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Abstract The model of low-energy quantum gravity leads to small additional effects having
essential cosmological consequences: redshifts of remote objects and the additional dimming of them
may be interpreted without any expansion of the Universe and without dark energy. The theoretical
luminosity distance of the model fits the observational Hubble diagrams with high confidence levels.
In the model, the ratio H(z)/(1 + z) should be equal to the Hubble constant. The constancy of
this ratio is confirmed with high probabilities by fitting the compilation of H(z) observations. A
deceleration of massive bodies due to forehead and backhead collisions with gravitons is re-computed
here.
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1 Introduction

In my model of low-energy quantum gravity [1,2], gravity is considered as the screening effect. It is
suggested that the background of super-strong interacting gravitons exists in the universe. Its temperature
should be equal to the one of the CMB. Screening this background creates for any pair of bodies
both attraction and repulsion forces due to pressure of gravitons. For single gravitons, these forces are
approximately balanced, but each of them is much bigger than a force of Newtonian attraction. If single
gravitons are pairing, an attraction force due to pressure of such graviton pairs is twice exceeding a
corresponding repulsion force if graviton pairs are destructed by collisions with a body. This peculiarity of
the quantum mechanism of gravity leads to the difference of inertial and gravitational masses of a black
hole. In such a model, the Newton constant is connected with the Hubble constant that gives a possibility
to obtain a theoretical estimate of the last. We deal here with a flat non-expanding universe fulfilled
with super-strong interacting gravitons; it changes the meaning of the Hubble constant which describes
magnitudes of three small effects of quantum gravity but not any expansion or an age of the universe.

In this model, the geometrical distance/redshift relation is:

r(z) = ln(1 + z) · c/H0, (1)

where H0 is the Hubble constant, c is the velocity of light, z is a redshift. The luminosity distance/redshift
relation has the view:

DL(z) = c/H0 · ln(1 + z) · (1 + z)(1+b)/2 ≡ c/H0 · f1(z), (2)

where f1(z) ≡ ln(1 + z) · (1 + z)(1+b)/2; the "constant" b belongs to the range 0 - 2.137 (b = 2.137 for very
soft radiation, and b→ 0 for very hard one).

2 Deceleration of Massive Bodies Due to Forehead and Backhead Collisions
with Gravitons

Due to forehead collisions of a massive body with gravitons, the body acceleration w by a non-zero
velocity v had been found [1] to be equal to:

w = −cH0(1− v2/c2). (3)
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But recently it was shown in [3] that this value is too large to provide, for example, the observed stability
of the Earth-like orbit. Here I would like to re-analyze this problem.

The dependencies (1) and (3) have been gotten starting from the equation:

dE = −(H0/c)Edr, (4)

describing average energy losses of a photon (or a body, as it was supposed in [1]) with an energy E on a
way dr. While for a photon its momentum p and energy E are proportional, for massive bodies it is not
so. A transferred quantity by collisions is the momentum, and we should express its differential dp before

Figure 1. The graph of the function g(η).

calculations of the body deceleration:
dp = −(H0/c

2)Edr. (5)
Besides of forehead collisions, the body should also experience backhead collisions with gravitons; it
means that for massive bodies we can write the following similar expression:

dp = −(H0f/c
2 −H0b/c

2)Edr, (6)

where H0f and H0b correspond to forehead and backhead collisions with gravitons. This equation is
written in the CMB frame K, in which the CMB is isotropic - in the sense that deviations from the
isotropy cannot be made smaller in any other frame. We shall use here also the rest frame of the body
K

′ , which moves relatively to K with the velocity v.
The Doppler effect should lead to the different values of energies of gravitons which are incident from

the front and from the back in K ′ . We can find the difference of H ′

0f and H ′

0b in K ′ and re-calculate it
for K. So as H0f , H0b and H ′

0f , H
′

0b have the same dimensions as ∆t−1 and ∆t′−1, where ∆t and ∆t′ are
the time intervals between two events in these frames, we have:

H0f −H0b = (H
′

0f −H
′

0b) · (1− η2)0.5, (7)

where η ≡ v/c.
Because the number of gravitons (per unit of surface area per unit of time) falling on the body from

the front or from the back is the same in K ′ as in K, their spectrum f1(ε) in K ′ may be presented as:

f1(ε) = f(ε/κ, T ) = (1/κ3) · f(ε, κT ),
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where f(ε, T ) is the Planck spectrum in K by the temperature T, ε is the graviton energy; κ ≡
ε

′
/ε is the ratio of new and old (in K

′ and K) graviton energies. This spectrum is a result of the
stretching/compression of the Planck spectrum by the same temperature T along the ε axis in κ times.
For gravitons which are incident from the front and from the back in K ′ , we have:

κf = (1 + η

1− η )0.5, κb = (1− η
1 + η

)0.5. (8)

In this model, the Hubble constant is equal to:

H0 = 1
2π

∫ ∞
0

h̄ωf(ω, T )dω = 1
2πD · ε̄ · (σT

4),

where D is a constant, ε̄ is an average graviton energy, σ is the Stephan- Boltzmann constant, and ε = h̄ω.
Replacing f(ω, T )→ f1(ω), we have: ε̄→ κ · ε̄, σT 4 → κ · σT 4. As a result we get:

H
′

0f = κ2
f ·H0 = H0 · (1 + η/1− η), (9)

H
′

0b = κ2
b ·H0 = H0 · (1− η/1 + η). (10)

Then we can rewrite Eq.(6) as:

dp = −(H0/c
2)(κ2

f − κ2
b) · (1− η2)0.5Edr = −(H0/c

2) · 4η(1− η2)−0.5Edr. (11)

Taking into account that by v‖w, where w ≡ dv/dt, dp/dt is equal to:

dp/dt = mw · (1− η2)−1.5, (12)

and E = mc2 · (1− η2)−0.5, dr = vdt, we get finally for the deceleration w:

w = −w0 · 4η2 · (1− η2)0.5, (13)

where w0 ≡ H0c = 6.419 · 10−10 m/s2, if we use the theoretical value of H0 in the model. For small
velocities we have now:

w ' −w0 · 4η2. (14)

The function g(η) ≡ 4η2 · (1− η2)0.5 in Eq. (13) has the maximum value of 1.54 by η = (2/3)0.5 = 0.816,
i.e. the maximum deceleration is equal to: |w|max = 1.54 · w0. The graph of this function is shown in Fig.
1. As it was shown in [3], by |w| ∼ 10−4 · w0 the stability of the Earth-like orbit will be high enough. By
v = 4 · 105 m/s we have now: w ' −7 · 10−6 · w0. The numerical calculations of [3] with the new formula
for w will be repeated soon.

The mass discrepancy in spiral galaxies is observed at very low accelerations less than ∼ 10−10 m/s2

[4], i.e. this boundary acceleration has almost the same order of magnitude as the maximum deceleration
|w|max ∼ 10−9 m/s2 in the model. Now it is unclear may these quantities be connected between themselves
or not.

3 The Hubble Diagram of This Model

To fit this model, observations should be corrected for no time dilation as: µ(z)→ µ(z) + 2.5 · lg(1 + z),
where lg x ≡ log10 x. In my paper [5], results of fitting the Hubble diagram for different data sets of remote
objects with the model of low-energy quantum gravity are summarized in Table 1; its part is shown here.
For best fitting values of b in a case of 44 long GRBs, values of distance moduli are overestimated in both
calibrations: on ∼ 0.225 for the Amati calibration, and on ∼ 1.18 for the Yonetoku calibration. It leads to
the corresponding underestimation of the Hubble constant.
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Table 1. Results of fitting the Hubble diagram with the model of low-energy quantum gravity. The best fitting
values of b for 44 long GRBs are marked by the bold typeface.

Data set b χ2 C.L., % < H0 > ±σ0

SCP Union 2.1 [6] 2.137 239.635 100 68.22 ± 6.10
JLA [7] 2.365 30.71 43.03 69.54 ± 1.58
109 long GRBs [8] 2.137 70.39 99.81 66.71 ± 8.45
44 long GRBs [9], 2.137 40.585 57.66 69.73 ± 37.23
the Amati calibration 1.885 39.92 60.57 60.31 ± 31.93
44 long GRBs [9], 2.137 43.148 46.5 70.39 ± 38.79
the Yonetoku calibration 1.11 32.58 87.62 38.84 ± 18.55
quasars [10] 2.137 23.378 13.73 69.53 ± 10.87

4 The Hubble Parameter H(z) of This Model

If the geometrical distance is described by Eq. 1, for a remote region of the universe we may introduce
the Hubble parameter H(z) in the following manner:

dz = H(z) · dr
c
, (15)

to imitate the local Hubble law. Taking a derivative dr
dz , we get in this model for H(z) :

H(z) = H0 · (1 + z). (16)

It means that in the model:
H(z)

(1 + z) = H0. (17)

The last formula gives us a possibility to evaluate the Hubble constant using observed values of the
Hubble parameter H(z). The weighted average value of the Hubble constant may be calculated by the
formula:

< H0 >=
∑ H(zi)

1+zi
/σ2

i∑
1/σ2

i

. (18)

The weighted dispersion of the Hubble constant may be found with the same weights:

σ2
0 =

∑
( H(zi)

1+zi
− < H0 >)2/σ2

i∑
1/σ2

i

. (19)

The χ2 value is calculated as:

χ2 =
∑ ( H(zi)

1+zi
− < H0 >)2

σ2
i

. (20)

In [5], I have done these calculations for two data sets of H(z). Here I repeat them for the bigger data
set of 40 observations of H(z) from the paper [11]. We have for this case:

< H0 > ±σ0 = (62.082± 4.092) km s−1 Mpc−1. (21)

The weighted average value of the Hubble constant with ±σ0 error bars are shown in Fig. 2 as horizontal
lines; observed values of the ratio H(z)/(1 + z) with ±σ error bars are shown in Fig. 2, too (points). The
value of χ2 in this case is equal to 10.69. By 40 degrees of freedom of this data set, it means that the
hypothesis described by Eq. (16) cannot be rejected with 99.9999% C.L.

I have used earlier the same values of dispersion for H0 points as the ones of H(z). Considering Eq.
(17) as a base for indirect measurements of H0, we get for the dispersion σ2

0i of H0 points:

σ2
0i = σ2

i /(1 + zi)2. (22)
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Figure 2. The ratio H(z)/(1 + z) ± σ and the weighted value of the Hubble constant < H0 > ±σ0 (horizontal
lines). Observed values of the Hubble parameter H(z) (40 points) are taken from Table 1 of [11].

Then we shall have for the considered data set:

< H0 > ±σ0 = (63.152± 4.689) km s−1 Mpc−1. (23)

The value of χ2 is now equal to 38.56. By 40 degrees of freedom of this data set, it means that the
hypothesis described by Eq. (16) cannot be rejected with 53.511% C.L. The dramatic increase of χ2 is
mainly due to the last three points with z > 2 in Fig. 2 with small σ0i: without them, χ2 = 24.857 that
gives 93.633% C.L. by 37 degrees of freedom.

The Rh = ct cosmological model (a Friedmann-Robertson-Walker cosmology with zero active mass)
has the same function H(z) as the considered one [12]; Rh is the Hubble radius. As it is shown in [12],
this function fits 30 cosmic chronometers observations with z < 2 with a larger probability than five other
considered functions of different models, including the flat ΛCDM.

Some authors try in a frame of models of expanding universe to find the deceleration-acceleration
transition’s redshift using the same data sets. The above conclusion that the ratio H(z)/(1 + z) remains
statistically constant in the available range of redshifts is model-independent.

5 Conclusion

The Hubble diagram for GRBs may differ in the model from the diagram for SNe Ia, and some signs
of this difference are seen, perhaps, in the case of the 44 long GRBs data set. In the model, space-time
is flat, and the geometrical distance as a function of the redshift coincides with the angular diameter
distance. The geometrical distance of this model is very different from the one of the standard model; for
example, the age of the Universe of the standard model: ∼ 13.5 Gyr corresponds here to z ' 2.6.

The found expression for the anomalous deceleration of massive bodies: w = −w0 ·4η2 ·(1−η2)0.5 should
ensure a sufficient stability of the Earth-like orbits. It is planned to model numerically a modification of
dynamics due to it very soon.
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From a point of view of this approach it seems that all attempts to unify general relativity and
quantum mechanics using them as corner stones of the future more general theory are doomed to failure.
The future theory should be underlaying one for general relativity and quantum mechanics which will be
specific approximations of it by some restrictions.
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