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Abstract: Hidden Markov Models are widely used for time continuous problems modelling and prediction. This paper 

presents two new improved algorithms for Gaussian continuous and mixture of Gaussian continuous Hidden Markov 

Models cases for solving learning problem for large scale multidimensional data. The design of our parallel distributed 

algorithms is based on Spark, the Big Data framework, thereby we can distribute data over several nodes through 

Resilient Distributed Datasets which allow to apply, in parallel, a set of operations. The proposed algorithms have two 

main advantages: a high computational time efficiency and a high scalability as well as an easy integration in Big Data 

frameworks. The complexity comparison results show great improvements in computational complexity (by a factor 

of (states number)2) and execution time.  Moreover, the new algorithms might be more effective by reducing the 

communication costs between the elements of the system involved in the learning task. 
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1. Introduction 

Currently, with the explosion of data volume 

generated and collected from different sources 

especially sensors, social networks, mobile devices 

and Internet, we live in an era marked by complex 

characteristics of data [1]. This huge amount of data 

has opened the door for improved modelling and 

prediction techniques [2]. Certainly, in the past, 

classical algorithms have shown their processing 

speed, efficiency and accuracy, but the digital 

revolution has changed everything. However, 

classical algorithms are, generally, less efficient in 

terms of complexity and execution time. Nowadays, 

in this era of Big Data, characterized by their huge 

volume, their high speed of production and diffusion 

as well as their varied nature, the design and 

implementation of Machine Learning algorithms has 

become a tedious task. It must therefore look for new 

algorithms adapted to Big Data or to review and 

improve conventional algorithms to adapt them to 

this new context in order to, effectively, manage and 

analyze Big Data. With this great panoply of Big Data 

technologies, we have to think about taking full 

advantage of the great benefits of these new 

technologies (i.e. distributed computing by GPU, 

Hadoop, Spark) with a set of powerful tools for 

managing and analyzing Big Data (e.g., data 

collection and data storage, preprocessing, feature 

selection and extraction) for data analysis and 

processing especially for large scale 

multidimensional data in order to reduce the 

computational cost of data analysis. Hidden Markov 

Models (HMMs) are widely used for modelling and 

predicting continuous problems [3]. These 

algorithms must be improved to give good results 

especially in a Big Data context [4]. 

In this work, we present two improved versions 

of Baum-Welch algorithm [5]. It is based on Spark 

framework [6], to solve problem of unsupervised 

learning for continuous-time Hidden Markov Models 

[7]. Thus, we propose two new algorithms for 

Gaussian continuous HMM and mixture of Gaussian 

continuous HMM cases.  
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Our proposed solution is based on Spark as main 

framework. These are parallel distributed versions of 

classical algorithms. To achieve this implementation, 

we considered a set of concepts under Spark: 

exploiting Resilient Distributed Datasets (RDDs) 

properties (i.e., data distribution over several nodes) 

and putting into practice the basic concepts of 

MapReduce paradigm (i.e., parallel computing 

operations) which allow to apply, in parallel, a set of 

operations (transformations and actions). 

Our main contributions are summarized as 

follows: 

• We introduce Hidden Markov Models 

fundamentals. 

We discuss the three main questions of Hidden 

Markov Models. 

• We review the Baum-Welch algorithm for the 

learning problem of Hidden Markov Models. 

• We propose a parallel distributed Baum-Welch 

for continuous HMM: an improved version of Baum-

Welch algorithm for solving unsupervised learning 

problem for continuous-time HMMs (Gaussian 

Continuous HMM). 

• We propose a parallel distributed Baum-Welch 

for Continuous HMM with Gaussian mixtures: an 

improved version of Baum-Welch algorithm for 

solving unsupervised learning problem for mixture of 

continuous-time HMMs (Continuous HMM with 

Gaussian mixtures). 

The rest of this paper is organized as follows. We 

provide an overview of some of the relevant literature 

review addressing this field of research in Section 2. 

In Section 3, we introduce notations used in this paper. 

Section 4 deals with Hidden Markov Models 

fundamentals. Next, we review Baum-Welch 

algorithm in Section 5. In Section 6, we present and 

describe our Parallel Distributed implementation of 

Baum-Welch algorithm for continuous-time HMM 

under Spark.   We present a comparison of proposed 

algorithms with classical ones in Section 7. We 

conclude by a discussion of results and presentation 

of some conclusions and future directions in Section 

8. 

2. Related work 

In the literature, several theories have been 

proposed to speed-up Baum-Welch algorithm 

especially those focusing on achieving parallel and/or 

distributed implementations of this algorithm.  

Among the first important works that have 

studied this topic that of Mitchell et al. [8] who 

described a parallel implementation of a Hidden 

Markov Model (HMM) with Duration Modelling for 

spoken language recognition on the MasPar MP-1. 

This implementation exploits the massive parallelism 

of explicit duration HMMs to overcome many 

Implementational issues to develop complex models 

for real-time speech recognition. Another important 

work was presented by Turin [9] in which he 

proposed a parallel version of the Baum–Welch 

algorithm suitable for very large size observation 

requiring a large memory capacity which can reduces 

Baum-Welch training time. The proposed algorithm 

is based on temporal splitting of a training sequence, 

and it relies on some features of observation 

sequences, such as continuous repetitions of identical 

observations. In [10], the authors proposed a novel 

approach to ASL recognition based on parallel 

HMMs (PaHMMs) which model the parallel 

processes independently. Thus, it models the p 

processes with p independent HMMs with separate 

output. The recognition algorithm runs in time 

polynomial in the number of states, and in time linear 

in the number of parallel processes. The evaluation 

shows that the presented algorithm in this paper 

achieves a maximum recognition rate of 87.88% on 

the sentence level and 96.47% on the sign level. 

Since the 2000s, efforts have multiplied and 

different approaches have emerged.  

Anikeev et al. [11] proposed a simple strategy of 

organizing parallel HMM training, which can be 

effectively implemented using inexpensive network 

clusters. The proposed parallel algorithm was 

implemented for distributed cluster systems using 

Message-Passing Interface (MPI) standard which can 

be used in intrusion detection. The proposed parallel 

implementation of Baum-Welch algorithm for 

multiple observation sequences is suitable for 

training huge amount of data. Ma et al. [12] proposed 

a novel distributed multi-dimensional Hidden 

Markov Model (DHMM) for the modelling of 

multiple motion trajectories of objects and their 

interaction activities in a scene capable of conveying 

interactions information between multiple 

trajectories. It derives from this a novel General 

Forward-Backward (GFB) algorithm suitable for 

recursive calculation of model parameters. 

Simulation results show superior performance and 

higher accuracy of the proposed distributed 2D 

hidden Markov model. In [13], Liu Studied the 

parallelism of Baum-Welch algorithm for graphical 

processing units (GPU) and presented a prototype 

program for HMM training and classification on the 

NVIDIA CUDA platform. The proposed CUDA 

implementation achieves performance of 4.3 

GFLOP/s and 200✕ speedups over CPU 

implementation. Li et al. [14] presented a general 

parallel learning framework, Cut-And-Stitch, for 

training hidden Markov chain models. They propose 
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a model-specific variant, CAS-HMM for learning 

hidden Markov models (HMM) which is 

implemented using OpenMP on two supercomputers 

and a quad-core commercial desktop. Another 

solution is described in [15] presenting a C++ library 

exploiting modern CPUs for constructing and 

analyzing general hidden Markov models which can 

be used for parallelizing Baum-Welch algorithm 

using OPENMP. The performance evaluation shows 

that the multi-threaded version of the Baum-Welch 

algorithm presents an impressive decrease in the 

running time. The speed-up can reach greater than a 

factor 1:5 for models with more than 400 states, when 

running it using two threads, and a speed-up close to 

a factor 3 for models with more than 600 states, when 

running it using 4 threads and a speed-up close to a 

factor 5 for models with more 800 states when 

running it with 8 threads. Hymel et al. [16] presented 

a parallel implementation under GPUs of Hidden 

Markov Models for wireless applications. They 

introduce a new method utilizing GPUs and HMMs 

to identify modulation schemes within a collected 

signal. The complexity of the algorithm is reduced 

from O (TN2) or O (TMN) for the serial algorithm to 

O (T log N) for the parallel algorithm. The 

performances show a significant improvement in 

speedup which can reach 65x for the Baum-Welch 

algorithm with 4000 states.  

In recent years, there has been another work of 

Yu et al. [17] who proposed a parallelized Hidden 

Markov Model to accelerate isolated words speech 

recognition. They implemented a GPU-accelerated 

HMM targeted for isolated-word based recognition. 

It is a new parallelization of continuous HMMs using 

two high-end GPUs belonging to Nvidia’s Kepler 

architecture. The performance evaluation shows that 

this implementation can improve performance by 

9.2x as compared to an optimized multi-thread CPU 

version during training stage. 

In a recent paper, Bražėnas et al. [18] presented 

three different EM-based fitting procedures that can 

take advantage of the parallel hardware like Graphics 

Processing Units to reduce computational complexity 

for fitting Markov Arrival Processes with the 

expectation-maximization (EM) algorithm.  The 

performance evaluation shows that the proposed 

algorithms are orders of magnitudes faster than the 

standard serial procedure. 

There are a set of issues in previous 

implementations. The way of storing values of 𝛼𝑡(𝑖), 

𝛽𝑡(𝑖)  and emissions probabilities. The memory 

allocation is not very efficient. In addition to the 

problem of data transfer since the time spent to 

transfer data between system modules and devices 

grows with the increase of state number of the HMM. 

There is another major drawback of proposed 

implementations which consists of their utilization 

which is application dependent and also depends on 

the architecture used (e.g., the parallel algorithms of 

Turin is designed for signal processing applications, 

Voglar’s implementation is highly significant to 

gesture recognition research, the implementation 

strategy of Anikeev seems to be more suitable for 

inexpensive network clusters, rather than for 

massively parallel computers, the parallel 

implementation of Liu can only use single core CPUs 

or GPUs). In addition, the implementations of 

multiplication are not efficient implementations of 

matrix multiplication since matrix multiplication is 

not effectively optimized. For some implementations, 

the use of OpenMP causes configuration problems 

and target only shared memory system, it is not 

suitable for distributed memory systems. Concerning 

MPI, its use is not suitable for small grain level of 

parallelism, for example, to exploit the parallelism of 

multi-core platforms for shared memory 

multiprocessing [19]. However, the use of GPUs is 

not effective in treating HMMs with a small state 

number. 

In this paper, we present a solution well adapted 

to Big Data but which also manages data of small size. 

It is a highly scalable implementation since we can 

add multiple nodes in a very simple way. One of the 

advantages of our implementations is that it manages 

heterogeneous data (i.e., structured, semi-structured 

and unstructured data) collected from several 

different sources even in real time. 

Our implementation allows efficient memory 

management thanks to the use of RDD abstraction. 

RDDs are fault tolerant by nature. Thus, lost data can 

be recovered, often quite quickly, without requiring 

costly replication. It offers a distributed file system 

with failure and data replication management. During 

the induction phase for the calculation of 𝛼𝑡(𝑖) and 

𝛽𝑡(𝑖), the use of memory is optimized since we have 

opted for the use of vectors instead of matrices since 

vectors fit in memory on a single machine, while 

matrices do not [20]. 

It noticed that the use of a Big Data Framework 

provides a set of tools for data analysis and 

management that is easy to use, deploy and maintain. 

This implementation is not dependent on any 

particular framework or architecture. The proposed 

algorithms have a number of advantages compared to 

other solutions: a high computational time efficiency 

and a high scalability as well as an easy integration in 

Big Data frameworks which offer great capability of 

fast and scalable data processing allowing pre-

processing and data cleaning with the powerful tools 

of Big Data frameworks. 
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Table 1. Notations of a hidden Markov model 

Notation Meaning 

𝑁 number of states in the model (𝑆 =
{𝑆1, . . . , 𝑆𝑁}) 

𝑆𝑖 𝑖𝑡ℎ𝑠𝑡𝑎𝑡𝑒 

𝑀 number of observation symbols 

𝑉 set of possible observations (𝑉 =
{𝑣1, . . . , 𝑣𝑀}) 

𝑂 observation sequence (𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇) 

𝑇 length of observation sequence 

𝜋𝑖 initial state probability 

𝛱 initial state matrix (𝛱 = {𝜋𝑖}) 

𝑎𝑖𝑗  transition probability 

𝐴 Transition matrix (𝐴 = {𝑎𝑖𝑗}) 

𝑏𝑗(𝑣𝑘) Observation probability 

𝐵 Observation matrix (𝐵 = {𝑏𝑗(𝑣𝑘)}) 

𝜆 model parameters, 𝜆 = {𝐴, 𝐵, 𝛱} 

𝑜𝑡 observation in time 𝑡 

𝛼𝑡(𝑖) forward variable 

𝛽𝑡(𝑖) backward variable 

𝛾𝑡(𝑖) probability of being at state 𝑆𝑖 at time 𝑡, 

given 𝜆 and 𝑂 

𝜉𝑡(𝑖, 𝑗) probability of being at state 𝑆𝑖 at time 𝑡, 

and at state 𝑆𝑗 at time 𝑡 + 1, given 𝜆 and 

𝑂 

𝜇𝑗 mean 

𝛴𝑗 covariance matrix 

𝜇𝑗𝑚 mean of 𝑚𝑡ℎ mixture in state 𝑆𝑗 

𝛴𝑗𝑚 covariance matrix of 𝑚𝑡ℎ mixture in state 

𝑆𝑗 

𝑐𝑗𝑚 𝑚𝑡ℎ mixture weights in state 𝑆𝑗 

3. Notations 

In the following table (Table 1), we present 

notations used in this paper. 

4. Hidden Markov Models 

In this section, we review theoretical foundations 

of Hidden Markov Models and discuss the three 

fundamental problems of HMMs. 

Consider a discrete time Markov chain with a finite 

set of states 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑁}. An HMM is defined 

by the following compact notation to indicate the 

complete parameter set of the model 𝜆 = (𝛱,A,B) 

where 𝛱 , 𝐴  and 𝐵  are the initial state distribution 

vector, matrix of state transition probabilities and the 

set of the observation probability distribution in each 

state, respectively [3,7,21]: 

𝛱 = [𝜋1, 𝜋2, … , 𝜋𝑁],  𝜋𝑖 = Pr{𝑞1 = 𝑆𝑖} ,          (1) 

𝐴 = {𝑎𝑖𝑗}, 𝑎𝑖𝑗 = 𝑃𝑟{𝑞𝑡+1 = 𝑆𝑗 ∣ 𝑞𝑡 = 𝑆𝑖},       (2)  

for 1 ≤ 𝑖, 𝑗 ≤ 𝑁,  𝑆𝑖, 𝑆𝑗 ∈ 𝑆,  𝑡 ∈ [1,2, . . . , 𝑇] 

The observation at time 𝑡 , 𝑜𝑡 , may be a discrete 

symbol (Discrete HMMs (DHMMs [22]) case, 𝑜𝑡 =
𝑣𝑘, 𝑣𝑘 ∈ 𝑉 = 𝑣1, 𝑣2, . . . , 𝑣𝑀, or continuous, 𝑜𝑡 ∈ ℝ𝑘. 

The observation matrix 𝐵 is defined by 𝐵 = {𝑏𝑗(𝑜𝑡)}, 

where 𝑏𝑗(𝑜𝑡) is the state conditional probability of 

the observation 𝑜𝑡 defined by: 

𝑏𝑗(𝑜𝑡) = Pr{ 𝑜𝑡 = 𝑣𝑘 ∣∣ 𝑞𝑡 = 𝑆𝑗 },                     (3) 

for 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀 

For a continuous observation (Continuous HMMs 

(CHMMs) case [7]), 𝑏𝑗(𝑜𝑡)  is defined by a finite 

mixture of any log-concave or elliptically symmetric 

probability density function (pdf), e.g. Gaussian pdf, 

with state conditional observation mean vector 𝜇𝑗 

and state conditional observation covariance matrix 

𝛴𝑗, so 𝐵 may be defined as: 

𝐵 = {𝜇𝑗, 𝛴𝑗}, 𝑖 = 1,2, . . . , 𝑁                               (4) 

The model parameters constraints for 1 ≤ 𝑖, 𝑗 ≤ 𝑁 

are 

∑ 𝜋𝑖
𝑁
𝑖=1 = 1, ∑ 𝑎𝑖𝑗

𝑁
𝑗=1 = 1, 𝑎𝑖𝑗 ≥ 0,                  (5) 

∑ 𝑏𝑗
𝑀
𝑘=1 (𝑜𝑡 = 𝑣𝑘) = 1 𝑜𝑟 ∫ 𝑏𝑗

+∞

−∞
(𝑜𝑡)d𝑜𝑡 = 1(6) 

In general, at each instant of time t, the model is 

in one of the states 𝑆𝑖 , 1 ≤ 𝑖 ≤ 𝑁 . It outputs 𝑜𝑡 

according to a discrete probability (in the DHMM 

case) or according to a continuous density function 

(in the CHMM case) 𝑏𝑗(𝑜𝑡) and then jumps to state 

𝑆𝑗 , 1 ≤ 𝑗 ≤ 𝑁  with probability 𝑎𝑖𝑗 . The state 

transition matrix defines the structure of the HMM. 

There are three main questions we are interested 

in about HMM. First, the evaluation problem in 

which we look for the probability 𝑃𝑟{𝑂|𝜆} that the 

given observations 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇  are generated 

by the model 𝜆  with a given HMM. Second, the 

decoding problem in which we look for the most 

likely state sequence in the given model 𝜆  that 

produced the given observations 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇 . 

Third, the learning problem in which we look for how 

we can adjust the model parameters {𝐴, 𝐵, 𝛱} in order 

to maximize 𝑃𝑟{𝑂|𝜆}  given a model 𝜆  and a 

sequence of observations 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇 . 
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5. Baum-Welch algorithm 

The most important problem about HMMs is the 

learning problem or parameter estimation. To resolve 

this problem, Baum-Welch algorithm, known as 

Forward-Backward algorithm, is the most used. It is 

a special case of the Expectation-Maximisation (i.e., 

EM) algorithm [23]. In an HMM, the observations 

can be discrete or continuous. In this paper, we are 

interested in continuous-time HMM case. We treat 

Gaussian continuous observation and mixtures of 

Gaussian continuous observation cases. 

The Baum-Welch algorithm for Gaussian 

continuous observation takes as input an initial model 

(𝜆 = (𝐴, 𝜇𝑗 , 𝛴𝑗, 𝛱)) and a sequence of observations 

( 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇 ) and estimates the transition 

matrix A and the observation matrix B in function of 

mean (𝜇𝑗) and covariance matrix (𝛴𝑗) that maximize 

the probability for the given observations. The 

iterations terminate when a convergence criterion is 

meet. 

The Baum-Welch algorithm for Gaussian continuous 

observation can be represented as follows: 

 

 𝛼1(𝑗) = 𝜋𝑗𝑏𝑗(𝑜1), 1 ≤ 𝑗 ≤ 𝑁                         (7) 

 

𝛼𝑡+1(𝑗) = 𝑏𝑗(𝑜𝑡+1) ∑ 𝛼𝑡(𝑖)𝑎𝑖𝑗
𝑁
𝑖=1 ,                  (8) 

1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 − 1 

 

𝑃𝑟{𝑂|𝜆} = ∑ 𝛼𝑇(𝑖)𝑁
𝑖=1                (9) 

 

𝛽𝑇(𝑗) = 1, 1 ≤ 𝑗 ≤ 𝑁                     (10) 

 

𝛽𝑡(𝑖) = ∑ 𝛽𝑡+1
𝑁
𝑗=1 (𝑗)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1),                 (11) 

1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 − 1 

 

𝛾𝑡(𝑖) =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

Pr{𝑂|𝜆}
,    1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇      (12) 

 

𝜉𝑡(𝑖, 𝑗) =
𝛼𝑡(𝑖)𝑎𝑖𝑗𝛽𝑡+1(𝑗)𝑏𝑗(𝑜𝑡+1)

Pr{𝑂|𝜆}
,                       (13) 

1 ≤ 𝑖, 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 − 1 

 

𝑎𝑖𝑗 =
∑ 𝜉𝑡

𝑇−1
𝑡=1 (𝑖,𝑗)

∑ 𝛾𝑡
𝑇−1
𝑡=1 (𝑖)

, 1 ≤ 𝑖, 𝑗 ≤ 𝑁                         (14) 

 

𝜇𝑗 =
∑ 𝛾𝑡

𝑇
𝑡=1 (𝑗)𝑜𝑡

∑ 𝛾𝑡
𝑇
𝑡=1 (𝑗)

, 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇          (15) 

 

𝛴𝑗 =
∑ 𝛾𝑡

𝑇
𝑡=1 (𝑗)(𝑜𝑡−𝜇𝑗)(𝑜𝑡−𝜇𝑗)

𝑇

∑ 𝛾𝑡
𝑇
𝑡=1 (𝑗)

,                           (16) 

1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 

 

𝜋𝑖 = 𝛼1(𝑖)𝛽1(𝑖), 1 ≤ 𝑖 ≤ 𝑁                            (17) 

 

The Baum-Welch algorithm with mixtures of 

Gaussian continuous observation takes as input an 

initial model ( 𝜆 = (𝐴, 𝑐𝑗𝑚, 𝜇𝑗𝑚, 𝛴𝑗𝑚, 𝛱) ) and a 

sequence of observations ( 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇 ) and 

estimates the transition matrix A and the observation 

matrix B in function of mean of 𝑚𝑡ℎ  mixture 𝜇𝑗𝑚 , 

covariance matrix of 𝑚𝑡ℎ  mixture 𝛴𝑗𝑚  and 𝑚𝑡ℎ 

mixture weights 𝑐𝑗𝑚. The iterations terminate when a 

convergence criterion is meet. Thus, the Baum-

Welch algorithm with mixtures of Gaussian 

continuous observation is as follows: 

 

𝛼1(𝑗) = 𝜋𝑗𝑏𝑗(𝑜1), 1 ≤ 𝑗 ≤ 𝑁                 (18) 

 

𝛼𝑡+1(𝑗) = 𝑏𝑗(𝑜𝑡+1) ∑ 𝛼𝑡
𝑁
𝑖=1 (𝑖)𝑎𝑖𝑗 ,         (19) 

1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 − 1 

 

𝑃𝑟{𝑂|𝜆} = ∑ 𝛼𝑇
𝑁
𝑖=1 (𝑖)               (20) 

 

𝛽𝑇(𝑗) = 1, 1 ≤ 𝑗 ≤ 𝑁               (21) 

 

𝛽𝑡(𝑖) = ∑ 𝛽𝑡+1
𝑁
𝑗=1 (𝑗)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)          (22) 

1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 − 1 

 

𝛾𝑡(𝑖) =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

Pr{𝑂|𝜆}
, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇     (23) 

 

𝜉𝑡(𝑗, 𝑚) ←
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑐𝑗𝑚𝑔𝑗𝑚(𝑜𝑡)𝛽𝑡+1(𝑗)

Pr{ 𝑂∣∣𝜆 }
,        (24) 

1 ≤ 𝑖, 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 − 1 

 

𝑎𝑖𝑗 =
∑ 𝜉𝑡

𝑇−1
𝑡=1 (𝑖,𝑗)

∑ 𝛾𝑡
𝑇−1
𝑡=1 (𝑖)

, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁     (25) 

 

𝑐𝑗𝑚 =
∑ 𝜉𝑡

𝑇
𝑡=1 (𝑗,𝑚)𝑜𝑡

∑ 𝛾𝑡
𝑇
𝑡=1 (𝑗)

,                               (26) 

  1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 

 

𝜇𝑗𝑚 =
∑ 𝜉𝑡

𝑇
𝑡=1 (𝑗,𝑚)𝑜𝑡

∑ 𝛾𝑡
𝑇
𝑡=1 (𝑗)

,                               (27) 

  1 ≤ 𝑗 ≤ 𝑁 ,  1 ≤ 𝑡 ≤ 𝑇 

 

𝛴𝑗𝑚 =
∑ 𝜉𝑡

𝑇
𝑡=1 (𝑗,𝑚)(𝑜𝑡−𝜇𝑗𝑚)(𝑜𝑡−𝜇𝑗𝑚)

𝑇

∑ 𝜉𝑡
𝑇
𝑡=1 (𝑗,𝑚)

,      (28) 

1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 

 

𝜋𝑖 = 𝛼1(𝑖)𝛽1(𝑖), 1 ≤ 𝑖 ≤ 𝑁           (29) 

6. Parallel distributed implementation of 

Baum-Welch algorithm for continuous 

time HMM on Spark 

The design of our algorithms is based on Spark as 
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Figure.1 Spark architecture 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.2 Main Spark’s concepts used in the proposed implementation 
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main framework. Apache Spark is an open source Big 

Data processing framework that allows to run large-

scale analytics applications in batch and real time 

processing modes in a distributed manner (cluster 

computing). Spark supports In-memory processing, 

boosting the performance of Big Data analytics 

applications. However, it also allows conventional 

disk processing when data sets are too large for 

available system memory. 

The Spark ecosystem has several tools (Fig. 1): 

Spark cluster manager (includes Apache Mesos [24], 

Apache Yarn [25] and built-in Standalone cluster 

manger), Spark for batch processing, Spark 

Streaming [26] for the continuous processing of data 

streams, MLlib [27] for Machine Learning, GraphX 

[28] for graph calculations, Spark SQL [29] which is 

an SQL-like implementation of data query. Moreover, 

it integrates perfectly with the Hadoop ecosystem 

[30] (including HDFS [31]). 

A Spark application contains several components 

whether in using Spark on a single machine or on a 

cluster of hundreds or thousands of nodes. A Spark 

application consists of a single Driver (responsible 

for distributing the tasks on the various executors. It 

is the driver that executes the method of applications), 

the Master, the Cluster Manager (responsible for 

instantiating the different workers), and a set of  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.3 Initialization step in parallel of backward 

variable 

 

 

 

 

 

Figure.4 Computation of the probability 𝑃𝑟{𝑂 ∣ 𝜆} 

Executors processes scattered across nodes on the 

cluster, which run on worker nodes, or Workers (each 

worker instantiates an executor responsible for 

executing the various calculation tasks). 

For example, the initialization of the backward 

variable will be performed using N executors in 

parallel and then storing the 𝛽𝑇(𝑗) values in the 𝐵𝑒𝑡𝑎𝑇 

vector as shown in Fig. 3. 

To compute the probability 𝑃𝑟{𝑂 ∣ 𝜆}, we apply 

the Spark’s action, reduce on all the elements of the 

vector 𝐴𝑙𝑝ℎ𝑎𝑇 without using an iteration on N which 

makes it possible to reduce the computational 

complexity of O(N) to O(1). 

To achieve this implementation, we exploited 

three key concepts: Spark’s Resilient Distributed 

Datasets (RDDs) [32], for distributing data over 

many blocks, MapReduce paradigm [33] to achieve 

the parallel computation and broadcast variables to 

reduce communication cost (Fig. 2). 

The main technical innovation offered by Apache 

Spark is the concept of Resilient Distributed Datasets 

(RDDs). The RDD are an abstraction of 

programming. They represent an immutable 

collection of objects that can be distributed on a 

cluster. They are fault-tolerant and provide parallel 

data structures that allow users to explicitly store 

intermediate data in memory, control their 

partitioning to optimize data storage and manipulate 

data using a set of operators. Operations on RDDs can 

be distributed across the cluster and executed in a 

parallel batch process, allowing for fast, scalable 

parallel processing. RDDs support two types of 

operations: transformations (e.g., map, filter) and 

actions (e.g., reduce, collect). As Hadoop, Spark 

relies on a distributed storage system (e.g., HDFS) to 

store the input and output data of the jobs submitted 

by users. However, unlike Hadoop, Spark allows 

RDDs to be cached in the memory and therefore 

intermediate data between different iterations of a job 

can be reused efficiently. This reduces the number of 

costly disk Input/Output accesses to the distributed 

storage system. This memory-resident feature of 

Spark is particularly essential for some Big Data 

applications such as iterative Machine Learning 

algorithms which intensively reuse the results across 

multiple iterations of a MapReduce job.   

MapReduce is a programming paradigm that 

enables parallel distributed processing of large sets of 

data, converting them into another set of data (i.e., 

map function), and then combining and reducing 

those output sets of data into smaller sets of data (i.e., 

reduce function). MapReduce was designed to take 

big data and use parallel distributed computing to turn 

big data into little- or regular-sized data. The 

MapReduce paradigm allows to apply RDDs 

       β𝑇(1) ← 1 

       β𝑇(2) ← 1 

       β𝑇(3) ← 1 

       β𝑇(N) ← 1 

𝛼𝑇(1) 𝛼𝑇(2) 𝛼𝑇(3) 𝛼𝑇(𝑁) ... 

 

 

 

 

 

Stored in vector 

𝐵𝑒𝑡𝑎𝑇  

 

... 

Store 𝛼𝑇(1), 𝛼𝑇(2), … , 𝛼𝑇(𝑁) 
in vector 𝐴𝑙𝑝ℎ𝑎𝑇  

Apply reduce action to compute 𝑃𝑟{𝑂|𝜆} 

Pr {𝑂|𝜆} ← Alpha𝑇 . reduce (lambda a, b : a + b) 
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transformations which include several MapReduce-

like operations (e.g., map, reduce, collect). 

Running a Spark operation on a remote cluster 

node uses several functions. This operation is usually 

done in such a way that a different copy of variables 

is used in the functions. These particular variables are 

copied to different machines and updates to these 

variables are not propagated to the driver program. So, 

the use of read-write shared variables in tasks is 

inefficient. Nevertheless, Spark provides two types of 

shared variables: broadcast variables and 

accumulators. Broadcast Variables are an another 

very useful concept in this implementation whose 

objective is to reduce the communications cost. They 

allow to keep a read-only secure variable cached on 

different nodes, instead of sending only one copy 

with each of the necessary tasks. A calculation Spark 

operation first begins with the variable broadcast 

send to each node concerned by the associated task. 

Then each node caches it locally in a serialized form. 

Hence, to run a scheduled task, instead of getting 

values from the Driver, these are extracted locally 

from the cache. So, broadcasting does not really mean 

that a given object is not transmitted at all on the 

network. But unlike normal variables, broadcast 

variables are always read-only and can only be sent 

once. 

In what follows, we present the improved 

algorithms (i.e., parallel distributed Baum-Welch for 

continuous time HMMs). 

Given a sequence of observations and an initial 

model 𝜆  ( 𝐴 , 𝜇𝑗 , 𝛴𝑗 , 𝛱 ), our proposed improved 

algorithm (Parallel Distributed Baum-Welch 

Algorithm) for solving unsupervised continuous-time 

HMMs learning problem is presented in Algorithm 1. 

Baum-Welch algorithm for mixture of 

continuous-time HMMs is widely used in several 

application domains such as artificial intelligence, 

pattern recognition, speech recognition, signal 

processing, biological sequence analysis, robotics 

and finance. Given a sequence of observations and an 

initial model 𝜆 (𝐴, 𝑐𝑗𝑚 , 𝜇𝑗𝑚 , 𝛴𝑗𝑚 , 𝛱), the proposed 

version of Baum-Welch algorithm (Parallel 

Distributed Baum-Welch for Mixture Continuous 

HMM) for solving unsupervised continuous time 

HMMs with Gaussian mixtures learning problem is 

presented in Algorithm 2. 

7. Comparisons results 

In this section, we investigate the complexities of 

the proposed algorithms and compare them, step by 

step, with the existing algorithms. The factor cst 

represents the communication cost between the 

elements of the system. For the time complexity, the 

comparison was made by determining the number of 

significant operations that the algorithm does (e.g., 

assignment, iterations, sum). Then the space 

complexity is measured by calculating the required 

memory consumption of the algorithm (e.g., number  
 

Table 2. Time complexity comparison 

 Classical 

Baum-Welch 

Parallel 

distributed 

Baum-Welch 

Forward variable 

initialization 𝛼1(𝑗) 

𝑂(𝑁) cst.𝑂(1) 

calculation of 

𝛼𝑡+1(𝑖) 

𝑂(𝑁2(𝑇 − 1)) cst.𝑂(𝑇 − 1) 

calculation of 

𝑃𝑟{𝑂 ∣ 𝜆} 

𝑂(𝑁) cst.𝑂(1) 

Backward variable 

initialization 𝛽𝑇(𝑗) 

𝑂(𝑁) cst.𝑂(1) 

calculation of 

𝛽𝑡(𝑗) 

𝑂(𝑁2(𝑇 − 1)) cst.𝑂(𝑇 − 1) 

calculation of 𝛾𝑡(𝑖) 𝑂(𝑁𝑇) cst.𝑂(𝑇) 

calculation of 

𝜉𝑡(𝑖, 𝑗) 

𝑂(𝑁2(𝑇 − 1)) cst.𝑂(𝑇 − 1) 

calculation of 𝑎𝑖𝑗  𝑂(𝑁2) cst.𝑂(1) 

calculation of 𝜇𝑗 𝑂(𝑁) cst.𝑂(1) 

calculation of 𝜇𝑗𝑚 𝑂(𝑁𝑀) cst.𝑂(1) 

calculation of 𝛴𝑗 𝑂(𝑁) cst.𝑂(1) 

calculation of 𝛴𝑗𝑚 𝑂(𝑁𝑀) cst.𝑂(1) 

calculation of 𝑐𝑗𝑚 𝑂(𝑁𝑀) cst.𝑂(1) 

 
Table 3. Space complexity comparison 

 Classical 

Baum-Welch 

Parallel 

distributed 

Baum-Welch 

Forward variable 

calculation 

𝑂(𝑁𝑇) 𝑂(𝑁𝑇) 

Backward variable 

calculation 

𝑂(𝑁𝑇) 𝑂(𝑁𝑇) 

calculation of 𝛾𝑡(𝑖) 𝑂(𝑁𝑇) 𝑂(𝑁𝑇) 

calculation of 

𝜉𝑡(𝑖, 𝑗) 

𝑂(𝑁2(𝑇 − 1)) 𝑂(𝑁2(𝑇 − 1)) 

calculation of 𝑎𝑖𝑗  𝑂(𝑁2) 𝑂(𝑁2) 

calculation of 𝜇𝑗 𝑂(𝑁) 𝑂(𝑁) 

calculation of 𝜇𝑗𝑚 𝑂(𝑁𝑀) 𝑂(1) 

calculation of 𝛴𝑗 𝑂(𝑁) 𝑂(𝑁) 

calculation of 𝛴𝑗𝑚 𝑂(𝑁𝑀) 𝑂(𝑁𝑀) 

calculation of 𝑐𝑗𝑚 𝑂(𝑁𝑀) 𝑂(𝑁𝑀) 

calculation of 𝜋𝑖 𝑂(𝑁) 𝑂(𝑁) 
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Algorithm 1: Parallel distributed Baum-Welch Algorithm under Spark (Gaussian Continuous HMM) 

 Input:  Initial model 𝜆 = (A,B,𝛱), a sequence of observations 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇  

 Output: Optimal Model parameters: �̅� = {𝒂𝒊𝒋}, �̅� = {𝝅𝒊}, �̅� = {mean 𝝁𝒋̅̅̅ and variance ∑𝒋}̅̅ ̅̅  

1: for each executor𝑗  of N executors do  

2: Parallel do 

3:       α1(j) ←  π𝑗   b𝑗( o1) { 𝑗 ϵ [1, 2, 3, …, N]} 

4: end for 

5: for t ← 1 to T-1 do  

6: for each  executor𝑖,𝑗 of N*N executors do 

7: Parallel do 

8:  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 (𝑚𝑎𝑝) 𝛼𝑡(𝑖)𝑎𝑖𝑗 and store  α𝑡(i) in  Alpha𝑡 { 𝑖, 𝑗 ϵ [1, 2, 3, …, N]} 

 𝑠𝑢𝑚 (𝑟𝑒𝑑𝑢𝑐𝑒) of 𝛼𝑡(𝑖)𝑎𝑖𝑗 , then multiple by b𝑗( o𝑡+1) {𝑖, 𝑗 ϵ [1, 2, 3, …, N]} 9: end for 

10: end for 

11: Pr {𝑂|𝜆} ← Alpha𝑇 . reduce (lambda a, b : a + b) 

12: for each executor𝑗  of N executors do  

13: Parallel do 

14:        β𝑇(j) ← 1 { 𝑗 ϵ [1, 2, 3, …, N]} 

15: end for 

16: for t ← T-1 downto 1 do  

17: for each executor𝑖,𝑗 of N*N executors do  

18:               Parallel do 

19:                𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛽𝑡+1(𝑗)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1) 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝛽𝑡(𝑗) in  Beta𝑡  { 𝑖, 𝑗 ϵ [1, 2, 3, … , N]}  

20: end for 

21: end for 

22: for each executor𝑡,𝑖 of T*N executors do  

23: Parallel do 

24:       𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛾𝑡(𝑖) ← (𝛼𝑡(𝑖)𝛽𝑡(𝑖))/ Pr{𝑂|𝜆}  𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝛾𝑡(𝑖) in  Gamma𝑡  

      { 𝑖 ϵ [1, 2, 3, … , N] ; 𝑡 ϵ [1, 2, 3, … , T]} 25: end for 

26: for each executor𝑡,𝑖,𝑗 of (T-1)*N*N executors do 

27: Parallel do 

28:       𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝜉𝑡(𝑖, 𝑗) = (𝛼𝑡(𝑖)𝑎𝑖𝑗𝛽𝑡+1(𝑗)𝑏𝑗(𝑜𝑡+1))/ Pr{𝑂|𝜆}  𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝜉𝑡(𝑖, 𝑗) in 

       Xi𝑡  { 𝑖, 𝑗 ϵ [1, 2, 3, … , N];  𝑡 ϵ [1, 2, 3, … , T − 1]} 29: end for 

33: for each executor𝑖,𝑗 of N*N executors do 

31: Parallel do 

32:        𝒂𝒊𝒋̅̅ ̅̅ ← 𝒔𝒖𝒎(𝜉𝑡(𝑖, 𝑗))/𝒔𝒖𝒎 (𝛾𝑡(𝑖)) { 𝑖, 𝑗 ϵ [1, 2, 3, … , N];  𝑡 ϵ [1, 2, 3, … , T − 1]} 

33: end for 

34: for each executor𝑖  of N executors do 

35: Parallel do 

36:       𝝅𝒊̅̅ ̅ ←  𝛾1(𝑖) { 𝑖 ϵ [1, 2, 3, … , N]} 

37: end for 

38: for each executor𝑗  of N executors do 

39: Parallel do 

40:       𝝁𝒋̅̅̅ ← 𝒔𝒖𝒎(𝛾𝑡(𝑗)𝑜𝑡)/𝒔𝒖𝒎 (𝛾𝑡(𝑗)) { 𝑗 ϵ [1, 2, 3, … , N];  𝑡 ϵ [1, 2, 3, … , T]} 

41: end for 

42: for each executor𝑗  of N executors do 

43: Parallel do 

44:       ∑𝒋
̅̅ ̅ =  𝒔𝒖𝒎(𝛾𝑡(𝑗)(𝑜𝑡−𝜇𝑗)(𝑜𝑡−𝜇𝑗)𝑻)/𝒔𝒖𝒎 (𝛾𝑡(𝑗)) { 𝑗 ϵ [1, 2, 3, … , N];  𝑡 ϵ [1, 2, 3, … , T]} 

45: end for 

46: set  λ ← λ̅  and Go to 22 unless some convergence criterion is met 

47: return �̅�, �̅�, 𝑩{̅̅̅̅ 𝝁𝒋̅̅̅, ∑𝒋
̅̅ ̅} 
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Algorithm 2: Parallel distributed Baum-Welch Algorithm under Spark (Continuous HMM with Gaussian 

mixtures) 

 Input:  Initial model 𝜆 = (A,B,𝛱), a sequence of observations 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇  

 Output: Optimal Model parameters: �̅� = {𝒂𝒊𝒋}, �̅� = {𝝅𝒊}, �̅�{ mean of 𝑚𝑡ℎ  mixture 

𝝁𝒋𝒎̅̅ ̅̅ ̅, covariance of 𝑚𝑡ℎ mixture ∑𝒋𝒎
̅̅ ̅̅ ̅ and 𝒄𝒋𝒎̅̅ ̅̅̅ 𝑚𝑡ℎ mixture weights}  

1: for each executor𝑗  of N executors do  

2: Parallel do 

3:       α1(j) ←  π𝑗   b𝑗( o1) { 𝑗 ϵ [1, 2, 3, …, N]} 

4: end for 

5: for t ← 1 to T-1 do  

6: for each  executor𝑖,𝑗 of N*N executors do 

7: Parallel do 

8: 
 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 (𝑚𝑎𝑝) 𝛼𝑡(𝑖)𝑎𝑖𝑗 and store  α𝑡(i) in  Alpha𝑡 { 𝑖, 𝑗 ϵ [1, 2, 3, …, N]} 

 𝑠𝑢𝑚 (𝑟𝑒𝑑𝑢𝑐𝑒) of 𝛼𝑡(𝑖)𝑎𝑖𝑗 , then multiple by b𝑗( o𝑡+1) {𝑖, 𝑗 ϵ [1, 2, 3, …, N]} 

9: end for 

10: end for 

11: Pr {𝑂|𝜆} ← Alpha𝑇 . reduce (lambda a, b : a + b) 

12: for each executor𝑗  of N executors do  

13: Parallel do 

14:        β𝑇(j) ← 1 { 𝑗 ϵ [1, 2, 3, …, N]} 

15: end for 

16: for t ← T-1 downto 1 do  

17: for each executor𝑖,𝑗 of N*N executors do  

18:               Parallel do 

19:               𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛽𝑡+1(𝑗)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1) 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝛽𝑡(𝑗) in  Beta𝑡  { 𝑖, 𝑗 ϵ [1, 2, 3, … , N]}  

20:  end for 

21: end for 

22: for each executor𝑡,𝑖 of T*N executors do  

23: Parallel do 

24: 
   𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛾𝑡(𝑖)

← (𝛼𝑡(𝑖)𝛽𝑡(𝑖)) /Pr{𝑂|𝜆} 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝛾𝑡(𝑖) in  Gamma𝑡  { 𝑖 ϵ [1, 2, 3, … , N] ; 𝑡 ϵ [1, 2, 3, … , T]} 

25: end for 

26: for each executor𝑡,𝑖,𝑗 of (T-1)*N*N executors do 

27: Parallel do 

28: 
      𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛾𝑡(𝑖, 𝑗) ← (𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)𝛽𝑡+1(𝑗))/ Pr{𝑂|𝜆}  𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝛾𝑡(𝑖, 𝑗) in 

      
 

𝐺𝑎𝑚𝑚𝑎2𝑡
 { 𝑖, 𝑗 ϵ [1, 2, 3, … , N];  𝑡 ϵ [1, 2, 3, … , T − 1]}  

29: end for 

30: for each executor𝑡,𝑗,𝑚 of (T-1)*N*M executors do 

31: Parallel do 

32: 
       𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝜉𝑡(𝑗, 𝑚) ← 𝒔𝒖𝒎 (𝛼𝑡(𝑖)𝑎𝑖𝑗𝑐𝑗𝑚𝑔𝑗𝑚(𝑜𝑡)𝛽𝑡+1(𝑗)) / Pr{𝑂|𝜆} 𝑠𝑡𝑜𝑟𝑒 𝜉𝑡(𝑗, 𝑚) in Xi𝑡   

      { 𝑖, 𝑗 ϵ [1, 2, 3, … , N];  𝑡 ϵ [1, 2, 3, … , T − 1]} 

33: end for 

34: for each executor𝑖,𝑗 of N*N executors do 

35: Parallel do 

36:       𝒂𝒊𝒋̅̅ ̅̅ ← 𝒔𝒖𝒎(𝛾𝑡(𝑖, 𝑗))/ 𝒔𝒖𝒎 (𝛾𝑡(𝑖))  { 𝑖, 𝑗 ϵ [1, 2, 3, … , N];  𝑡 ϵ [1, 2, 3, … , T − 1]} 

37: end for 

38: for each executor𝑗,𝑚 of N*M executors do 

39: Parallel do 

40:       𝒄𝒋𝒎̅̅ ̅̅̅ ← 𝒔𝒖𝒎(𝜉𝑡(𝑗, 𝑚))/𝒔𝒖𝒎 (𝛾𝑡(𝑖)){ 𝑖, 𝑗 ϵ [1, 2, 3, … , N];  𝑡 ϵ [1, 2, 3, … , T − 1]} 
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41: end for 

42: for each executor𝑗,𝑚 of N*M executors do 

43: Parallel do 

44:           𝝁𝒋𝒎̅̅ ̅̅ ̅ ← 𝒔𝒖𝒎(𝜉𝑡(𝑗, 𝑚)𝑜𝑡)/𝒔𝒖𝒎 (𝜉𝑡(𝑗, 𝑚)) { 𝑖, 𝑗 ϵ [1, 2, 3, … , N]; 𝑡 ϵ [1, 2, 3, … , T − 1]} 

45: end for 

46: for each executor𝑗,𝑚 of N*M executors do 

47: Parallel do 

48:       ∑𝒋𝒎
̅̅ ̅̅ ̅ ← 𝒔𝒖𝒎(𝜉𝑡(𝑗, 𝑚)(𝑜𝑡−𝝁𝒋𝒎̅̅ ̅̅ ̅)(𝑜𝑡−𝝁𝒋𝒎̅̅ ̅̅ ̅)𝑻)/𝒔𝒖𝒎 (𝜉𝑡(𝑗, 𝑚)) { 𝑗 ϵ [1, 2, 3, … , N];  𝑡 ϵ [1, 2, 3, … , T − 1]} 

49: end for 

50: set  λ ← λ̅  and Go to 22 unless some convergence criterion is met 

51: return �̅�, �̅�, �̅�{𝒄𝒋𝒎̅̅ ̅̅̅, 𝝁𝒋𝒎̅̅ ̅̅ ̅, ∑𝒋𝒎
̅̅ ̅̅ ̅} 

of variables, size of vectors). 

In all steps of the algorithms, our parallel 

distributed Baum-Welch algorithm under Spark show 

excellent performance especially in time complexity 

as shown in Table 2. While, in terms of spatial 

complexity, there is no difference (See Table 3). 

8. Discussion and conclusion 

We have presented parallel distributed versions 

of Baum-Welch algorithm for Gaussian continuous 

HMM and mixture of Gaussian continuous HMM. 

Our proposed solution is based on Spark as main 

framework. It is an improvement of Baum-Welch 

algorithm for continuous-time Hidden Markov 

Models that allows Big Data processing. To achieve 

this implementation, we have exploited the enormous 

advantages of this framework and have considered a 

set of concepts under Spark: exploiting Resilient 

Distributed Datasets (RDDs) properties (i.e., data 

distribution over several nodes), putting into practice 

the basic concepts of MapReduce paradigm (i.e., 

parallel computing operations) which allow to apply, 

in parallel, a set of operations (transformations and 

actions). Spark integrates a set of tools for Streaming, 

SQL, Machine Learning and Graphs in addition to 

powerful preprocessing tools (e.g., features 

extraction, transformation and selection, 

dimensionality reduction) thanks to MLlib the 

Spark’s Machine Learning library. 

Through this implementation, we proposed an 

efficient and fast solution (computational cost 

reduced by a factor of 𝑁2):   the complexity of the 

initialization step of both forward and backward 

variables reduced from 𝑂(𝑁)  to 𝑂(1)  and the 

computation complexity of the variables 𝛼𝑡(𝑖), 𝛽𝑡(𝑖), 

𝛾𝑡(𝑖)  and 𝜉𝑡(𝑖, 𝑗)  is reduced by 𝑂(𝑁2(𝑇 − 1))  at 

𝑂(𝑇 − 1).  

Comparisons with classical algorithms show a 

great improvement in computational complexity and 

execution time. The improved algorithms can 

produce results faster than previous versions. Thus, 

by following the proposed algorithms, we managed 

to achieve our objectives: optimize complexity, 

reduce execution time and provide a solution to 

unsupervised learning problem for continuous-time 

HMM especially when dealing with Big Data (e.g., 

large number of states, large number of observations). 

In sum, the proposed algorithms have several 

advantages compared to other solutions: a high 

computational time efficiency and a high scalability 

as well as an easy integration in Big Data frameworks 

which offer great capability of fast and scalable data 

processing allowing pre-processing and data cleaning 

with the powerful tools of Big Data frameworks. 

Further work will focus on how to reduce latency 

caused by the use of RDDs that are stored in a stack 

of instructions and are not available or transformed 

until an action is executed (i.e., Lazy Evaluation). 

The approach can be perfected in the next steps by 

using novel learning techniques. Other metrics can 

also be used to allow a good evaluation of our 

algorithms. 
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