2,
and

(0,05 (w0)) o = (J%0, [J%,u] 00) ;2 + (J0,uJ*050) 2 + (J70, [J*, 0] Opu) > + (J v, 0T °Opu) 2 .
(4.12)

Furthermore, in the sum of (4.9), (4.10), (4.11) and ( 4.12), associating factors in the inner product (-, ) ; ., using
integration by parts and the commutativity of the derivative with the potential of Bessel we have,

(Jou,vJ%0,v) 2 + (S0, 0 0pu) 2 + (J*u, uJ?0v) 12 + (JPv, uJ*Opu) 2
= — (0 (WJ%u), J°v) 12 + (J°0, 00, Ju) 2 + (JPu, uJ*0p0) [ — (05 (uJv), Jou) -
= — (Oxv - Jou, J0) ;2 — (V0 Ju, J°v) 2 + (J°0, 00, J°u) |
+ (JPu, uJ®0,0) 2 — (w00, JPuY 2 — (Opu - J°v, Jou) ;-
(4.13) = —(0,v - JPu, J) [ — (Ozu - Jv, J°u), »
Thus, replacing in (4.8), taking the absolute value and applying the triangular inequality, we get that
(e F () gee | < la (8)] [(w, udpa) gy | + (7w, [T°, 0] 0p0) | + (70, [J°, 4] 830) 1]
+[(Jou, [J®, 0] Opu) 2| + [(JPu, 0J°0pu) 1| + [(J7v, [J°, u] Opu) ;2|
+ 18O (v, v020) o | + [(T70, [J°, 1] Opv) | + [(T0, u*0p0) 1|
+ (v, [J°, 0] Ozu) 12| + |(Ozv - Jou, J*0) 12| + [(Opu - J5v, Ju) 2] .

4.14)

Next we will estimate the second member of (4.14). Using the inequality (1.3) of the proposition 1.1 with
t = s and the regularity of the solution ,,, we have

3
2 3 2 2 2 - 13
@15 [w,u0pu) o] < Cs |0zl gro-s Jull e < Cs Jlullfe < Cs (HUHHS + IIUHHs) = Cs [l -

Combining the Cauchy-Schwartz inequality, the commutation estimate of the proposition 1.2, the regularity of
the solution ,, and the Sobolev immersion theorem, we obtain

[(Ju, [, 0] 0pv) 2] < (|70l 2 [[[T%5 0] Bzl 12
< Csllull e (1000l e |77 00| 2 + 177011 2 1020 )

< Cs ull s (1020 o1 [0z gro—1 + [0l e 1020]] po—1)
< Cs llull g 10l
(4.16) < Oy |1l -
[(J2u, [J%,u] 020) pa| < ([Tl 2 [[[J75 1] O] 12
< Cs llull g (lullgs [0l s + llwll g 0] 55)
4.17) < Cy |12,
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and

(4.18) (T, [T°,0] Bpw) 2] < | T°ull 2 (|7, 0] Brull 12 < sl 0l e < Co N1l -

In addition, from the Cauchy-Schwarz inequality, the regularity of the solution ,, integration by parts and the
Sobolev immersion theorem, we have

(4.19) [(Jou, v Opu) o] = J5u||i2 < Cy HﬁHII%S.

(0w, (7w?) | < Culivl

N | =

and

(020 - 2w, J*0) 2| < [0p0]| oo (S0, J70) 12 < Cs [[0]] o

Soul| 2 [|70]] 2

S o3
(4.20) = Cs [l g Nlull o vl o < Cs [l
Similarly,
- 3 s s - 3
‘<U»Uamv>Hs| < Cs Huu‘ Hs ) [(J*v, [J*,u] azU>L2‘ < (s ||uu| Hs »
(4.21) [(T50, [T, 0] Dpu) 2] < O @l o [(T50, [J%, 0] 9pv) 1] < Cs |[T]5
(@t T, Tl < Co e > 1T, 000} ol < Co [

Therefore, replacing (4.15), (4.16), (4.17), (4.18), (4.19), (4.20) and (4.21), in (4.14) we obtain

4.22) [ F (@) | < Co (1L @ (0] + 18 (O @l < CA () 17,5
where A (t) = 1+ | (¢)| + |8 (t)| > 0. After (4.7) and (4.22) we get
L2 L3 L2
(4.23) Ou e < 20 @) Il = 26 (Il )
where ¢ (y) = Cs) (t) y2, fory > 0.
é
We consider pz (t) = J| 2 , defined in the interval [0, T*[ with T* = ———1——— the
1-C, ¢||HS [t A(r)dr c, ¢HW [EA(r) dr

maximal solution of the problem of inicial value

424 Pt =20(p(t), >0
o {pm): .

Then from (4.23), (4.24) and from the theory of ordinary differential equations, we have,

2. <p@t), te[0, T[N[0, T,)].

1]

Thus for 41 > 0, @, it can be extended (if necessary) to an interval [0, T']. Furthermore, since \ (7) is positive and
continuous, we have

¢
1-C4 /)\(T)drzlfcs
0

7

B T e 0
N 3| T I ey >

then

.. a" o (s
s el (| o007
3| formar T 1-c|d| TN~ ?

=
=
—~
~+

C1-c,

From where we get that

sup p(t) < C (H(EHH ,a,,@,s,T) .

(0,7]

This proves (4.4) as we wanted. Inequality (4.6) is obtained with the same arguments as above by writing s + r
instead of s. ]
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5. Continuous dependence on the initial data of the local solution. We conclude by showing in this section
that @, is continuously dependent on ¢ e H°, s > g, in the sense that the application (b € H° — 4, €
C ([0, 7] : H®) is continuous.

Theorem 5.1. Let o, 3 € C (R) N L™ (R), 1 > 0, ¢ € HF be given with s > 2 2 and i@, , € C([0,T] : H*)
the solution of the initial value problem (3.1) satisfying (4.4). If {¢n}n>1 is a sequence in H® convergent to gg
in H* and {tyn}, ., is a sequence of solutions from (3.1) in C ([0, T,] : H*) with @, (0) = ¢n, then for all
T €10, T| satisfies that for n_enough large, ,, ,, is defined in [0, T| and
e =0,

i sup (| (8) = G ()
T o]

Proof. From the theorem 4.2, for all n we have

(5.1) [yn (8)]|2e

where p,, satisfies

Spu(t) tE0,T5].

P () =200 () pi (1), £ >0

n O = ‘ n s
P Py
in [0, T with T* = ———L and T}, € 10, T*[. Now, for T € ]0,T7 consider ¢ = ¢ (T, ) >0
Cs . fot A(T)dT Hs
such that
(5.2) e+ 4. ( ) g,
then, exists No = N (¢) such that ‘ On gb‘ < e for n > Np. Then from the definition of p,, we have for
n > Ny,
3 on H: et HJ;HH
pi () = T < = : =rr(t),
Gul|  Jo A @ ar T 1=C (||| ) AT ar
fort € [0, T, since of (5.2) we have
¢ . . ot . t
Cst/ A(T)dT(H‘qsn )gcs (g+‘¢n )T/ A(r)dr < Cs ||én T/ A(r)dr <1,
0 He= T 0 = Jo

where the last inequality follows from the choice of T'. So we obtain

53) sup pn (1) < C (|[d]| . 8..T.).

[o7]

Thus, i, (¢) can be extended to [0, 7], satisfying (5.1).
Now we consider @ = (w1, w2) = (U — Up, U — Up) = Uy n, — Uy, n, for the components of & we have

a(t)
Swy = —Pw; — —29, (WP — Pt — ——9, (VP — 0Pt — 9, (wP — upo?) + pdw
1 p+1 o p+1 o
= —0Pw; — 1 1630 a(t)wy Zupﬂ_ﬂuﬁl_l + wo va+1_Jva_1
p j=1 j=1
p . .
(5.4) -0 | vws Zv”_]vﬁl_l + wyvk —&—u@iwl.
j=1
Similarly

p+1 p+1

1
_ _ 93 - p+1—3 j 1 p+1—j ] 1
Oywy = —0,ws oy 1833 w1 g U w7+ B (t) we E v v]

p
(5.5) —0, | vuy Z upfjuifl +woul | + ,u@ﬁwg.
j=1
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Then, using definition of the inner product in H", the equality <u, 8§u> ;- = 0 and integration by parts, we
have

1 -
20¢ [l (t)] e = (w1, Opwn) e + (w2, Byws) .
1 ptl o ptl .
=3 <6‘mw1, a () w; Z uP T I =1 oy Z v”“jvﬁll>
b X °
Jj=1 Jj=1

p
+ <aw wwy Y JoP w7 wlvz> — 0w [
HS

j=1

1 p+1 o p+1 o
+m <a;cw2a w1 Z uerliJugLil +0 (t) w2 va+1jvgzl>
J=1 Hs

Jj=1

P
+ <8ww2, vwy »_uPIul 4 szi> — || Oawal [ -
Hb’

j=1

Using the proposition 4.1, the Cauchy-Schwartz inequality and the fact that H® is a Banach algebra if s > %, we
obtain from (5.4) and (5.5)

1 p+1 p+1
NI . 1-5,§-1 1-5,5-1
5018 Ol < C N0 e fwn 3w g™ - 3 0P
Jj=1 Jj=1 Hs
p . .
+C || 0xW|| gy ||uwo Z P Ipd 7 w0k
j=1 e
p . .
+C [0s g |fvwn Y uP I s | —
j=1 e
By the inequalities (4.4), (5.1) and (5.3) we obtain
0, || (8) || < C |||y [|0x® 2 |0s I < & T + S 00T — 20000
N1 ()l < C Ml 1050 — 2010003 < € [0l + = 100 Wllgze — 24 |00
where C = C <H$ H S A, S, T) and Cauchy’s inequality with € has been used. Choosing ¢ = g—: we obtain
HS
2
N R G
O || ()|l < Em [ () |z -
Integrating from O to ¢, follows that
N - 2 c ot 2
10 @)llg < Nl (O}l + g [ M1 (7).
B Jo
Applying Gronwall inequality we get
C? - C?
NN - 2 - 2
GO < GO |1+ ¢ Teo (£.7)] =0 O
which shows
_, - 2 Y 71
sup |[t,n (t) — Uy ()]l < Cy ‘ Pn — ¢‘ _—
[o7]
This conclude the proof. O
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