
Received: October 27, 2019 214

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.20

A New Improved Baum-Welch Algorithm for Unsupervised Learning for

Continuous-Time HMM Using Spark

Imad Sassi1* Samir Anter1 Abdelkrim Bekkhoucha1

Computer Science Laboratory of Mohammedia (LIM), FSTM,

Hassan II University, Casablanca, Morocco
* Corresponding author’s Email: imadsassi7@gmail.com

Abstract: Hidden Markov Models are widely used for time continuous problems modelling and prediction. This paper

presents two new improved algorithms for Gaussian continuous and mixture of Gaussian continuous Hidden Markov

Models cases for solving learning problem for large scale multidimensional data. The design of our parallel distributed

algorithms is based on Spark, the Big Data framework, thereby we can distribute data over several nodes through

Resilient Distributed Datasets which allow to apply, in parallel, a set of operations. The proposed algorithms have two

main advantages: a high computational time efficiency and a high scalability as well as an easy integration in Big Data

frameworks. The complexity comparison results show great improvements in computational complexity (by a factor

of (states number)2) and execution time. Moreover, the new algorithms might be more effective by reducing the

communication costs between the elements of the system involved in the learning task.

Keywords: Big data, Machine learning, Continuous time hidden Markov models, Baum-Welch, Apache spark,

Parallel distributed implementation.

1. Introduction

Currently, with the explosion of data volume

generated and collected from different sources

especially sensors, social networks, mobile devices

and Internet, we live in an era marked by complex

characteristics of data [1]. This huge amount of data

has opened the door for improved modelling and

prediction techniques [2]. Certainly, in the past,

classical algorithms have shown their processing

speed, efficiency and accuracy, but the digital

revolution has changed everything. However,

classical algorithms are, generally, less efficient in

terms of complexity and execution time. Nowadays,

in this era of Big Data, characterized by their huge

volume, their high speed of production and diffusion

as well as their varied nature, the design and

implementation of Machine Learning algorithms has

become a tedious task. It must therefore look for new

algorithms adapted to Big Data or to review and

improve conventional algorithms to adapt them to

this new context in order to, effectively, manage and

analyze Big Data. With this great panoply of Big Data

technologies, we have to think about taking full

advantage of the great benefits of these new

technologies (i.e. distributed computing by GPU,

Hadoop, Spark) with a set of powerful tools for

managing and analyzing Big Data (e.g., data

collection and data storage, preprocessing, feature

selection and extraction) for data analysis and

processing especially for large scale

multidimensional data in order to reduce the

computational cost of data analysis. Hidden Markov

Models (HMMs) are widely used for modelling and

predicting continuous problems [3]. These

algorithms must be improved to give good results

especially in a Big Data context [4].

In this work, we present two improved versions

of Baum-Welch algorithm [5]. It is based on Spark

framework [6], to solve problem of unsupervised

learning for continuous-time Hidden Markov Models

[7]. Thus, we propose two new algorithms for

Gaussian continuous HMM and mixture of Gaussian

continuous HMM cases.

Received: October 27, 2019 215

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.20

Our proposed solution is based on Spark as main

framework. These are parallel distributed versions of

classical algorithms. To achieve this implementation,

we considered a set of concepts under Spark:

exploiting Resilient Distributed Datasets (RDDs)

properties (i.e., data distribution over several nodes)

and putting into practice the basic concepts of

MapReduce paradigm (i.e., parallel computing

operations) which allow to apply, in parallel, a set of

operations (transformations and actions).

Our main contributions are summarized as

follows:

• We introduce Hidden Markov Models

fundamentals.

We discuss the three main questions of Hidden

Markov Models.

• We review the Baum-Welch algorithm for the

learning problem of Hidden Markov Models.

• We propose a parallel distributed Baum-Welch

for continuous HMM: an improved version of Baum-

Welch algorithm for solving unsupervised learning

problem for continuous-time HMMs (Gaussian

Continuous HMM).

• We propose a parallel distributed Baum-Welch

for Continuous HMM with Gaussian mixtures: an

improved version of Baum-Welch algorithm for

solving unsupervised learning problem for mixture of

continuous-time HMMs (Continuous HMM with

Gaussian mixtures).

The rest of this paper is organized as follows. We

provide an overview of some of the relevant literature

review addressing this field of research in Section 2.

In Section 3, we introduce notations used in this paper.

Section 4 deals with Hidden Markov Models

fundamentals. Next, we review Baum-Welch

algorithm in Section 5. In Section 6, we present and

describe our Parallel Distributed implementation of

Baum-Welch algorithm for continuous-time HMM

under Spark. We present a comparison of proposed

algorithms with classical ones in Section 7. We

conclude by a discussion of results and presentation

of some conclusions and future directions in Section

8.

2. Related work

In the literature, several theories have been

proposed to speed-up Baum-Welch algorithm

especially those focusing on achieving parallel and/or

distributed implementations of this algorithm.

Among the first important works that have

studied this topic that of Mitchell et al. [8] who

described a parallel implementation of a Hidden

Markov Model (HMM) with Duration Modelling for

spoken language recognition on the MasPar MP-1.

This implementation exploits the massive parallelism

of explicit duration HMMs to overcome many

Implementational issues to develop complex models

for real-time speech recognition. Another important

work was presented by Turin [9] in which he

proposed a parallel version of the Baum–Welch

algorithm suitable for very large size observation

requiring a large memory capacity which can reduces

Baum-Welch training time. The proposed algorithm

is based on temporal splitting of a training sequence,

and it relies on some features of observation

sequences, such as continuous repetitions of identical

observations. In [10], the authors proposed a novel

approach to ASL recognition based on parallel

HMMs (PaHMMs) which model the parallel

processes independently. Thus, it models the p

processes with p independent HMMs with separate

output. The recognition algorithm runs in time

polynomial in the number of states, and in time linear

in the number of parallel processes. The evaluation

shows that the presented algorithm in this paper

achieves a maximum recognition rate of 87.88% on

the sentence level and 96.47% on the sign level.

Since the 2000s, efforts have multiplied and

different approaches have emerged.

Anikeev et al. [11] proposed a simple strategy of

organizing parallel HMM training, which can be

effectively implemented using inexpensive network

clusters. The proposed parallel algorithm was

implemented for distributed cluster systems using

Message-Passing Interface (MPI) standard which can

be used in intrusion detection. The proposed parallel

implementation of Baum-Welch algorithm for

multiple observation sequences is suitable for

training huge amount of data. Ma et al. [12] proposed

a novel distributed multi-dimensional Hidden

Markov Model (DHMM) for the modelling of

multiple motion trajectories of objects and their

interaction activities in a scene capable of conveying

interactions information between multiple

trajectories. It derives from this a novel General

Forward-Backward (GFB) algorithm suitable for

recursive calculation of model parameters.

Simulation results show superior performance and

higher accuracy of the proposed distributed 2D

hidden Markov model. In [13], Liu Studied the

parallelism of Baum-Welch algorithm for graphical

processing units (GPU) and presented a prototype

program for HMM training and classification on the

NVIDIA CUDA platform. The proposed CUDA

implementation achieves performance of 4.3

GFLOP/s and 200✕ speedups over CPU

implementation. Li et al. [14] presented a general

parallel learning framework, Cut-And-Stitch, for

training hidden Markov chain models. They propose

Received: October 27, 2019 216

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.20

a model-specific variant, CAS-HMM for learning

hidden Markov models (HMM) which is

implemented using OpenMP on two supercomputers

and a quad-core commercial desktop. Another

solution is described in [15] presenting a C++ library

exploiting modern CPUs for constructing and

analyzing general hidden Markov models which can

be used for parallelizing Baum-Welch algorithm

using OPENMP. The performance evaluation shows

that the multi-threaded version of the Baum-Welch

algorithm presents an impressive decrease in the

running time. The speed-up can reach greater than a

factor 1:5 for models with more than 400 states, when

running it using two threads, and a speed-up close to

a factor 3 for models with more than 600 states, when

running it using 4 threads and a speed-up close to a

factor 5 for models with more 800 states when

running it with 8 threads. Hymel et al. [16] presented

a parallel implementation under GPUs of Hidden

Markov Models for wireless applications. They

introduce a new method utilizing GPUs and HMMs

to identify modulation schemes within a collected

signal. The complexity of the algorithm is reduced

from O (TN2) or O (TMN) for the serial algorithm to

O (T log N) for the parallel algorithm. The

performances show a significant improvement in

speedup which can reach 65x for the Baum-Welch

algorithm with 4000 states.

In recent years, there has been another work of

Yu et al. [17] who proposed a parallelized Hidden

Markov Model to accelerate isolated words speech

recognition. They implemented a GPU-accelerated

HMM targeted for isolated-word based recognition.

It is a new parallelization of continuous HMMs using

two high-end GPUs belonging to Nvidia’s Kepler

architecture. The performance evaluation shows that

this implementation can improve performance by

9.2x as compared to an optimized multi-thread CPU

version during training stage.

In a recent paper, Bražėnas et al. [18] presented

three different EM-based fitting procedures that can

take advantage of the parallel hardware like Graphics

Processing Units to reduce computational complexity

for fitting Markov Arrival Processes with the

expectation-maximization (EM) algorithm. The

performance evaluation shows that the proposed

algorithms are orders of magnitudes faster than the

standard serial procedure.

There are a set of issues in previous

implementations. The way of storing values of 𝛼𝑡(𝑖),

𝛽𝑡(𝑖) and emissions probabilities. The memory

allocation is not very efficient. In addition to the

problem of data transfer since the time spent to

transfer data between system modules and devices

grows with the increase of state number of the HMM.

There is another major drawback of proposed

implementations which consists of their utilization

which is application dependent and also depends on

the architecture used (e.g., the parallel algorithms of

Turin is designed for signal processing applications,

Voglar’s implementation is highly significant to

gesture recognition research, the implementation

strategy of Anikeev seems to be more suitable for

inexpensive network clusters, rather than for

massively parallel computers, the parallel

implementation of Liu can only use single core CPUs

or GPUs). In addition, the implementations of

multiplication are not efficient implementations of

matrix multiplication since matrix multiplication is

not effectively optimized. For some implementations,

the use of OpenMP causes configuration problems

and target only shared memory system, it is not

suitable for distributed memory systems. Concerning

MPI, its use is not suitable for small grain level of

parallelism, for example, to exploit the parallelism of

multi-core platforms for shared memory

multiprocessing [19]. However, the use of GPUs is

not effective in treating HMMs with a small state

number.

In this paper, we present a solution well adapted

to Big Data but which also manages data of small size.

It is a highly scalable implementation since we can

add multiple nodes in a very simple way. One of the

advantages of our implementations is that it manages

heterogeneous data (i.e., structured, semi-structured

and unstructured data) collected from several

different sources even in real time.

Our implementation allows efficient memory

management thanks to the use of RDD abstraction.

RDDs are fault tolerant by nature. Thus, lost data can

be recovered, often quite quickly, without requiring

costly replication. It offers a distributed file system

with failure and data replication management. During

the induction phase for the calculation of 𝛼𝑡(𝑖) and

𝛽𝑡(𝑖), the use of memory is optimized since we have

opted for the use of vectors instead of matrices since

vectors fit in memory on a single machine, while

matrices do not [20].

It noticed that the use of a Big Data Framework

provides a set of tools for data analysis and

management that is easy to use, deploy and maintain.

This implementation is not dependent on any

particular framework or architecture. The proposed

algorithms have a number of advantages compared to

other solutions: a high computational time efficiency

and a high scalability as well as an easy integration in

Big Data frameworks which offer great capability of

fast and scalable data processing allowing pre-

processing and data cleaning with the powerful tools

of Big Data frameworks.

Received: October 27, 2019 217

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.20

Table 1. Notations of a hidden Markov model

Notation Meaning

𝑁 number of states in the model (𝑆 =
{𝑆1, . . . , 𝑆𝑁})

𝑆𝑖 𝑖𝑡ℎ𝑠𝑡𝑎𝑡𝑒

𝑀 number of observation symbols

𝑉 set of possible observations (𝑉 =
{𝑣1, . . . , 𝑣𝑀})

𝑂 observation sequence (𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇)

𝑇 length of observation sequence

𝜋𝑖 initial state probability

𝛱 initial state matrix (𝛱 = {𝜋𝑖})

𝑎𝑖𝑗 transition probability

𝐴 Transition matrix (𝐴 = {𝑎𝑖𝑗})

𝑏𝑗(𝑣𝑘) Observation probability

𝐵 Observation matrix (𝐵 = {𝑏𝑗(𝑣𝑘)})

𝜆 model parameters, 𝜆 = {𝐴, 𝐵, 𝛱}

𝑜𝑡 observation in time 𝑡

𝛼𝑡(𝑖) forward variable

𝛽𝑡(𝑖) backward variable

𝛾𝑡(𝑖) probability of being at state 𝑆𝑖 at time 𝑡,

given 𝜆 and 𝑂

𝜉𝑡(𝑖, 𝑗) probability of being at state 𝑆𝑖 at time 𝑡,

and at state 𝑆𝑗 at time 𝑡 + 1, given 𝜆 and

𝑂

𝜇𝑗 mean

𝛴𝑗 covariance matrix

𝜇𝑗𝑚 mean of 𝑚𝑡ℎ mixture in state 𝑆𝑗

𝛴𝑗𝑚 covariance matrix of 𝑚𝑡ℎ mixture in state

𝑆𝑗

𝑐𝑗𝑚 𝑚𝑡ℎ mixture weights in state 𝑆𝑗

3. Notations

In the following table (Table 1), we present

notations used in this paper.

4. Hidden Markov Models

In this section, we review theoretical foundations

of Hidden Markov Models and discuss the three

fundamental problems of HMMs.

Consider a discrete time Markov chain with a finite

set of states 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑁}. An HMM is defined

by the following compact notation to indicate the

complete parameter set of the model 𝜆 = (𝛱,A,B)

where 𝛱 , 𝐴 and 𝐵 are the initial state distribution

vector, matrix of state transition probabilities and the

set of the observation probability distribution in each

state, respectively [3,7,21]:

𝛱 = [𝜋1, 𝜋2, … , 𝜋𝑁], 𝜋𝑖 = Pr{𝑞1 = 𝑆𝑖} , (1)

𝐴 = {𝑎𝑖𝑗}, 𝑎𝑖𝑗 = 𝑃𝑟{𝑞𝑡+1 = 𝑆𝑗 ∣ 𝑞𝑡 = 𝑆𝑖}, (2)

for 1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑆𝑖, 𝑆𝑗 ∈ 𝑆, 𝑡 ∈ [1,2, . . . , 𝑇]

The observation at time 𝑡 , 𝑜𝑡 , may be a discrete

symbol (Discrete HMMs (DHMMs [22]) case, 𝑜𝑡 =
𝑣𝑘, 𝑣𝑘 ∈ 𝑉 = 𝑣1, 𝑣2, . . . , 𝑣𝑀, or continuous, 𝑜𝑡 ∈ ℝ𝑘.

The observation matrix 𝐵 is defined by 𝐵 = {𝑏𝑗(𝑜𝑡)},

where 𝑏𝑗(𝑜𝑡) is the state conditional probability of

the observation 𝑜𝑡 defined by:

𝑏𝑗(𝑜𝑡) = Pr{ 𝑜𝑡 = 𝑣𝑘 ∣∣ 𝑞𝑡 = 𝑆𝑗 }, (3)

for 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀

For a continuous observation (Continuous HMMs

(CHMMs) case [7]), 𝑏𝑗(𝑜𝑡) is defined by a finite

mixture of any log-concave or elliptically symmetric

probability density function (pdf), e.g. Gaussian pdf,

with state conditional observation mean vector 𝜇𝑗

and state conditional observation covariance matrix

𝛴𝑗, so 𝐵 may be defined as:

𝐵 = {𝜇𝑗, 𝛴𝑗}, 𝑖 = 1,2, . . . , 𝑁 (4)

The model parameters constraints for 1 ≤ 𝑖, 𝑗 ≤ 𝑁

are

∑ 𝜋𝑖
𝑁
𝑖=1 = 1, ∑ 𝑎𝑖𝑗

𝑁
𝑗=1 = 1, 𝑎𝑖𝑗 ≥ 0, (5)

∑ 𝑏𝑗
𝑀
𝑘=1 (𝑜𝑡 = 𝑣𝑘) = 1 𝑜𝑟 ∫ 𝑏𝑗

+∞

−∞
(𝑜𝑡)d𝑜𝑡 = 1(6)

In general, at each instant of time t, the model is

in one of the states 𝑆𝑖 , 1 ≤ 𝑖 ≤ 𝑁 . It outputs 𝑜𝑡

according to a discrete probability (in the DHMM

case) or according to a continuous density function

(in the CHMM case) 𝑏𝑗(𝑜𝑡) and then jumps to state

𝑆𝑗 , 1 ≤ 𝑗 ≤ 𝑁 with probability 𝑎𝑖𝑗 . The state

transition matrix defines the structure of the HMM.

There are three main questions we are interested

in about HMM. First, the evaluation problem in

which we look for the probability 𝑃𝑟{𝑂|𝜆} that the

given observations 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇 are generated

by the model 𝜆 with a given HMM. Second, the

decoding problem in which we look for the most

likely state sequence in the given model 𝜆 that

produced the given observations 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇 .

Third, the learning problem in which we look for how

we can adjust the model parameters {𝐴, 𝐵, 𝛱} in order

to maximize 𝑃𝑟{𝑂|𝜆} given a model 𝜆 and a

sequence of observations 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇 .

Received: October 27, 2019 218

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.20

5. Baum-Welch algorithm

The most important problem about HMMs is the

learning problem or parameter estimation. To resolve

this problem, Baum-Welch algorithm, known as

Forward-Backward algorithm, is the most used. It is

a special case of the Expectation-Maximisation (i.e.,

EM) algorithm [23]. In an HMM, the observations

can be discrete or continuous. In this paper, we are

interested in continuous-time HMM case. We treat

Gaussian continuous observation and mixtures of

Gaussian continuous observation cases.

The Baum-Welch algorithm for Gaussian

continuous observation takes as input an initial model

(𝜆 = (𝐴, 𝜇𝑗 , 𝛴𝑗, 𝛱)) and a sequence of observations

(𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇) and estimates the transition

matrix A and the observation matrix B in function of

mean (𝜇𝑗) and covariance matrix (𝛴𝑗) that maximize

the probability for the given observations. The

iterations terminate when a convergence criterion is

meet.

The Baum-Welch algorithm for Gaussian continuous

observation can be represented as follows:

 𝛼1(𝑗) = 𝜋𝑗𝑏𝑗(𝑜1), 1 ≤ 𝑗 ≤ 𝑁 (7)

𝛼𝑡+1(𝑗) = 𝑏𝑗(𝑜𝑡+1) ∑ 𝛼𝑡(𝑖)𝑎𝑖𝑗
𝑁
𝑖=1 , (8)

1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 − 1

𝑃𝑟{𝑂|𝜆} = ∑ 𝛼𝑇(𝑖)𝑁
𝑖=1 (9)

𝛽𝑇(𝑗) = 1, 1 ≤ 𝑗 ≤ 𝑁 (10)

𝛽𝑡(𝑖) = ∑ 𝛽𝑡+1
𝑁
𝑗=1 (𝑗)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1), (11)

1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 − 1

𝛾𝑡(𝑖) =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

Pr{𝑂|𝜆}
, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 (12)

𝜉𝑡(𝑖, 𝑗) =
𝛼𝑡(𝑖)𝑎𝑖𝑗𝛽𝑡+1(𝑗)𝑏𝑗(𝑜𝑡+1)

Pr{𝑂|𝜆}
, (13)

1 ≤ 𝑖, 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 − 1

𝑎𝑖𝑗 =
∑ 𝜉𝑡

𝑇−1
𝑡=1 (𝑖,𝑗)

∑ 𝛾𝑡
𝑇−1
𝑡=1 (𝑖)

, 1 ≤ 𝑖, 𝑗 ≤ 𝑁 (14)

𝜇𝑗 =
∑ 𝛾𝑡

𝑇
𝑡=1 (𝑗)𝑜𝑡

∑ 𝛾𝑡
𝑇
𝑡=1 (𝑗)

, 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 (15)

𝛴𝑗 =
∑ 𝛾𝑡

𝑇
𝑡=1 (𝑗)(𝑜𝑡−𝜇𝑗)(𝑜𝑡−𝜇𝑗)

𝑇

∑ 𝛾𝑡
𝑇
𝑡=1 (𝑗)

, (16)

1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇

𝜋𝑖 = 𝛼1(𝑖)𝛽1(𝑖), 1 ≤ 𝑖 ≤ 𝑁 (17)

The Baum-Welch algorithm with mixtures of

Gaussian continuous observation takes as input an

initial model (𝜆 = (𝐴, 𝑐𝑗𝑚, 𝜇𝑗𝑚, 𝛴𝑗𝑚, 𝛱)) and a

sequence of observations (𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇) and

estimates the transition matrix A and the observation

matrix B in function of mean of 𝑚𝑡ℎ mixture 𝜇𝑗𝑚 ,

covariance matrix of 𝑚𝑡ℎ mixture 𝛴𝑗𝑚 and 𝑚𝑡ℎ

mixture weights 𝑐𝑗𝑚. The iterations terminate when a

convergence criterion is meet. Thus, the Baum-

Welch algorithm with mixtures of Gaussian

continuous observation is as follows:

𝛼1(𝑗) = 𝜋𝑗𝑏𝑗(𝑜1), 1 ≤ 𝑗 ≤ 𝑁 (18)

𝛼𝑡+1(𝑗) = 𝑏𝑗(𝑜𝑡+1) ∑ 𝛼𝑡
𝑁
𝑖=1 (𝑖)𝑎𝑖𝑗 , (19)

1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 − 1

𝑃𝑟{𝑂|𝜆} = ∑ 𝛼𝑇
𝑁
𝑖=1 (𝑖) (20)

𝛽𝑇(𝑗) = 1, 1 ≤ 𝑗 ≤ 𝑁 (21)

𝛽𝑡(𝑖) = ∑ 𝛽𝑡+1
𝑁
𝑗=1 (𝑗)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1) (22)

1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 − 1

𝛾𝑡(𝑖) =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

Pr{𝑂|𝜆}
, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 (23)

𝜉𝑡(𝑗, 𝑚) ←
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑐𝑗𝑚𝑔𝑗𝑚(𝑜𝑡)𝛽𝑡+1(𝑗)

Pr{ 𝑂∣∣𝜆 }
, (24)

1 ≤ 𝑖, 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 − 1

𝑎𝑖𝑗 =
∑ 𝜉𝑡

𝑇−1
𝑡=1 (𝑖,𝑗)

∑ 𝛾𝑡
𝑇−1
𝑡=1 (𝑖)

, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁 (25)

𝑐𝑗𝑚 =
∑ 𝜉𝑡

𝑇
𝑡=1 (𝑗,𝑚)𝑜𝑡

∑ 𝛾𝑡
𝑇
𝑡=1 (𝑗)

, (26)

 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇

𝜇𝑗𝑚 =
∑ 𝜉𝑡

𝑇
𝑡=1 (𝑗,𝑚)𝑜𝑡

∑ 𝛾𝑡
𝑇
𝑡=1 (𝑗)

, (27)

 1 ≤ 𝑗 ≤ 𝑁 , 1 ≤ 𝑡 ≤ 𝑇

𝛴𝑗𝑚 =
∑ 𝜉𝑡

𝑇
𝑡=1 (𝑗,𝑚)(𝑜𝑡−𝜇𝑗𝑚)(𝑜𝑡−𝜇𝑗𝑚)

𝑇

∑ 𝜉𝑡
𝑇
𝑡=1 (𝑗,𝑚)

, (28)

1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇

𝜋𝑖 = 𝛼1(𝑖)𝛽1(𝑖), 1 ≤ 𝑖 ≤ 𝑁 (29)

6. Parallel distributed implementation of

Baum-Welch algorithm for continuous

time HMM on Spark

The design of our algorithms is based on Spark as

Received: October 27, 2019 219

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.20

Figure.1 Spark architecture

Figure.2 Main Spark’s concepts used in the proposed implementation

Spark

SQL

Spark

Streaming

MLlib

(Machine

Learning)

GraphX

SparkR

Spark Core API (RDDs)

YARN MESOS Standalone Scheduler

Row1

Row2

Row3

P1

Row4

Row5

Row6

P2 …

RowN-2

RowN-1

RowN

PN

Storage

Driver Node

Worker

Node 1

Worker

Node 2

Worker

Node 3

Worker

Node N

RDD

. . .

Spark application

 sc.broadcat(varbroadcast)

Worker

Node 1

Executor

Cache

Block

Worker

Node 2

Worker

Node 3

. . .

Executor

Executor

 Block

Cache

Block

Task

Cluster Manager

Master Node

varbroadcast

S
p

a
rk

Destination

Received: October 27, 2019 220

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.20

main framework. Apache Spark is an open source Big

Data processing framework that allows to run large-

scale analytics applications in batch and real time

processing modes in a distributed manner (cluster

computing). Spark supports In-memory processing,

boosting the performance of Big Data analytics

applications. However, it also allows conventional

disk processing when data sets are too large for

available system memory.

The Spark ecosystem has several tools (Fig. 1):

Spark cluster manager (includes Apache Mesos [24],

Apache Yarn [25] and built-in Standalone cluster

manger), Spark for batch processing, Spark

Streaming [26] for the continuous processing of data

streams, MLlib [27] for Machine Learning, GraphX

[28] for graph calculations, Spark SQL [29] which is

an SQL-like implementation of data query. Moreover,

it integrates perfectly with the Hadoop ecosystem

[30] (including HDFS [31]).

A Spark application contains several components

whether in using Spark on a single machine or on a

cluster of hundreds or thousands of nodes. A Spark

application consists of a single Driver (responsible

for distributing the tasks on the various executors. It

is the driver that executes the method of applications),

the Master, the Cluster Manager (responsible for

instantiating the different workers), and a set of

Figure.3 Initialization step in parallel of backward

variable

Figure.4 Computation of the probability 𝑃𝑟{𝑂 ∣ 𝜆}

Executors processes scattered across nodes on the

cluster, which run on worker nodes, or Workers (each

worker instantiates an executor responsible for

executing the various calculation tasks).

For example, the initialization of the backward

variable will be performed using N executors in

parallel and then storing the 𝛽𝑇(𝑗) values in the 𝐵𝑒𝑡𝑎𝑇

vector as shown in Fig. 3.

To compute the probability 𝑃𝑟{𝑂 ∣ 𝜆}, we apply

the Spark’s action, reduce on all the elements of the

vector 𝐴𝑙𝑝ℎ𝑎𝑇 without using an iteration on N which

makes it possible to reduce the computational

complexity of O(N) to O(1).

To achieve this implementation, we exploited

three key concepts: Spark’s Resilient Distributed

Datasets (RDDs) [32], for distributing data over

many blocks, MapReduce paradigm [33] to achieve

the parallel computation and broadcast variables to

reduce communication cost (Fig. 2).

The main technical innovation offered by Apache

Spark is the concept of Resilient Distributed Datasets

(RDDs). The RDD are an abstraction of

programming. They represent an immutable

collection of objects that can be distributed on a

cluster. They are fault-tolerant and provide parallel

data structures that allow users to explicitly store

intermediate data in memory, control their

partitioning to optimize data storage and manipulate

data using a set of operators. Operations on RDDs can

be distributed across the cluster and executed in a

parallel batch process, allowing for fast, scalable

parallel processing. RDDs support two types of

operations: transformations (e.g., map, filter) and

actions (e.g., reduce, collect). As Hadoop, Spark

relies on a distributed storage system (e.g., HDFS) to

store the input and output data of the jobs submitted

by users. However, unlike Hadoop, Spark allows

RDDs to be cached in the memory and therefore

intermediate data between different iterations of a job

can be reused efficiently. This reduces the number of

costly disk Input/Output accesses to the distributed

storage system. This memory-resident feature of

Spark is particularly essential for some Big Data

applications such as iterative Machine Learning

algorithms which intensively reuse the results across

multiple iterations of a MapReduce job.

MapReduce is a programming paradigm that

enables parallel distributed processing of large sets of

data, converting them into another set of data (i.e.,

map function), and then combining and reducing

those output sets of data into smaller sets of data (i.e.,

reduce function). MapReduce was designed to take

big data and use parallel distributed computing to turn

big data into little- or regular-sized data. The

MapReduce paradigm allows to apply RDDs

 β𝑇(1) ← 1

 β𝑇(2) ← 1

 β𝑇(3) ← 1

 β𝑇(N) ← 1

𝛼𝑇(1) 𝛼𝑇(2) 𝛼𝑇(3) 𝛼𝑇(𝑁) ...

Stored in vector

𝐵𝑒𝑡𝑎𝑇

...

Store 𝛼𝑇(1), 𝛼𝑇(2), … , 𝛼𝑇(𝑁)
in vector 𝐴𝑙𝑝ℎ𝑎𝑇

Apply reduce action to compute 𝑃𝑟{𝑂|𝜆}

Pr {𝑂|𝜆} ← Alpha𝑇 . reduce (lambda a, b : a + b)

Received: October 27, 2019 221

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.20

transformations which include several MapReduce-

like operations (e.g., map, reduce, collect).

Running a Spark operation on a remote cluster

node uses several functions. This operation is usually

done in such a way that a different copy of variables

is used in the functions. These particular variables are

copied to different machines and updates to these

variables are not propagated to the driver program. So,

the use of read-write shared variables in tasks is

inefficient. Nevertheless, Spark provides two types of

shared variables: broadcast variables and

accumulators. Broadcast Variables are an another

very useful concept in this implementation whose

objective is to reduce the communications cost. They

allow to keep a read-only secure variable cached on

different nodes, instead of sending only one copy

with each of the necessary tasks. A calculation Spark

operation first begins with the variable broadcast

send to each node concerned by the associated task.

Then each node caches it locally in a serialized form.

Hence, to run a scheduled task, instead of getting

values from the Driver, these are extracted locally

from the cache. So, broadcasting does not really mean

that a given object is not transmitted at all on the

network. But unlike normal variables, broadcast

variables are always read-only and can only be sent

once.

In what follows, we present the improved

algorithms (i.e., parallel distributed Baum-Welch for

continuous time HMMs).

Given a sequence of observations and an initial

model 𝜆 (𝐴 , 𝜇𝑗 , 𝛴𝑗 , 𝛱), our proposed improved

algorithm (Parallel Distributed Baum-Welch

Algorithm) for solving unsupervised continuous-time

HMMs learning problem is presented in Algorithm 1.

Baum-Welch algorithm for mixture of

continuous-time HMMs is widely used in several

application domains such as artificial intelligence,

pattern recognition, speech recognition, signal

processing, biological sequence analysis, robotics

and finance. Given a sequence of observations and an

initial model 𝜆 (𝐴, 𝑐𝑗𝑚 , 𝜇𝑗𝑚 , 𝛴𝑗𝑚 , 𝛱), the proposed

version of Baum-Welch algorithm (Parallel

Distributed Baum-Welch for Mixture Continuous

HMM) for solving unsupervised continuous time

HMMs with Gaussian mixtures learning problem is

presented in Algorithm 2.

7. Comparisons results

In this section, we investigate the complexities of

the proposed algorithms and compare them, step by

step, with the existing algorithms. The factor cst

represents the communication cost between the

elements of the system. For the time complexity, the

comparison was made by determining the number of

significant operations that the algorithm does (e.g.,

assignment, iterations, sum). Then the space

complexity is measured by calculating the required

memory consumption of the algorithm (e.g., number

Table 2. Time complexity comparison

 Classical

Baum-Welch

Parallel

distributed

Baum-Welch

Forward variable

initialization 𝛼1(𝑗)

𝑂(𝑁) cst.𝑂(1)

calculation of

𝛼𝑡+1(𝑖)

𝑂(𝑁2(𝑇 − 1)) cst.𝑂(𝑇 − 1)

calculation of

𝑃𝑟{𝑂 ∣ 𝜆}

𝑂(𝑁) cst.𝑂(1)

Backward variable

initialization 𝛽𝑇(𝑗)

𝑂(𝑁) cst.𝑂(1)

calculation of

𝛽𝑡(𝑗)

𝑂(𝑁2(𝑇 − 1)) cst.𝑂(𝑇 − 1)

calculation of 𝛾𝑡(𝑖) 𝑂(𝑁𝑇) cst.𝑂(𝑇)

calculation of

𝜉𝑡(𝑖, 𝑗)

𝑂(𝑁2(𝑇 − 1)) cst.𝑂(𝑇 − 1)

calculation of 𝑎𝑖𝑗 𝑂(𝑁2) cst.𝑂(1)

calculation of 𝜇𝑗 𝑂(𝑁) cst.𝑂(1)

calculation of 𝜇𝑗𝑚 𝑂(𝑁𝑀) cst.𝑂(1)

calculation of 𝛴𝑗 𝑂(𝑁) cst.𝑂(1)

calculation of 𝛴𝑗𝑚 𝑂(𝑁𝑀) cst.𝑂(1)

calculation of 𝑐𝑗𝑚 𝑂(𝑁𝑀) cst.𝑂(1)

Table 3. Space complexity comparison

 Classical

Baum-Welch

Parallel

distributed

Baum-Welch

Forward variable

calculation

𝑂(𝑁𝑇) 𝑂(𝑁𝑇)

Backward variable

calculation

𝑂(𝑁𝑇) 𝑂(𝑁𝑇)

calculation of 𝛾𝑡(𝑖) 𝑂(𝑁𝑇) 𝑂(𝑁𝑇)

calculation of

𝜉𝑡(𝑖, 𝑗)

𝑂(𝑁2(𝑇 − 1)) 𝑂(𝑁2(𝑇 − 1))

calculation of 𝑎𝑖𝑗 𝑂(𝑁2) 𝑂(𝑁2)

calculation of 𝜇𝑗 𝑂(𝑁) 𝑂(𝑁)

calculation of 𝜇𝑗𝑚 𝑂(𝑁𝑀) 𝑂(1)

calculation of 𝛴𝑗 𝑂(𝑁) 𝑂(𝑁)

calculation of 𝛴𝑗𝑚 𝑂(𝑁𝑀) 𝑂(𝑁𝑀)

calculation of 𝑐𝑗𝑚 𝑂(𝑁𝑀) 𝑂(𝑁𝑀)

calculation of 𝜋𝑖 𝑂(𝑁) 𝑂(𝑁)

Received: October 27, 2019 222

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.20

Algorithm 1: Parallel distributed Baum-Welch Algorithm under Spark (Gaussian Continuous HMM)

 Input: Initial model 𝜆 = (A,B,𝛱), a sequence of observations 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇

 Output: Optimal Model parameters: �̅� = {𝒂𝒊𝒋}, �̅� = {𝝅𝒊}, �̅� = {mean 𝝁𝒋̅̅̅ and variance ∑𝒋}̅̅ ̅̅

1: for each executor𝑗 of N executors do

2: Parallel do

3: α1(j) ← π𝑗 b𝑗(o1) { 𝑗 ϵ [1, 2, 3, …, N]}

4: end for

5: for t ← 1 to T-1 do

6: for each executor𝑖,𝑗 of N*N executors do

7: Parallel do

8: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 (𝑚𝑎𝑝) 𝛼𝑡(𝑖)𝑎𝑖𝑗 and store α𝑡(i) in Alpha𝑡 { 𝑖, 𝑗 ϵ [1, 2, 3, …, N]}

 𝑠𝑢𝑚 (𝑟𝑒𝑑𝑢𝑐𝑒) of 𝛼𝑡(𝑖)𝑎𝑖𝑗 , then multiple by b𝑗(o𝑡+1) {𝑖, 𝑗 ϵ [1, 2, 3, …, N]} 9: end for

10: end for

11: Pr {𝑂|𝜆} ← Alpha𝑇 . reduce (lambda a, b : a + b)

12: for each executor𝑗 of N executors do

13: Parallel do

14: β𝑇(j) ← 1 { 𝑗 ϵ [1, 2, 3, …, N]}

15: end for

16: for t ← T-1 downto 1 do

17: for each executor𝑖,𝑗 of N*N executors do

18: Parallel do

19: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛽𝑡+1(𝑗)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1) 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝛽𝑡(𝑗) in Beta𝑡 { 𝑖, 𝑗 ϵ [1, 2, 3, … , N]}

20: end for

21: end for

22: for each executor𝑡,𝑖 of T*N executors do

23: Parallel do

24: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛾𝑡(𝑖) ← (𝛼𝑡(𝑖)𝛽𝑡(𝑖))/ Pr{𝑂|𝜆} 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝛾𝑡(𝑖) in Gamma𝑡

 { 𝑖 ϵ [1, 2, 3, … , N] ; 𝑡 ϵ [1, 2, 3, … , T]} 25: end for

26: for each executor𝑡,𝑖,𝑗 of (T-1)*N*N executors do

27: Parallel do

28: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝜉𝑡(𝑖, 𝑗) = (𝛼𝑡(𝑖)𝑎𝑖𝑗𝛽𝑡+1(𝑗)𝑏𝑗(𝑜𝑡+1))/ Pr{𝑂|𝜆} 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝜉𝑡(𝑖, 𝑗) in

 Xi𝑡 { 𝑖, 𝑗 ϵ [1, 2, 3, … , N]; 𝑡 ϵ [1, 2, 3, … , T − 1]} 29: end for

33: for each executor𝑖,𝑗 of N*N executors do

31: Parallel do

32: 𝒂𝒊𝒋̅̅ ̅̅ ← 𝒔𝒖𝒎(𝜉𝑡(𝑖, 𝑗))/𝒔𝒖𝒎 (𝛾𝑡(𝑖)) { 𝑖, 𝑗 ϵ [1, 2, 3, … , N]; 𝑡 ϵ [1, 2, 3, … , T − 1]}

33: end for

34: for each executor𝑖 of N executors do

35: Parallel do

36: 𝝅𝒊̅̅ ̅ ← 𝛾1(𝑖) { 𝑖 ϵ [1, 2, 3, … , N]}

37: end for

38: for each executor𝑗 of N executors do

39: Parallel do

40: 𝝁𝒋̅̅̅ ← 𝒔𝒖𝒎(𝛾𝑡(𝑗)𝑜𝑡)/𝒔𝒖𝒎 (𝛾𝑡(𝑗)) { 𝑗 ϵ [1, 2, 3, … , N]; 𝑡 ϵ [1, 2, 3, … , T]}

41: end for

42: for each executor𝑗 of N executors do

43: Parallel do

44: ∑𝒋
̅̅ ̅ = 𝒔𝒖𝒎(𝛾𝑡(𝑗)(𝑜𝑡−𝜇𝑗)(𝑜𝑡−𝜇𝑗)𝑻)/𝒔𝒖𝒎 (𝛾𝑡(𝑗)) { 𝑗 ϵ [1, 2, 3, … , N]; 𝑡 ϵ [1, 2, 3, … , T]}

45: end for

46: set λ ← λ̅ and Go to 22 unless some convergence criterion is met

47: return �̅�, �̅�, 𝑩{̅̅̅̅ 𝝁𝒋̅̅̅, ∑𝒋
̅̅ ̅}

Received: October 27, 2019 223

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.20

Algorithm 2: Parallel distributed Baum-Welch Algorithm under Spark (Continuous HMM with Gaussian

mixtures)

 Input: Initial model 𝜆 = (A,B,𝛱), a sequence of observations 𝑂 = 𝑜1, 𝑜2, . . . , 𝑜𝑇

 Output: Optimal Model parameters: �̅� = {𝒂𝒊𝒋}, �̅� = {𝝅𝒊}, �̅�{ mean of 𝑚𝑡ℎ mixture

𝝁𝒋𝒎̅̅ ̅̅ ̅, covariance of 𝑚𝑡ℎ mixture ∑𝒋𝒎
̅̅ ̅̅ ̅ and 𝒄𝒋𝒎̅̅ ̅̅̅ 𝑚𝑡ℎ mixture weights}

1: for each executor𝑗 of N executors do

2: Parallel do

3: α1(j) ← π𝑗 b𝑗(o1) { 𝑗 ϵ [1, 2, 3, …, N]}

4: end for

5: for t ← 1 to T-1 do

6: for each executor𝑖,𝑗 of N*N executors do

7: Parallel do

8:
 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 (𝑚𝑎𝑝) 𝛼𝑡(𝑖)𝑎𝑖𝑗 and store α𝑡(i) in Alpha𝑡 { 𝑖, 𝑗 ϵ [1, 2, 3, …, N]}

 𝑠𝑢𝑚 (𝑟𝑒𝑑𝑢𝑐𝑒) of 𝛼𝑡(𝑖)𝑎𝑖𝑗 , then multiple by b𝑗(o𝑡+1) {𝑖, 𝑗 ϵ [1, 2, 3, …, N]}

9: end for

10: end for

11: Pr {𝑂|𝜆} ← Alpha𝑇 . reduce (lambda a, b : a + b)

12: for each executor𝑗 of N executors do

13: Parallel do

14: β𝑇(j) ← 1 { 𝑗 ϵ [1, 2, 3, …, N]}

15: end for

16: for t ← T-1 downto 1 do

17: for each executor𝑖,𝑗 of N*N executors do

18: Parallel do

19: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛽𝑡+1(𝑗)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1) 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝛽𝑡(𝑗) in Beta𝑡 { 𝑖, 𝑗 ϵ [1, 2, 3, … , N]}

20: end for

21: end for

22: for each executor𝑡,𝑖 of T*N executors do

23: Parallel do

24:
 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛾𝑡(𝑖)

← (𝛼𝑡(𝑖)𝛽𝑡(𝑖)) /Pr{𝑂|𝜆} 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝛾𝑡(𝑖) in Gamma𝑡 { 𝑖 ϵ [1, 2, 3, … , N] ; 𝑡 ϵ [1, 2, 3, … , T]}

25: end for

26: for each executor𝑡,𝑖,𝑗 of (T-1)*N*N executors do

27: Parallel do

28:
 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛾𝑡(𝑖, 𝑗) ← (𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)𝛽𝑡+1(𝑗))/ Pr{𝑂|𝜆} 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝛾𝑡(𝑖, 𝑗) in

𝐺𝑎𝑚𝑚𝑎2𝑡
 { 𝑖, 𝑗 ϵ [1, 2, 3, … , N]; 𝑡 ϵ [1, 2, 3, … , T − 1]}

29: end for

30: for each executor𝑡,𝑗,𝑚 of (T-1)*N*M executors do

31: Parallel do

32:
 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝜉𝑡(𝑗, 𝑚) ← 𝒔𝒖𝒎 (𝛼𝑡(𝑖)𝑎𝑖𝑗𝑐𝑗𝑚𝑔𝑗𝑚(𝑜𝑡)𝛽𝑡+1(𝑗)) / Pr{𝑂|𝜆} 𝑠𝑡𝑜𝑟𝑒 𝜉𝑡(𝑗, 𝑚) in Xi𝑡

 { 𝑖, 𝑗 ϵ [1, 2, 3, … , N]; 𝑡 ϵ [1, 2, 3, … , T − 1]}

33: end for

34: for each executor𝑖,𝑗 of N*N executors do

35: Parallel do

36: 𝒂𝒊𝒋̅̅ ̅̅ ← 𝒔𝒖𝒎(𝛾𝑡(𝑖, 𝑗))/ 𝒔𝒖𝒎 (𝛾𝑡(𝑖)) { 𝑖, 𝑗 ϵ [1, 2, 3, … , N]; 𝑡 ϵ [1, 2, 3, … , T − 1]}

37: end for

38: for each executor𝑗,𝑚 of N*M executors do

39: Parallel do

40: 𝒄𝒋𝒎̅̅ ̅̅̅ ← 𝒔𝒖𝒎(𝜉𝑡(𝑗, 𝑚))/𝒔𝒖𝒎 (𝛾𝑡(𝑖)){ 𝑖, 𝑗 ϵ [1, 2, 3, … , N]; 𝑡 ϵ [1, 2, 3, … , T − 1]}

Received: October 27, 2019 224

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.20

41: end for

42: for each executor𝑗,𝑚 of N*M executors do

43: Parallel do

44: 𝝁𝒋𝒎̅̅ ̅̅ ̅ ← 𝒔𝒖𝒎(𝜉𝑡(𝑗, 𝑚)𝑜𝑡)/𝒔𝒖𝒎 (𝜉𝑡(𝑗, 𝑚)) { 𝑖, 𝑗 ϵ [1, 2, 3, … , N]; 𝑡 ϵ [1, 2, 3, … , T − 1]}

45: end for

46: for each executor𝑗,𝑚 of N*M executors do

47: Parallel do

48: ∑𝒋𝒎
̅̅ ̅̅ ̅ ← 𝒔𝒖𝒎(𝜉𝑡(𝑗, 𝑚)(𝑜𝑡−𝝁𝒋𝒎̅̅ ̅̅ ̅)(𝑜𝑡−𝝁𝒋𝒎̅̅ ̅̅ ̅)𝑻)/𝒔𝒖𝒎 (𝜉𝑡(𝑗, 𝑚)) { 𝑗 ϵ [1, 2, 3, … , N]; 𝑡 ϵ [1, 2, 3, … , T − 1]}

49: end for

50: set λ ← λ̅ and Go to 22 unless some convergence criterion is met

51: return �̅�, �̅�, �̅�{𝒄𝒋𝒎̅̅ ̅̅̅, 𝝁𝒋𝒎̅̅ ̅̅ ̅, ∑𝒋𝒎
̅̅ ̅̅ ̅}

of variables, size of vectors).

In all steps of the algorithms, our parallel

distributed Baum-Welch algorithm under Spark show

excellent performance especially in time complexity

as shown in Table 2. While, in terms of spatial

complexity, there is no difference (See Table 3).

8. Discussion and conclusion

We have presented parallel distributed versions

of Baum-Welch algorithm for Gaussian continuous

HMM and mixture of Gaussian continuous HMM.

Our proposed solution is based on Spark as main

framework. It is an improvement of Baum-Welch

algorithm for continuous-time Hidden Markov

Models that allows Big Data processing. To achieve

this implementation, we have exploited the enormous

advantages of this framework and have considered a

set of concepts under Spark: exploiting Resilient

Distributed Datasets (RDDs) properties (i.e., data

distribution over several nodes), putting into practice

the basic concepts of MapReduce paradigm (i.e.,

parallel computing operations) which allow to apply,

in parallel, a set of operations (transformations and

actions). Spark integrates a set of tools for Streaming,

SQL, Machine Learning and Graphs in addition to

powerful preprocessing tools (e.g., features

extraction, transformation and selection,

dimensionality reduction) thanks to MLlib the

Spark’s Machine Learning library.

Through this implementation, we proposed an

efficient and fast solution (computational cost

reduced by a factor of 𝑁2): the complexity of the

initialization step of both forward and backward

variables reduced from 𝑂(𝑁) to 𝑂(1) and the

computation complexity of the variables 𝛼𝑡(𝑖), 𝛽𝑡(𝑖),

𝛾𝑡(𝑖) and 𝜉𝑡(𝑖, 𝑗) is reduced by 𝑂(𝑁2(𝑇 − 1)) at

𝑂(𝑇 − 1).

Comparisons with classical algorithms show a

great improvement in computational complexity and

execution time. The improved algorithms can

produce results faster than previous versions. Thus,

by following the proposed algorithms, we managed

to achieve our objectives: optimize complexity,

reduce execution time and provide a solution to

unsupervised learning problem for continuous-time

HMM especially when dealing with Big Data (e.g.,

large number of states, large number of observations).

In sum, the proposed algorithms have several

advantages compared to other solutions: a high

computational time efficiency and a high scalability

as well as an easy integration in Big Data frameworks

which offer great capability of fast and scalable data

processing allowing pre-processing and data cleaning

with the powerful tools of Big Data frameworks.

Further work will focus on how to reduce latency

caused by the use of RDDs that are stored in a stack

of instructions and are not available or transformed

until an action is executed (i.e., Lazy Evaluation).

The approach can be perfected in the next steps by

using novel learning techniques. Other metrics can

also be used to allow a good evaluation of our

algorithms.

References

[1] I. Lee, “Big data: Dimensions, evolution, impacts,

and challenges”, Business Horizons, Vol. 60, No.

3, pp.293-303, 2017.

[2] A. L’heureux, K. Grolinger, H. F. Elyamany, and

M. A. Capretz, “Machine learning with big data:

Challenges and approaches”, IEEE Access, Vol.

5, pp.7776-7797, 2017.

[3] L.R. Rabiner, “A tutorial on hidden Markov

models and selected applications in speech

recognition”, In: Proc. of the IEEE, Vol. 77, No.

2, pp.257-286, 1989.

[4] K. Kambatla, G. Kollias, V. Kumar, and A.

Grama, “Trends in big data analytics”, Journal of

Parallel and Distributed Computing, Vol. 74, No.

7, pp.2561-2573, 2014.

Received: October 27, 2019 225

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.20

[5] L. E. Baum, T. Petrie, G. Soules, and N. Weiss,

“A maximization technique occurring in the

statistical analysis of probabilistic functions of

Markov chains”, The annals of mathematical

statistics, Vol. 41, No. 1, pp.164-171, 1970.

[6] M. Zaharia, M. Chowdhury, M. J., Franklin, S.

Shenker, and I. Stoica, “Spark: Cluster

computing with working sets”, HotCloud, Vol.

10, No. 10-10, pp.95, 2010.

[7] B. H. Juang and L. Rabiner, “Mixture

autoregressive hidden Markov models for speech

signals”, IEEE Transactions on Acoustics,

Speech, and Signal Processing, Vol. 33, No. 6,

pp.1404-1413, 1985.

[8] C. D. Mitchell, M. P. Harper, L. H. Jamieson, and

R. A. Helzerman, “A parallel implementation of

a hidden Markov model with duration modeling

for speech recognition”, Digital Signal

Processing, Vol. 5, No. 1, pp.43-57, 1995.

[9] W. Turin, “Unidirectional and parallel Baum-

Welch algorithms”, IEEE Transactions on

Speech and Audio Processing, Vol. 6, No. 6,

pp.516-523, 1998.

[10] C. Vogler and D. Metaxas, “Parallel hidden

markov models for american sign language

recognition”, In: Proc. of the Seventh IEEE

International Conf. on Computer Vision, pp.116-

122, 1999.

[11] M. Anikeev and O. Makarevich, “Parallel

implementation of Baum–Welch algorithm”, In:

Proc. of the International Conf. on Computer

Science and Information Technologies, pp.197-

200, 2006.

[12] X. Ma, D. Schonfeld, and A. Khokhar,

“Distributed multi-dimensional hidden Markov

model: theory and application in multiple-object

trajectory classification and recognition”, In:

Proc. of the Conf. of Multimedia Content Access:

Algorithms and Systems II. International Society

for Optics and Photonics, pp.68200O, 2008.

[13] C. H. Liu, “cuHMM: a CUDA implementation

of hidden Markov model training and

classification”, The Chronicle of Higher

Education, pp.1-13, 2009.

[14] L. Li, B. Fu, and C. Faloutsos, “Efficient Parallel

Learning of Hidden Markov Chain Models on

SMPs”, IEICE Transactions on Information and

Systems, Vol. 93, No. 6, pp.1330-1342, 2010.

[15] A. Sand, C. N. Pedersen, T. Mailund, and A. T.

Brask, “HMMlib: A C++ library for general

hidden Markov models exploiting modern

CPUs”, In: Proc. of the Ninth International Conf.

on Parallel and Distributed Methods in

Verification, and Second International Conf. on

High Performance Computational Systems

Biology, pp.126-134, 2010.

[16] S. Hymel, I. Akbar, and J. F. Reed, “Parallel

implementation of Hidden Markov Models for

wireless applications”, In: Proc. of the SDR 11

Technical Conf. and Product Exposition, pp.94-

101, 2011.

[17] L. Yu, Y. Ukidave, and D. Kaeli, “GPU-

Accelerated HMM for speech recognition”, In:

Proc. of the 43rd International Conf. on Parallel

Processing Workshops, pp.395-402, 2014.

[18] M. Bražėnas, G. Horváth, and M. Telek,

“Parallel algorithms for fitting Markov arrival

processes”, Performance Evaluation, Vol. 123,

pp.50-67, 2018.

[19] J. L Reyes-Ortiz, L. Oneto, and D. Anguita, “Big

data analytics in the cloud: Spark on hadoop vs

mpi/openmp on beowulf”, Procedia Computer

Science, Vol. 53, pp.121-130, 2015.

[20] Z. R. Bosagh, X. Meng, A. Ulanov, B. Yavuz, L.

Pu, S. Venkataraman, S., E. Sparks, A. Staple,

and M. Zaharia, “Matrix computations and

optimization in apache spark”, In: Proc. of the

22nd ACM SIGKDD International Conf. on

Knowledge Discovery and Data Mining, pp.31-

38, 2016.

[21] L. R. Rabiner and B. H. Juang, “An introduction

to hidden Markov models”, IEEE ASSP

Magazine, Vol. 3, No. 1, pp.4-16, 1986.

[22] I. L. Macdonald and W. Zucchini, Hidden

Markov and other models for discrete-valued

time series, Vol. 110, CRC Press, 1997.

[23] A. P. Dempster, N. M. Laird, and D. B. Rubin,

“Maximum likelihood from incomplete data via

the EM algorithm”, Journal of the Royal

Statistical Society: Series B (Methodological),

Vol. 39, No. 1, pp.1-22, 1977.

[24] B. Hindman, A. Konwinski, M. Zaharia, A.

Ghodsi, A. D. Joseph, R. H. Katz, S. Shenker, and

I. Stoica, “Mesos: A platform for fine-grained

resource sharing in the data center”, In: Proc. of

the 8th USENIX Conf. on Networked Systems

Design and Implementation, Vol. 11, No. 2011,

pp.22-22, 2011.

[25] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S.

Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,

H. Shah, S. Seth, B. Saha, C. Curino, O.

O’Malley, B. Reed, and E. Baldeschwieler,

“Apache hadoop yarn: Yet another resource

negotiator”, In: Proc. of the 4th annual

Symposium on Cloud Computing, pp.5, 2013.

[26] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker,

and I. Stoica, “Discretized streams: Fault-tolerant

streaming computation at scale”. In: Proc. of the

Received: October 27, 2019 226

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.20

twenty-fourth ACM symposium on operating

systems principles, pp.423-438, 2013.

[27] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S.

Venkataraman, D. Liu, and D. Xin, “Mllib:

Machine learning in apache spark”, The Journal

of Machine Learning Research, Vol. 17, No. 1,

pp.1235-1241, 2016.

[28] J. E. Gonzalez, R. S. Xin, A. Dave, D.

Crankshaw, M. J. Franklin, and I. Stoica,

“Graphx: Graph processing in a distributed

dataflow framework”, In: Proc. of the 11th

USENIX Conf. on Operating Systems Design and

Implementation, pp.599-613, 2014.

[29] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,

J. K. Bradley, M. Meng, T. Kaftan, M. J. Franklin,

A. Ghodsi, and M. Zaharia, “Spark sql:

Relational data processing in spark”, In: Proc. of

the 2015 ACM SIGMOD international Conf. on

management of data, pp.1383-1394, 2015.

[30] T. White, Hadoop: The definitive guide,

"O'Reilly Media, Inc.", 2012.

[31] K. Shvachko, H. Kuang, S. Radia, and R.

Chansler, “The hadoop distributed file system”,

In: Proc. of 2010 IEEE 26th Symposium on Mass

Storage Systems and Technologies (MSST), Vol.

10, pp.1-10, 2010.

[32] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J.

Ma, M. McCauley, and I. Stoica, “Resilient

distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing”, In: Proc. of

the 9th USENIX Conf. on Networked Systems

Design and Implementation, pp.2-2, 2012.

[33] J. Dean and S. Ghemawat, “MapReduce:

Simplified data processing on large clusters”,

Communications of the ACM, Vol. 51, No 1,

pp.107-113, 2008.

