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Abstract: In this article, the manipulation to handle the object on a plate using neural networks, design of 1-DOF 

robot arm under cooperative control, will be explained. The robot’s system specifies the object position and velocity, 

an assignment oriented components for cooperative control. The novelty of this experiment is that under the 

decentralized control, the robot estimates the position and speed of the object for control end-effector of robot arm 

using the camera to track position and speed of the object according to training and assigned collaborative tasks 

which differ from other experiments that use sensors. The experiment includes three robot manipulators which were 

capable balancing the objects on flat plate with dataset to training and control servo motor assigned to the 

corresponding position and the end-effector in decentralized to control robotics. Overall, neural network method can 

be a training scheme using a cooperative robotics in a decentralized control.  
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1. Introduction 

The robotics system can be contained in a single 

and multiple manipulators, and the complicated task 

accepting multi-robot has exceptional 

accommodation than a single robot to essentially 

handle and assembly heavy materials. A number of 

researchers have studied cooperative control in 

multiple robots for various tasks. Learning object 

handling practice with robotics is a challenging 

obstacle since the trajectories to propose appropriate 

handling practice perhaps varied with respect to 

different situations. Even when it comes to handling 

the duplicated objects, the evolution of motor in 

time would be a little different provided to the 

robotics, and the object movement is located in 

workspace. This paper shows that an artificial neural 

network method is adequate for the training on the 

practice for robotics collaborative balancing of the 

object. There are many articles of the previous 

research on the robotic learning for object handling 

[1]. The improvements on controlling a DC servo 

motors are obvious positioned and speed in flexible 

control. DC servo motors are generally used for a 

collection in industry, robotic systems. The control 

specifies the motion of the object being grasped and 

handling the object by the robot’s arm, the latter of 

which has no effect on the object movement. The 

coordinates depend on the impedance control [2, 3] 

and hybrid control in force or position [4, 5] and the 

parameter of manipulator where the objects are 

placed. This is the recognition on the accuracy to 

determine the parameter between manipulator and 

the object position. In order to control multi-robot 

dynamic parameters uncertainty task, neural 

networks method [6], learning and training methods 

[7] and fuzzy sliding mode method [8, 9] in control 

are suggested. These techniques involve the 

measurement of times and forces at an end-effector 

and the adoption of a centralized controller. The 

sensor is comparatively costly and readily damaged. 

Centralized control methods are implementation in 

previous researches of the robotics collaboration. 

Decentralized control methods [10, 11] in 

manipulator is governed independently with the 

controller, are therefore desirable methods due to 
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their simple model. The neural network control is a 

very successful to solve in nonlinear problems. Thus, 

neural networks method develops to be an 

influential tool for learning in linear and extremely 

nonlinear problems on dynamic systems. The neural 

network method, rapid variation and elemental 

approximation proficiency, have appeal to 

considerable in a researches of robotic engineering, 

identification and control. In the literature, the use of 

neural network architecture to regulate complicated 

and uncertainty in systems has become a subject of 

significant considerable [12-14]. Most of the 

research in this field has created and developed the 

new techniques of object manipulation in a decade. 

Non-prehensile dynamic of object in manipulation 

approaches in fields of robotic these new methods. 

The manipulation of object implies the robotics with 

no grasp, i.e. the robotic can easily balance object, 

even with no other robotics during the cooperative 

assignment [15]. However, these decentralized 

controllers are adaptive and do not require a sensor 

to evaluate the relationships between the robotics 

interaction and the target object. This article 

proposes a decentralization in neural network 

control technique without a sensor for multi-robot 

can be detect the object using web camera, robotic 

eyes to collaborate balancing the object with other 

robot interactions. In this study, the parameters of 

the robotic arms and the object movement are 

approximated and the motions of robotic 

cooperating by referring to the neural network 

model will be explained. For example, the object 

handling task, the lessons learned by the robots on 

choosing between the predefined behaviors 

aboriginal, approaching releasing and carrying an 

object for particular step. However, this method can 

be applied to a dynamic object handling behavior 

[16]. In this study, decentralized control 

implementing neural network method in cooperative 

tasks, rather than using sensors the same as other 

experiments, for balancing the object position, 

velocity and manipulations utilizing a robot arm are 

experimented. 

2. Methodology 

2.1 Dynamics system modeling 

The time pivot is included to the position in 

coordinate and robotics are done in dynamics of 

object handling system and in rotating processes in 

specific. The dynamic of object handling methods in 

manipulation techniques is rolling on flat-plate 

where balancing with a robot arm, robotics 

cooperative in balancing the object in rolling 

operation as shown in Fig. 1. 

 
Figure.1

 
Rolling operation, object of robotics arm, 1-DOF  

 

Transformations of the equation as: 

 

𝑥 =  𝑅 𝑐𝑜𝑠𝜃 , 𝑦 = 𝑅 𝑠𝑖𝑛𝜃 ;  E = Rot(𝜃)T𝑥(𝑅)   

     

 E =  (
cos 𝜃 − sin 𝜃 𝑅 cos 𝜃
sin 𝜃 cos 𝜃 𝑅 sin 𝜃

0 0 1
)               (1)     

  

The dynamic object manipulation in general and 

rolling system is particular. The robot is therefore 

used to create the dynamics scheme rather 

determined against [17, 18]. Thus, the dynamic 

manipulation of object, the coordinate of object and 

robotics are both essential and the manipulators 

must be built to be ensure achievement of a 

modeling assignment. This is essential to determine 

collection of the manipulator object schemes that 

can be controlled [19]. 

The distance from the center of the object 

regarding the 𝑗th in pivot, radius. The 𝑑𝑖 is defined 

the distance during the object’s center and the upper 

of robot arm, the coordinates of the center of the 

object devise set (𝑅,   𝑠 + 𝑑𝑖) in frame ℱ𝑗 . The arm 

of robotic starts with the angle of the manipulator is 

set (𝜃 =  𝜃𝑖) and the object position on the plate. 

Assume; the robot arm moves down from (𝜃 =  𝜃𝑖,

�̇� =  0) to (𝜃 =  −𝜃0  < 0, �̇� =  0) in first time,𝑡1 

seconds. Next; the robotic moves to (𝜃 =  𝜃𝑟, �̇� =

 𝜔𝑟) in the second time, 𝑡2 seconds. Where,𝜃𝑟 is the 

angle of plate along x axis. Last phase, the robot arm 

decelerates fast into the object will move in high 

speed. The object is captured and taking angle 𝜃𝑐 

see in Fig. 2. As is normal with manipulator motion 

planning, the trajectories desired in two phases can 

be considered as in Eqs. (2), (3), (4) and (5) 

respectively:   

 

𝜃(𝑡) =
2(𝜃0+𝜃𝑖)

𝑡1
3 𝑡3 −

3(𝜃0+𝜃𝑖)

𝑡1
2 𝑡2 + 𝜃𝑖   (2) 

     𝜔(𝑡) =  �̇�(𝑡) =  
6(𝜃0+𝜃𝑖)

𝑡1
3 (𝑡2 − 𝑡1𝑡)                 (3) 



Received:  September 28, 2019                                                                                                                                         261 

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020           DOI: 10.22266/ijies2020.0229.24 

 

𝜃(𝑡) =  
𝑡2𝜔𝑟−2(𝜃0+𝜃𝑟)

𝑡2
3 𝑡3 − 

𝑡2𝜔𝑟−3(𝜃0+𝜃𝑟)

𝑡2
2 𝑡2 − 𝜃      

         (4)     

 
Figure.2 The robot arm handling an object balancing task 

 

𝜔(𝑡) = �̇�(𝑡) 

=  
3(𝑡2𝜔𝑟−2(𝜃0+𝜃𝑟))

𝑡2
3 𝑡2 −

2(𝑡2𝜔𝑟−3(𝜃0+𝜃𝑟))

𝑡2
2 𝑡   (5) 

      

After an impulsive throw, 𝑡 = 0  and 𝜃 =  𝜃𝑟 

movement of the frame ℱ𝑖 defines itself as: 

 

𝑥(𝑡) =  𝑅 cos(𝜃𝑟) − (𝑠 + 𝑑) sin(𝜃𝑟)
− (𝑅 sin(𝜃𝑟)
+ (𝑠 + 𝑑) cos(𝜃𝑟))(𝜔𝑟𝑡 + 𝜃𝑟) 

𝑦(𝑡) =  𝑅 sin(𝜃𝑟)
+ (𝑠 + 𝑑) cos(𝜃𝑟)
+ (𝑅 cos(𝜃𝑟)
− (𝑠 + 𝑑) sin(𝜃𝑟)) (𝜔𝑟𝑡 + 𝜃𝑟)

+
1

2
𝑔𝑡2 

𝜃(𝑡) =  𝜃𝑟 + 𝜔𝑟𝑡     (6) 

    

Where ∅(𝑡), the angle of 𝑝𝑖  axis of ℱ𝑖  in ℱ and 𝑔, 

the gravity acceleration, obvious into 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. 

The velocity of the object is −(𝑅 sin(𝜃𝑟) +
(𝑠 + 𝑑) cos(𝜃𝑟))𝜔𝑟  which is negative for 𝜃𝑟 <
− tan−1((𝑠 + 𝑑)/𝑅)  and is positive for 𝜃𝑟 >

− tan−1((𝑠 + 𝑑)/𝑅), those correspond to backward 

and forward throw respectively.  

The perceptive motion in vertices of the object 

is concern in 𝑉𝑖vertex, its originally situated into  

𝑝𝑉𝑖, 𝑞𝑉𝑖, in ℱ𝑖, its motion with respect to ℱ can be 

written as: 

 

[
𝑥𝑉𝑖(𝑡)

𝑦𝑉𝑖(𝑡)
]  =  [

𝑥(𝑡)

𝑦(𝑡)
] +

[
cos(𝜔𝑟𝑡 + 𝜃𝑟) − sin(𝜔𝑟𝑡 + 𝜃𝑟)

sin(𝜔𝑟𝑡 + 𝜃𝑟) cos(𝜔𝑟𝑡 + 𝜃𝑟)
] [

𝑝𝑉𝑖

𝑞𝑉𝑖
]       (7)  

2.2 Robotic handling of circular object on plate 

The dynamic of handling object situation holds 

circular items on flat-plate in balancing tasks. 

Despite, begin to investigate the primary problems 

 

 Figure.3 Handling of a circular object 

 

under this research including circular object show in 

Fig. 3, which can describe our strategy to be easier 

to understand in Eq. (6), is accurate on the motion of 

object.  

Where;  ∅(𝑡) =  𝜔𝑟𝑡 +  𝜃𝑟, the rotation moment 

of the object situated at time,  𝑥(𝑡) and 𝑦(𝑡) can be 

rewritten as: 

 

𝑥(𝑡) = 𝑅 cos(𝜃𝑟) − (𝑠 + 𝑑) sin(𝜃𝑟) −
(𝑅 sin(𝜃𝑟) + (𝑠 + 𝑑) cos(𝜃𝑟))∅(𝑡)               (8) 

 

𝑦(𝑡) =  
𝑔(∅(𝑡)−𝜃𝑟)2

2𝜔𝑟
2 + 𝑅 sin(𝜃𝑟) + (𝑠 +

𝑑) cos(𝜃𝑟)(𝑅 cos(𝜃𝑟) (𝑠 + 𝑑) sin(𝜃𝑟)) ∅(𝑡)   (9)       
 

Where 𝑑 is the radius of an object, as for the 

reality that at the end of each throw, 𝑦(𝑡) =  𝑦𝑐 (9) 

results to be distinctive 𝜔𝑟 for each rotation required 

∅(𝑡) that is, in other words, 𝜔𝑟 and ∅(𝑡) have a one-

to-one correspondence in each spin. It's worth 

noting that 𝑦𝑐 this is the trigonometric function of 

the angle of catch. According to (8) horizontal 

displacement of the object during the 𝑓th throw (𝑙𝑓) 

is: 

 

𝑙𝑓  = 𝑅𝑓 − 𝑥(𝑡flight) = 𝑅𝑓 − 𝑅𝑓 cos(𝜃𝑟𝑓) +

(𝑠 + 𝑑) sin(𝜃𝑟𝑓) + (𝑅𝑓 sin(𝜃𝑟𝑓) +

(𝑠 + 𝑑) cos(𝜃𝑟𝑓))∅𝑓(𝑡flight), 𝑓 = 1, . . , 𝐹1   (10)  
 

Where ∅𝑓  and 𝑅𝑓  represent the rotations of the 

object and radius during the 𝑓th throw respectively, 

𝑡flight is time of flight and 𝐹1 is number of throws. 

The total horizon distance covered after 𝐹1 throws 

is: 

 

𝑙tot  = ∑ (𝑅𝑓 − 𝑅𝑓 cos(𝜃𝑟𝑓) + (𝑠 +𝐹1
𝑓=1

𝑑) sin(𝜃𝑟𝑓)) + (𝑅𝑓 sin(𝜃𝑟𝑓) + (𝑠 +

𝑑) cos(𝜃𝑟𝑓))∅𝑓(𝑡flight)                   (11) 
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Assume that the objective position and 

orientation of the object after 𝐹1 throws are 𝑋𝑔 and 

∅0 radians respectively, the aim of the arranging is 

to discover a set of 𝐹1 throws such that the object 

reaches its target for configuration. The accepting 

drive and catching angles as specification allows 

space for further supplied motion planning of the 

robotic, despite the complexity on the algorithm of 

planning. Furthermore, the established balance at 

non-zero angles is concentrate. In addition, it is 

simpler to implement a deceleration system for fixed 

angles at set corners. Therefore, as in other 

researchers, we assume catching and delivering at 

angle zero. In this study, hypothesis define scheme 

to forward and backward deliver. On the other hand, 

we still have a set of parameters to achieve for 

motion of robotics planning. The parameter will be 

implemented in the successive section. This article, 

beyond casualty of principle to consider backward 

throws. In forward throws, scheduling technique 

submitted could be presented [20, 21] which is 

reformulated and analyzed in a following section. If 

𝜃𝑟 = 0 Eq. (8) and (9) are simplified to: 

 

𝑥(𝑡) = 𝑅 − (𝑠 + 𝑑)∅(𝑡)                                (12) 

    

𝑦(𝑡) =  
𝑔(∅(𝑡))

2

2𝜔𝑟
2 + (𝑠 + 𝑑) + 𝑅∅(𝑡)               (13) 

 

With,𝜃𝑐 = 0, we have catching at 𝑦𝑐 = 𝑠 + 𝑑 for 

all but the last throw in which 𝑦𝑐 = 𝑌𝑔. Using (12) 

horizontal displacement during 𝑓th throws is given 

by: 

 

𝑙𝑓 = 𝑅𝑓 − 𝑥(𝑡flight) = (𝑠 + 𝑑)∅𝑓(𝑡flight),     

𝑓 = 1, … , 𝐹1                                                   (14)       

 

Now, the total covered horizontal distance is: 

 

𝑙tot = ∑ 𝑙𝑓

𝐹1

𝑓=1

= (𝑠 + 𝑑) ∑ ∅𝑓

𝐹1

𝑓=1

 

            = (𝑠 + 𝑑)∅tot                 (15) 

 

The desired total orientation changed after 𝐹1 

throws (∅𝟎)  resulting in the covered horizontal 

distance can be written as: 

 

∅tot = ∅0 + 2𝑘𝜋,   𝑘 ∈ 𝑍 ,  

 𝑙tot = (𝑠 + 𝑑)(∅0 + 2𝑘𝜋)              (16) 

 

Now, starting from position  𝑋0 , if the goal 

position be 𝑋𝑔 < 0  in the frame  ℱ , according to 

Fig.3, we need to have: 𝑙tot = 𝑋0 − 𝑋𝑔 and Eq. (16) 

we're obtaining as:  

 
1

2𝜋
(

𝑋0−𝑋𝑔

𝑠+𝑑
− ∅0) = 𝑘 = integer                     (17) 

      

Given ∅0 and 𝑋0, the goal condition (∅𝑔, 𝑋𝑔) is 

reachable only if 𝑋𝑔  satisfies (18). So it is 

impossible to move a circular object into all desired 

configurations. 

 

Corollary1. Suppose the circular object hold on the 

robot arms at position X0 in the ℱ frame. If required, 

an object orientation will be changed ∅g = ∅0 

radians after F1  sequential throws and then it can 

only be shifted to positions X = Xg  that fulfill 

condition (17).  

2.3 Kinematics of robotic 

The kinematics of the cooperative robots is two 

Jacobian matrices relate velocity of the object and 

the position of the end-effector. In Fig. 4 shows the 

control structure proposed in this study considering 

the coordinated cooperative control of manipulators. 
The kinematics of robot arm taking the connection 

between joint’s velocities �̇� , interrelated the end-

effector with angular velocity 𝑤𝜔  and translational 

velocity 𝑤𝑣  [22]. They are related through the 

geometric Jacobian 𝐽𝑔(𝑞) [23]: 

 

[
𝑤𝑣

𝑤𝜔
] =  𝐽𝑔(𝑞)�̇�               (18)

              

The end-effector (orientation and position) is 

indicated via regarding an illustration in the robotics 

work space; it is available to estimate the Jacobian 

method through differentiation of the handle 

kinematics complying to joint positions. The 

Jacobian method, describe analytical of Jacobian, 

𝐽𝑔(𝑞), is related to the commutative Jacobian as: 

 

𝐽𝑔(𝑞) =  [
𝐼 0
0 𝑇(𝑞)

] 𝐽𝑔(𝑞)                   (19) 

 

Where 𝑇(𝑞) is a transformation matrix that 

depends on the parameter of the end-effector 

orientation. 

2.4 Camera visions for control of robotics 

In this study, we utilized facilitates of the 

intrigued focuses on the plane of image to represent 

a vector. The definition of parameters established 

the DC servo control scheme. The image based in 
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servo control design is recognizable the vector s 

comprises a set of optical appearance acquired from 

 

 
Figure.4 Structure variable of robot’s arm, cooperation task for experiment 

 

the image plane [24]. The parameter m performs 

the image evaluation while a is refers to intrigued 

focuses on parameters of camera. The relation of 

frame, image and camera is shown in Fig. 5. The 

point of 3D, P cans projection toward the image 

plane as point in 2D adopting the proposed 

projection as: 

 

𝑥 = 𝑓
𝑋

𝑍
=  

(𝑢−𝑢0)

𝑓
 ; 𝑦 = 𝑓

𝑌

𝑍
=  

(𝑣−𝑣0)

𝑓
          (20) 

 

Where 𝑚 = (𝑢, 𝑣) represents the image plane 

coordinates of the 2D point of passion in a pixel 

and 𝑎 = (𝑢0, 𝑣0, 𝑓)  is the camera elemental 

parameters vector, 𝑢0 and 𝑣0 are coordinates of the 

main point, while 𝑓  denoted focal lengths. For 

velocity of the 3D point regarding the frame of 

camera as:  

 

�̇� =  −𝑣𝑐 − 𝑤𝑐 × 𝑃            (21) 

 

While in scalar form, considering that 𝑃 =
(𝑋, 𝑌, 𝑍),  

𝑣𝑐 =  (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) and 𝑤𝑐 =  (𝑤𝑥 , 𝑤𝑦, 𝑤𝑧) as: 

�̇� =  −𝑣𝑥 − 𝑤𝑦 × 𝑍 + 𝑤𝑧𝑌, 

�̇� =  −𝑣𝑦 − 𝑤𝑧 × 𝑋 +  𝑤𝑧𝑍, 

�̇� =  −𝑣𝑧 − 𝑤𝑥 × 𝑌 + 𝑤𝑦𝑋                             (22) 

                                     

While in scalar form, 

 

�̇� =  −
𝑣𝑥

𝑍
+  

𝑥𝑣𝑧

𝑍
+  𝑥𝑦𝑤𝑧 − (1 + 𝑥2)𝑤𝑦

+ 𝑦𝑤𝑧, 

�̇� =  −
𝑣𝑦𝑥

𝑍
+ 

𝑦𝑣𝑧

𝑍
+  𝑥𝑦𝑤𝑦 − (1 + 𝑥2)𝑤𝑥

+ 𝑥𝑤𝑧 

                         (23) 

 

The point 𝑝𝑖
𝑐  is expressed in the camera 

coordinate system 𝑐 as followed by the dependent 

position 𝑝0
𝑐  and orientation 𝑅0

𝑐  of the object 

according to the camera as: 

 

𝑝𝑖
𝑐 = 𝑅0

𝑐𝑝𝑖
0 + 𝑝0

𝑐                        (24)  

 

Whereas:  

  

𝑝𝑖
𝑐 = [

𝑋𝑖

𝑌𝑖

𝑍𝑖

] , 𝑝0
𝑐 = [

𝑋
𝑌
𝑍

],  

 

𝑅0
𝑐 = [

𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅31 𝑅32 𝑅33

]             (25) 

                                                                       

In the current implementation, the directions 

of dimensions to move the robotics were retrieved 

from the in direction of imagery captured with on 
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flat-plate of the camera vision. The advantages of 

the camera visions in this application is to manage 

a single adequate mark of projection. That system, 

subsequently a relevant calibration, whole point of 

the image directional can be correlated with a 

particular ray over the focal of camera system.  

In Fig. 6, the unit directions �̂�𝑖𝑗  ∈  𝑅3 stand 

for the direction between manipulator 𝑖 and 𝑗 

indicated in the coordinate frame of manipulator 𝑖. 
Give 𝑇𝑗 ∈ 𝑅3

 
𝑖  and 𝑅𝑗 ∈ 𝑆𝑂 

𝑖  perform respectively 

the rotation and translation of manipulator 𝑗 with 

respective the frame reference of manipulator 𝑖.    
Externally failure generalization we can 

determine the mention frame of manipulator 1 as 

our base frame of mention and restore the 

composition of the robotic cooperation with the 

improvement on the orientations and positions of 

other robotic with consideration in the frame. The 

particular frame, internal corner between the 

position vectors to alternative other manipulators 

(𝑖) can be resolved scalar product; for 

occasion (2) = cos−1(�̂�21 ∙ �̂�23) . Including this 

angle data, the translation between the frames can 

promptly be determined to a scale of the factor by 

implementing the rule in the triangle shown as Fig. 

6. 

Promptly framework the dimension of 𝐿23, we 

have the relative situation for particular of the 

operator as: 

 

𝑇2 
1  =  𝐿12�̂�12  =  

sin(cos−1(�̂�21 ∙ �̂�23))

sin(cos−1(�̂�13 ∙ �̂�12))
�̂�12 

 

 

Figure.5 The relationship of camera and the image 

frame  

 

𝑇3 
1  =  𝐿13�̂�13  =  

sin(cos−1(�̂�32∙�̂�31))

sin(cos−1(�̂�13∙�̂�12))
�̂�13     (26)      

The vectors of position corresponding to 

further frames can be still received through 

proving the correlative of unit vectors. Including 

the situation of representative established expect 

the relative direction of the framework to 

accomplish the location operation. 

Accomplishing the present, the vectors  𝑇𝑖 
𝑗  

and  𝑇𝑗 
𝑖  should have the equal magnitude, but the 

opposite direction when related by the 

corresponding rotation matrix   𝑅𝑖 
𝑗 . We note a 

similar relationship between the vectors  𝑇𝑖 
𝑗 −  𝑇𝑘 

𝑗  

and 𝑇𝑘   
𝑖 . From these, we obtain the following pairs 

of equation: 

 

− 𝑇2 
1 =   𝑅2 

1 𝑇1 ;  𝑇3 
1

 
2 − 𝑇2 

1  =    𝑅2 
1  𝑇3 

2   

− 𝑇3 
1 =   𝑅3 

1 𝑇1 ;  𝑇2 
1

 
3 − 𝑇3 

1  =    𝑅3 
1  𝑇2 

2   (27) 

2.5 Decentralized control with neural network 

Back Propagation artificial neural networks 

(BPANNs) have two conditions which is are the 

directional information that flows from input to 

output and feed-back for compute the error and 

adjusted weight. The number of layers is limitless 

and the simplest BPANN is one perceptron that 

has one function, i.e. a single function of learning 

problems. The multi-layer BPANNs shown in Fig. 
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7 are corresponding analytical description with the 

sets in equations driven to generally mathematical 

method. The hardware, computer and 

microcontroller, Arduino Uno and specialized 

software are Matlab and C++ for programming 

used which is appropriate to reconstruct, illustrate 

and optimize standards of BPANNs. 

 

 

Figure.6 Dimensional of robotics workspace  

 

 
Figure.7 Artificial Intelligent Neural Networks 

 
Table 1. Notation of back-propagation neural network 

Definition Neural Network System 

𝑥1, 𝑥2 𝑎𝑛𝑑 𝑥3 Set of input vector receive 

new observation 

𝑓1 𝑎𝑛𝑑 𝑓2 Hidden layer 1st, bias vector 

activation  

𝑔1 𝑎𝑛𝑑 𝑔2 Hidden layer 2nd, bias vector 

activation 

ℎ1, ℎ2 𝑎𝑛𝑑 ℎ3 Hidden layer 3rd, bias vector 

activation 

𝑡1 − 𝑡6 Weight from neuron input 

𝑢1 − 𝑢4 Weight from neuron in the 

hidden layer 1st 

𝑣1 − 𝑣6 Weight from neuron in the 

hidden layer 2nd 

𝑤1, 𝑤2 𝑎𝑛𝑑 𝑤3 Weight from neuron in the 

hidden layer 3rd 

�̂� Output vector in prediction  

𝑦 Output vector (PWM) 

 

Definition: Historical data are input x1: position of 

the object (x,y), x2: speed of the object (camera 

frame reference before and after position during 

time), x3: robots interaction and u,g and h (weights 

and biases) are coefficient. The output, y is target 

of pulses width modulation, PWM value for 

control servo motor, forward and backward. 

In this study NN have two steps as follows: 

Feed-forward (receive observation of data x) 

- Initialization of weight 

- Utilized weigh to some random value 

- While stopping condition, do next step 

- Get prediction of the output, y and error 
 

Back-Propagation  

- Compute the error 

- Update weight value  

 

Feed-forward as: 

 

𝑢1, 𝑢2 = 𝑓1(𝑡1𝑥1 + 𝑡3𝑥2 + 𝑡5𝑥3) 

𝑢3, 𝑢4 = 𝑓2(𝑡2𝑥1 + 𝑡4𝑥2 + 𝑡6𝑥3) 

𝑣1, 𝑣2, 𝑣3 = 𝑔1(𝑓1𝑢1 + 𝑓2𝑢3) 

𝑣4, 𝑣5, 𝑣6 = 𝑔2(𝑓1𝑢2 + 𝑓2𝑢4) 

𝑤1 = ℎ1(𝑣1𝑔1 + 𝑣4𝑔2) 

𝑤2 = ℎ2(𝑣2𝑔1 + 𝑣5𝑔2) 

𝑤3 = ℎ3(𝑣3𝑔1 + 𝑣6𝑔2) 

𝑦 = 𝑤1 + 𝑤2 + 𝑤3            (28) 

 

While, replace 𝑤 in the Eq. (28) as: 

 

𝑦 = [ℎ1(𝑣1𝑔1 + 𝑣4𝑔2)] + [ℎ2(𝑣2𝑔1 +
𝑣5𝑔2)] + [ℎ3(𝑣3𝑔1 + 𝑣6𝑔2)]            (29) 

 

While, replace 𝑣 in the Eq. (29) as: 

 

𝑦 = [ℎ1((𝑔1)2(𝑓1𝑢1 + 𝑓2𝑢3) +

(𝑔2)2(𝑓1𝑢2 + 𝑓2𝑢4))] + [ℎ2(𝑔1)2(𝑓1𝑢1 +

𝑓2𝑢3) + (𝑔2)2(𝑓1𝑢2 + 𝑓2𝑢4))] +

[ℎ3((𝑔1)2(𝑓1𝑢1 + 𝑓2𝑢3) + (𝑔2)2(𝑓1𝑢2 +

𝑓2𝑢4))]                                                       (30)               

 

While, replace 𝑢 in the Eq. (30) as: 

 

𝑦 = [ℎ1((𝑔1)2((𝑓1)2(𝑡1𝑥1 + 𝑡3𝑥2 +
𝑡5𝑥3) + (𝑓2)2(𝑡2𝑥1 + 𝑡4𝑥2 + 𝑡6𝑥3)) +
(𝑔2)2((𝑓1)2(𝑡1𝑥1 + 𝑡3𝑥2 + 𝑡5𝑥3) +
(𝑓2)2(𝑡2𝑥1 + 𝑡4𝑥2 + 𝑡6𝑥3)))] +

[ℎ2 (𝑔1)2((𝑓1)2(𝑡1𝑥1 + 𝑡3𝑥2 + 𝑡5𝑥3) +

(𝑓2)2(𝑡2𝑥1 + 𝑡4𝑥2 + 𝑡6𝑥3)) +

(𝑔2)2((𝑓1)2(𝑡1𝑥1 + 𝑡3𝑥2 + 𝑡5𝑥3) +

(𝑓2)2(𝑡2𝑥1 + 𝑡4𝑥2 + 𝑡6𝑥3)))] +
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[ℎ3 ((𝑔1)2((𝑓1)2(𝑡1𝑥1 + 𝑡3𝑥2 + 𝑡5𝑥3) +

(𝑓2)2(𝑡2𝑥1 + 𝑡4𝑥2 + 𝑡6𝑥3)) +

(𝑔2)2((𝑓1)2(𝑡1𝑥1 + 𝑡3𝑥2 + 𝑡5𝑥3) +

(𝑓2)2(𝑡2𝑥1 + 𝑡4𝑥2 + 𝑡6𝑥3)))]                (31)        

 

Back-Propagation as: 

 

𝐸 =  
1

2
(𝑦 − �̂� )2  

𝜕𝐸

𝜕ℎ𝑖
=  (𝑦 − �̂�) 

𝜕𝑦

𝜕ℎ𝑖
 =  (𝑦 − �̂�) 𝑦(1 − 𝑦)𝑤𝑖  

𝜕𝐸

𝜕𝑔𝑖
=  (𝑦 − �̂�) 

𝜕𝑦

𝜕𝑔𝑖
  

𝜕𝐸

𝜕𝑔𝑖
=  (𝑦 − �̂�) 𝑦(1 − 𝑦) ∑ 𝑤𝑖

𝜕ℎ𝑖

𝜕𝑔𝑗
𝑖   

𝜕𝐸

𝜕𝑔𝑖
=  (𝑦 − �̂�) 𝑦(1 − 𝑦) ∑ 𝑤𝑖ℎ𝑖𝑖 (1 − ℎ𝑖)𝑣𝑖𝑗  

𝜕𝐸

𝜕𝑢
=  (𝑦 − �̂�) 

𝜕𝑦

𝜕𝑢
  

𝜕𝐸

𝜕𝑢
=  (𝑦 − �̂�) 𝑦(1 − 𝑦) ∑ 𝑤𝑖

𝜕ℎ𝑖

𝜕𝑢𝑖   

𝜕𝐸

𝜕𝑢
=  (𝑦 − �̂�) 𝑦(1 − 𝑦) ∑ 𝑤𝑖ℎ𝑖(1 −𝑖

ℎ𝑖) ∑ 𝑣𝑖𝑗
𝜕𝑔𝑖

𝜕𝑢𝑗    

𝜕𝐸

𝜕𝑢
=  (𝑦 − �̂�) 𝑦(1 − 𝑦) ∑ 𝑤𝑖ℎ𝑖(1 −𝑖

ℎ𝑖)𝑣𝑖𝑗𝑔𝑗(1 − 𝑔𝑗)𝑓𝑘              (32) 

 

a) Compute the error as: 

For each,  

 
𝜕𝐸

𝜕𝑔𝑖
=  ∑ 𝜎(ℎ𝑖)𝑣𝑖𝑗  𝑖

𝜕𝐸

𝜕ℎ𝑖
           (33)

        

b) Update weight value as: 

For each,  

 

 
𝜕𝐸

𝜕𝑢𝑗𝑘
=  

𝜕𝐸

𝜕𝑔𝑗
 𝜎 (𝑔𝑗)𝑓𝑘   

 

Update weight  

 

𝑢𝑗𝑘 ←  𝑢𝑗𝑘 − 𝜂
𝜕𝐸

𝜕𝑢𝑗𝑘
                       (34)  

Where, 

 

𝑦 =  𝜎(𝑤0 +  ∑ 𝑤𝑖ℎ𝑖𝑖 )    

ℎ𝑖 =  𝜎(𝑣𝑖0 +  ∑ 𝑣𝑖𝑗𝑔𝑗𝑗 )  

𝑔𝑗 =  𝜎(𝑢𝑖0 +  ∑ 𝑢𝑗𝑘𝑓𝑘𝑘 )  

𝑓𝑘 =  𝜎(𝑡𝑘0 +  ∑ 𝑡𝑘𝑚𝑥𝑚𝑚 )            (35) 

3. Results 

The experiments in this study demonstrate that 

there is a possibility in terms of problem-solving 

on time systems applying neural network in 

learning and controlling to develop control of 

robotics interaction. The system of decentralized 

control, including neural network, is achieved. The 

experimentation is operated with a close 

investigation.  The experimentation involved 

information learning to orient and position of the 

robotics interaction in cooperative task and to 

track trajectories relative into an object moving for 

balancing task on flat-plate at arbitrary 

orientations, position, speed and interaction signal 

of the object using feedback from web camera and 

forward only a priori information of the robotic 

kinematics and camera characteristics. In the 

initial position, the end-effector of the 

manipulators are set in the intermediate of 

workspace. In spite of learning and teaching, the 

object movement is uncertainty direction on flat 

plate in the middle of the end-effector of 

manipulators. Some experiment of simulation is 

shown in Figs. 8 and 9 is shown initial boundary 

of work space area. 

 

 
Figure.8 Experimental system consisting of robot’s arm 

 

 
Figure.9 The area of an object can balance on flat plate 

 

Neural Network (NN) method is adaptive 

parameters for tracking strategy in control DC 

servo motors, uncertainty of value was advanced, 
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including the strategy control in position and speed 

of the servo motors are forced to follow used 

neural network method and forecasted the PWM 

variable of the position and motion of the object, 

speed and signals for robotics interaction. The 

principles of scheduled controller compose in 

relevant for complete types of DC servo, operation 

handle several job or tasks. The results of the 

simulation are contributed to corroborate the 

efficiency of the neural network method; hence 

accomplishing it can be applicable for high 

achievement DC servo motor tracking 

applications, in decentralized control for 

manipulators cooperative task.   

The robotics in the experiment has 

demonstrated the interactive generation and 

dynamic for multiple robots to learned handling 

the object using the BPANNs. As the results have 

shown and discussed, the experimented approach 

provides the evidence that the robots can interact 

 

 
Figure.10 The signals for robotics interaction of system 

 

 
Figure.11 Experimental of object tracking position 

 

and seem to have eye and flexibility in such 

behavior generation by utilizing the fast and the 

slow dynamics in the BPANNs. 

In the robotic interaction system using circle 

signal and detect image of signal shape from web 

camera and matching in data set, signal shape in 

Fig. 10. The signal shape characteristic can be 15 

levels, step in to 5 degree of freedom of flat plate 

angle, upper bound is 35 degree and lower bound 

is -35 degree along x-axis. It means positive and 

negative angle is forward and backward 

respectively. The signal shapes are robotics 

acknowledge for cooperative interaction task. 

The simulation results are shown in Figs. 11–

15. Fig. 11 shows the object tracking position in 

system workspace and Fig. 12 shows image 

feature trajectories position of an object on the 

image plane in adaptive control. Fig. 13 represents 

the trajectory of end-effector of the robotic, again 

for the adaptive cases in robotics workspace. 
 

 
Figure.12 Trajectories position in image plane  

 

 
Figure.13 Trajectories in robotics workspace 
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Figure.14 Tracking object speed and training in NN 

 

Fig. 14 presents the progression of the control 

and training the speed of an object movement, and 

Fig. 15 shows the object speed tracking trajectories 

on the image plane.  It can be obviously seen from 

 

 
Figure.15 The object speed tracking trajectories 

 

the above figures that the adaptive control in 

neural network achieves a decentralized 

cooperative control of the robotics systems using 

NN for propose in handling task an object on flat 

plate in best performance. 

4. Discussion 

In this study, a practical adaptive parameter 

with neural networks in control strategy for the 

multiple-robot cooperative of manipulators is 

proposed. Despite, there have some aberration and 

ambiguous when the object movement was fast. 
This study on the application of a robotic 

manipulator confirms that the neural network 

method can be used control in robot-robot 

interaction and learning in cooperative with an 

uncertainty environment. The whole picture of this 

study clearly shows that the robotics interaction 

can be learned through cooperation task, and this 

decentralized control approach is different from 

many researches in intelligent engineering 

schemes that the objective is to determine 

according to manipulate the cooperative robotics 

rather than how to perform a specific movement 

for a robotics cooperation task for balancing an 

object on flat plate. 

5. Conclusion 

This article presented the decentralized control 

using neural network can be applied to robot 

handling the object balancing task of a robotic 

cooperation manipulator .The image processing for 

object tracking and neural network method are 

written on MATLAB® and controller using with 

Arduino UNO are written on C++, PWM for 

control DC servo motor. The simulation results are 

that robotics can be learned to handling an object 

balancing on a flat plate. As well clearly 

decentralized control is not restricted to be done 

only with sensor method, as the neural network 

method can be implemented with the dataset to 

acknowledge the movement control of their servo 

motor for robot-robot interaction with 

decentralized control effectively. Other research 

experiments usually use force or torque sensor for 

acknowledge to control the robotics. This study 

operates without the sensor which differs from 

other experiments, a robotics seem have eye with a 

camera used serial control in acknowledge in 

environments. The robotics may perform in 

cooperative with particular robot-robot interaction 

used decentralized control of robotics to balance 

the object on flat pate with dataset training in NN 

method. In addition, this research can be applied to 

industrial sectors that use robots to work together 

in the same working style as the article. 
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