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Abstract In this paper, we generalize the generating function of the Changhee-Genocchi polyno-
mials. In particular, by means of the method of generating functions and Riordan arrays, we study
some properties of the generalized Changhee-Genocchi polynomials. At the same time, we establish
some identities between the generalized Changhee-Genocchi polynomials and other combinatorial
sequences.
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1 Introduction

In 2016, Byung-Moon Kim first introduced the concept of Changhee-Genocchi polynomials, the Changhee-
Genocchi polynomials are defined by the generating function (see[1])

∞∑
n=0

CGn(x) tn

n!
= 2log(1 + t)

2 + t
(1 + t)x. (1)

When x = 0, CGn = CGn(0) are called the Changhee-Genocchi numbers.
In addition, Byung-Moon Kim also gived the Changhee-Genocchi polynomials of the order r by the

generating function (see[1])
∞∑

n=0
CG(r)

n (x) tn

n!
= (2log(1 + t)

2 + t
)r(1 + t)x. (2)

For convenience, let us recall some definitions and notations. Here, the generalized Harmonic numbers
are defined by the generating function (see[2])

∞∑
n=0

Hn,k,r(α, β)tn = (−log(1 − αt))r

(1 − βt)k
. (3)

As is well known, the higher-order Changhee numbers are defined by the generating function (see[3])
∞∑

n=0
Ch(k)

n

tn

n!
= ( 2

2 + t
)
k

. (4)

We consider the n-th twisted Daehee polynomials of order k, which are defined by the generating
function (see[4])

∞∑
n=0

D
(k)
n,ξ(x) tn

n!
= ( log(1 + ξt)

ξt
)k(1 + ξt)x. (5)

In special case, when x = 0, D
(k)
n,ξ(0) = D

(k)
n,ξ are called twisted Daehee numbers of order r. When ξ = 1,

D
(k)
n,1 = D

(k)
n are higher-order Daehee numbers.
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Next, we give several kinds of generating functions which we need in this paper(see[5,6,7,8,9])

∞∑
n=0

G(r)
n

tn

n!
= ( 2t

et + 1
)r. (6)

∞∑
n=0

B(r)
n

tn

n!
= ( t

et − 1
)r. (7)

∞∑
n=0

b(r)
n

tn

n!
= ( t

log(1 + t)
)r. (8)

∞∑
n=0

G
(x)
n

2n

tn

n!
= ( 2

et + 1
)
x

. (9)

Let ℑ = ℜ[[t]] be the ring of the formal power series with real coefficients in some indeterminate t, if
f(t) ∈ ℑ and f(t) =

∑∞
n=0 fntn, let [tn]f(t) be the coefficient of [tn] in the formal power series of f(t).

If f(t) and g(t) are formal power series, then we get the following relations:

[tn](αf(t) + βg(t)) = α[tn]f(t) + β[tn]g(t). (10)

n∑
j=0

[tj ]f(t)[tn−j ]g(t) = [tn]f(t)g(t). (11)

A Riordan array is a couple D = (d(t), h(t)) in which d(t), h(t) ∈ ℑ and h0 = h(0) = 0. It defines an
infinite lower triangular array (dn,k)n,k∈N according to the rule dn,k = [tn]d(t)h(t)k. So we set {dn,k} =
(d(t), h(t)). Let D = (d(t), h(t)) be a Riordan array and f(t) be the generating function of the sequence
{fi}i∈N , we have (see[10])

∞∑
k=0

dn,kfk = [tn]d(t)f(h(t)) = [tn]d(t)[f(y)|y=h(t)]. (12)

Recently, many papers have been devoted to the study of the Changhee-Genocchi polynomials and
numbers by various methods. In this paper, we generalize the generating function of the Changhee-
Genocchi polynomials on the basis of these papers, and investigate some interesting identities related to
the generalized Changhee-Genocchi polynomials and numbers.

2 Some Properties of the Generalized Changhee-Genocchi Polynomials

In this paper, we consider the generalized Changhee-Genocchi polynomials which are defined by the
generating function

∞∑
n=0

CGk,r
n (α, β|x) tn

n!
= 2klogr(1 + αt)

(2 + βt)k
(1 + βt)αx. (13)

where k ≥ 1, r ≥ 1 are intergers, α and β are real numbers, and αβ ̸= 0.
When x = 0, CGk,r

n (α, β|0) = CGk,r
n (α, β) are called the generalized Changhee-Genocchi numbers.

Particularly, when α = β = 1 and k = r, CGr,r
n (1, 1|x) = CG

(r)
n (x), n ≥ 0.
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When α = β = 1 and k = r = 1, CG1,1
n (1, 1|x) = CGn(x), n ≥ 0.

In this section, we study some properties of the generalized Changhee-Genocchi polynomials by the
generation function method.

For equation (13), we also get
∞∑

n=0
CGk,r

n (α, β|x) tn

n!
= 2klogr(1 + αt)

[1 + (1 + βt)]k
(1 + βt)αx.

Hence, we have

2klogr(1 + αt) = [1 + (1 + βt)]k
∞∑

n=0
CGk,r

n (α, β|x) tn

n!
(1 + βt)−αx

=
k∑

l=0

(
k

l

)
(1 + βt)l−αx

∞∑
n=0

CGk,r
n (α, β|x) tn

n!

=
∞∑

i=0

k∑
l=0

(
k

l

)
(l − αx)iβ

i ti

i!

∞∑
n=0

CGk,r
n (α, β|x) tn

n!

=
∞∑

n=0

n∑
m=0

k∑
l=0

(
k

l

)(
l − αx

m

)
βm

(n − m)!
CGk,r

n−m(α, β|x)tn. (14)

On the other hand, we also can get

2klogr(1 + αt) = [1 + (1 + βt)]k
∞∑

n=0
CGk,r

n (α, β|x) tn

n!
(1 + βt)−αx

=
k∑

l=0

(
k

l

)
(1 + βt)l

∞∑
n=0

CGk,r
n (α, β|x) tn

n!

∞∑
n=0

(
−αx

n

)
(−β)ntn

=
∞∑

n=0

n∑
m=0

k∑
l=m

(
k

l

)(
l

m

)(
−αx

n − m

)
(−1)n−mβntn

∞∑
n=0

CGk,r
n (α, β|x) tn

n!

=
∞∑

n=0

n∑
p=0

p∑
m=0

k∑
l=m

(
k

l

)(
l

m

)(
−αx

p − m

)
CGk,r

n−p(α, β|x) (−1)p−mβp

(n − p)!
tn. (15)

Theorem 1. Let n be nonnegative integers, k ≥ 1 and r ≥ 1 are integers, we have
n∑

p=0

p∑
m=0

k∑
l=m

(
k

l

)(
l

m

)(
−αx

p − m

)
CGk,r

n−p(α, β|x) (−1)p−mβp

(n − p)!

=
n∑

m=0

k∑
l=0

(
k

l

)(
l − αx

m

)
CGk,r

n−m(α, β|x) βm

(n − m)!

= 2kr!αn Bn,r(1, −1, 2!, −3!, ...)
n!

. (16)

Proof By comparing the coefficients of tn on both sides of the equation (14) and (15), theorem 1 is
proved.

Theorem 2. Let n be nonnegative integers, k, r, p, q ≥ 1 are integers, we have
n∑

j=0

j∑
m=0

k∑
l=0

(
k

l

)(
l − αx

m

)
CGk,r

j−m(α, β|x)
(j − m)!

CGp,q
n−j(α, β|y)
(n − j)!

n!βm = 2kCGp,q+r
n (α, β|y). (17)
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Proof By equation (9) and equation (13), we get

n∑
j=0

j∑
m=0

k∑
l=0

(
k

l

)(
l − αx

m

)
βm

(j − m)!
CGk,r

j−m(α, β|x)
CGp,q

n−j(α, β|y)
(n − j)!

=
n∑

j=0
[tj ]2klogr(1 + αt)[tn−j ] 2

plogq(1 + αt)
(2 + βt)p

(1 + βt)αy

= [tn]2k 2plogr+q(1 + αt)
(2 + βt)p

(1 + βt)αy = 2k

n!
CGp,r+q

n (α, β|y).

Theorem 3. Let n be nonnegative integers, k, r ≥ 1 are integers, we have

n∑
m=0

(
k

m

)
(β

2
)mCGk,r

n−m(α, β) n!
(n − m)!

= r!αnS1(n, r). (18)

Proof By equation (13), when x = 0, we have

∞∑
n=0

CGk,r
n (α, β) tn

n!
= 2klogr(1 + αt)

(2 + βt)k
.

Hence, we can get

(1 + β

2
t)k

∞∑
n=0

CGk,r
n (α, β) tn

n!
= logr(1 + αt).

Here, we simpify the left side of this equation

(1 + β

2
t)k

∞∑
n=0

CGk,r
n (α, β) tn

n!
=

∞∑
l=0

(
k

l

)
(β

2
)ltl

∞∑
n=0

CGk,r
n (α, β) tn

n!

=
∞∑

n=0

n∑
m=0

(
k

m

)
(β

2
)mCGk,r

n−m(α, β) tn

(n − m)!
.

For the right side, we have (see[11])

logr(1 + αt) =
∞∑

n=r

r!αnS1(n, r) tn

n!
.

By comparing the coefficients of tn

n! , theorem 3 is proved.

Corollary 1. In theorem 3, when k = 1 and n ≥ 1, we get

CG1,r
n (α, β) + nβ

2
CG1,r

n−1(α, β) = r!αnS1(n, r).

Corollary 2. In theorem 3, when α = β = 1, and k = r = 1, we get theoerm 11 of the reference [1].

Theorem 4. Let n be nonegative integers, k ≥ 1, r ≥ 2 are integers, we have

CGk,r
n+1(α, β|x) + kβ

2
CGk+1,r

n (α, β|x)

=
n∑

m=0

(
n

m

)
[ (n − m)!
(−α)m−n

αrCGk,r−1
m (α, β|x) + xβn−m+1(α)n−m+1CGk,r

m (α, β|x − 1)]. (19)
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Proof Let’s take the derivative about t, on both sides of equation (13), we get

∞∑
n=1

CGk,r
n (α, β|x) tn−1

(n − 1)!

= [−kβ

2
2k+1logr(1 + αt)

(2 + βt)k+1 + 2klogr−1(1 + αt)
(2 + βt)k

αr

1 + αt
](1 + βt)αx + 2klogr(1 + αt)

(2 + βt)k
αβx(1 + βt)αx−1

= −kβ

2

∞∑
n=0

CGk+1,r
n (α, β|x) tn

n!
+ αr

∞∑
n=0

CGk,r−1
n (α, β|x) tn

n!

∞∑
n=0

(−α)ntn

+ αβx
∞∑

n=0
CGk,r

n (α, β|x − 1) tn

n!

∞∑
n=0

(α − 1)nβn tn

n!

= −kβ

2

∞∑
n=0

CGk+1,r
n (α, β|x) tn

n!
+

∞∑
n=0

n∑
m=0

(
n

m

)
[(n − m)!(−1)n−mαn−m+1rCGk,r−1

m (α, β|x)

+ xβn−m+1(α)n−m+1CGk,r
m (α, β|x − 1)] t

n

n!
.

By comparing the coefficients of tn

n! on both sides of this equation, theorem 4 is proved.

Theorem 5. Let n be nonegative integers, k, r ≥ 1 and m, l ≥ 1 are integers, we have

n∑
p=0

(
n

p

)
CGk,r

p (α, β|x)Ch
(m)
n−p(αy)βn−p = CGk+m,r

n (α, β|x + y), (20)

n∑
p=0

(
n

p

)
CGk,r

p (α, β|x)CGm,l
n−p(α, β|y) = CGk+m,r+l

n (α, β|x + y). (21)

Proof
∞∑

n=0
CGk,r

n (α, β|x) tn

n!

∞∑
n=0

Ch(m)
n (αy) (βt)n

n!
=

∞∑
n=0

n∑
p=0

(
n

p

)
CGk,r

p (α, β)Ch
(m)
n−p(αy)βn−p tn

n!

= 2klogr(1 + αt)
(2 + βt)k

( 2
2 + βt

)m(1 + βt)α(x+y) =
∞∑

n=0
CGk+m,r

n (α, β|x + y) tn

n!
.

By comparing the coefficients of tn

n! on both sides of this equation, equation (20) is proved. The proof of
(21) is similar to that of (20).

3 Identities Involving the Generalized Changhee-Genocchi Polynomials and
Numbers

In this section, we establish some identities which are related to the generalized Changhee-Genocchi
polynomials. Then we find the Riordan array of the generalized Changhee-Genocchi numbers, and give
several identities by means of the Riordan arrays.

Theorem 6. Let n be nonegative integers, k, r, p ≥ 1 are integers, we have

n∑
m=0

Ch(k)
m (αx + p)βmn!(−1)n−m+rHn−m,p,r(α, β) = CGk,r

n (α, β|x). (22)
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Proof
∞∑

n=0
CGk,r

n (α, β|x) tn

n!
= ( 2

2 + βt
)k(1 + βt)(αx+p) logr(1 + αt)

(1 + βt)p

=
∞∑

n=0
Ch(k)

n (αx + p)βn tn

n!

∞∑
n=0

(−1)n+rHn,p,r(α, β)tn

=
∞∑

n=0

n∑
m=0

Ch(k)
m (αx + p)βm(−1)n−m+rHn−m,p,r(α, β) tn

m!
.

By comparing the coefficients of tn on both sides of this equation, theorem 6 is proved.

Corollary 3. In theorem 6, when α = β, and p = 1, the following relations hold:

n∑
m=0

(
n

m

)
αn(−1)n−m+r

(n − m)!
Ch(k)

m (αx + 1)H(n − m, r − 1) = CGk,r
n (α, α|x). (23)

Theorem 7. Let n ≥ r, k ≥ 1 and r ≥ 1 are integers, then

n−r∑
m=0

(
n − r

m

)
Ch(k)

m (αx)βmαrD
(r)
n−r−m,α

n!
(n − r)!

= CGk,r
n (α, β|x). (24)

Proof According to the equation (4) and (5), we have

∞∑
n=0

CGk,r
n (α, β|x) tn

n!
= 2klogr(1 + αt)

(2 + βt)k
(1 + βt)αx

= ( 2
2 + βt

)k(1 + βt)αx logr(1 + αt)
(αt)r

(αt)r

=
∞∑

n=0
Ch(k)

n (αx) (βt)n

n!

∞∑
n=0

D(r)
n,α

tn

n!
(αt)r

=
∞∑

n=0

n∑
m=0

(
n

m

)
Ch(k)

m (αx)βmαrD
(r)
n−m,α

αrtn+r

n!
.

By comparing the coefficients of tn on both sides of this equation, theorem 7 is proved.

Corollary 4. In theorem 7, when α = 1, the following relation holds:

n−r∑
m=0

(
n − r

m

)
Ch(k)

m (x)βmD
(r)
n−r−m

n!
(n − r)!

= CGk,r
n (1, β|x). (25)

Corollary 5. In theorem 7, when α = β = 1, and k = r, the following relation holds:

n−r∑
m=0

(
n − r

m

)
Ch(r)

m (x)D(r)
n−r−m

n!
(n − r)!

= CG(r)
n (x). (26)

Theorem 8. Let n ≥ min{r, s}, k, r, s ≥ 1 are integers, we have

n∑
m=0

αn−mb
(s)
n−m

CGk,r
m (α, β|x)

m!(n − m)!
=


CGk,r−s

n−s (α, β|x) αs

(n−s)! , r > s

Ch
(k)
n−s(αx)αsβn−s 1

(n−s)! , r = s∑n−r
m=0

(
n−r

m

)
βmαn−m

(n−r)! Ch
(k)
m (αx)b(s−r)

n−r−m. r < s

(27)
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Proof By equation (8),(11),(13), we have
n∑

m=0
b

(s)
n−m

CGk,r
m (α, β|x)(

n
m

)−1
αm−nn!

= [tn]αsts 2klogr−s(1 + αt)
(2 + βt)k

=


CGk,r−s

n−s (α, β) αs

(n−s)! , r > s

Ch
(k)
n−s(αx)αsβn−s 1

(n−s)! , r = s∑n−r
m=0

(
n−r

m

)
βmαn−m

(n−r)! Ch
(k)
m (αx)b(s−r)

n−r−m. r < s

Theorem 9. Let k, r ≥ 1 and p, l ≥ 0 be integers, we have
r∑

j=0

j∑
p=0

r−j∑
l=0

(
r

j

)(
k

l

)
βl s2(j, p)s2(r − j, l)

2lαp+l
CGk,r

p (α, β) l!
r!

= δn,r, (28)

where δn,r is the Kronecker delta symbol.

Proof Replacing t by et−1
α in equation (13), we have

∞∑
n=0

CGk,r
n (α, β)α−n (et − 1)n

n!
= 2ktr

[2 + β(et−1)
α ]k

.

Hence, we have
∞∑

n=0
CGk,r

n (α, β)α−n (et − 1)n

n!
[2 + β(et − 1)

α
]k = 2ktr. (29)

As is well known,
∑∞

n=k s2(n, k) tn

n! = (et−1)k

k! (see[12]).
Now, we consider the left-hand side of the equation (29), we have

∞∑
n=0

CGk,r
n (α, β)α−n (et − 1)n

n!
[2 + β(et − 1)

α
]k

=
∞∑

m=0

m∑
n=0

CGk,r
n (α, β)α−ns2(m, n) tm

m!

∞∑
i=0

i∑
l=0

(
k

l

)
2k−l(β

α
)ll!s2(i, l) ti

i!

=
∞∑

n=0

n∑
j=0

j∑
p=0

n−j∑
l=0

(
n

j

)(
k

l

)
βl s2(j, p)s2(n − j, l)

2l−kαp+l
CGk,r

p (α, β) l!
n!

tn.

By comparing the coefficients of tr, theorem 9 is proved.
By the concept of Riordan arrays and equation (13), we get { CGk,r

n (α,β)
n! } = (2k(2 + βt)−k, ln(1 + αt)),

we can get the follwing results:

Theorem 10. Let n, k ≥ 1 be integers, we have
n∑

j=1
CGk,j

n (α, β) 1
j!

= nαβn−1Ch
(k)
n−1. (30)

Proof
n∑

j=1
CGk,j

n (α, β) 1
n!

1
j!

= [tn]2k(2 + βt)−k[ey − 1|y=log(1+αt)]

= [tn−1]2kα(2 + βt)−k = [tn−1]α
∞∑

n=0
Ch(k)

n βn tn

n!

= αβn−1 Ch
(k)
n−1

(n − 1)!
.

Hence, the identity (30) can be obtained immediately.
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Theorem 11. Let n, k, j, m ≥ 1 be integers, we set up the following equation:

n∑
j=1

CGk,j
n (α, β)

G
(m)
j

n!j!
=

n∑
l=0

(
n − l + m − 1

m − 1

)
(−α)n−l

2n−ll!
CGk,m

l (α, β), (31)

n∑
j=1

CGk,j
n (α, β)

G
(x)
j

2jn!j!
=

n∑
l=0

(
l + k − 1

k − 1

)(
−x

n − l

)
(−1

2
)nαn−lβl. (32)

Proof

n∑
j=1

CGk,j
n (α, β) 1

n!
G

(m)
j

j!
= [tn]2k(2 + αt)−k[( 2y

ey + 1
)m|y=log(1+αt)]

= [tn] 2
klogm(1 + αt)

(2 + βt)k

2m

(2 + αt)m
= [tn]

∞∑
n=0

CGk,m
n (α, β) tn

n!

∞∑
n=0

(
n + m − 1

m − 1

)
(−α

2
)ntn

=
n∑

l=0

(
n − l + m − 1

m − 1

)
(−α)n−l

2n−ll!
CGk,m

l (α, β).

Hence, the equation (31) is proved. The proof of (32) is similar to that of (31), and it is omitted here.

Corollary 6. In theorem 11, when α = β, the following relations hold:

n∑
j=1

CGk,j
n (α, α)

G
(m)
j

j!
= CGk+m,m

n (α, α),

n∑
j=1

CGk,j
n (α, β)

G
(x)
j

2jn!j!
= (−α

2
)n

(
n + k + x − 1

n

)
.

Theorem 12. Let n, k, j, m ≥ 1 be integers, we set the following equations:

n∑
j=1

CGk,j
n (α, β)

(
n + m

n

)
m!B(m)

j

j!
= α−mCGk,m

n+m(α, β). (33)

Proof

n∑
j=1

CGk,j
n (α, β) 1

n!
B

(m)
j

j!
= [tn]2k(2 + αt)−k[( y

ey − 1
)m|y=log(1+αt)]

= [tn] 2
klogm(1 + αt)

(2 + βt)k
(αt)−m = CGk,m

n+m(α, β) α−m

(n + m)!
.

Hence, theoerm 12 can be obtained immediately.
The second and third sections are our main results. We generalize the generating function of the

Changhee-Genocchi polynomials and find some new identities by the method of generating functions
and Riordan arrays. Specially, these identities contain some relations about classical Changhee-Genocchi
polynomials. In addition, it is easy to see that combinations of special sequences can be represented by
the generalized Changhee-Genocchi polynomials, such as the Changhee polynomials and the generalized
Harmonic numbers, the Changhee polynomials and the Daehee numbers, etc.
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