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Abstract: The spread of dengue hemorrhagic fever (DHF) globally with a frequency level that tends to be high in the 

past 50 years raises a systematic idea of prevention. One of the efforts to prevent DHF is the need for early 

identification of areas that are potentially epidemic. Early identification is carried out by getting an overview of the 

incident one step ahead by data forecasting. The focus of the study was the development of area stratification 

algorithms as an early identification of DHF outbreak areas by using data forecasting methods with surveillance data 

variables. Surveillance data which became the references for system modeling were DHF case data, rainfall, humidity, 

air temperature, wind speed and Larva-free Number (ABJ) for the span of 2010-2016 in 17 districts in Sleman Regency, 

Special Region of Yogyakarta. There were four steps during the study, i.e., 1) Forecasting of DHF case for the period 

of 12 months, 2) Forecasting of Larva-free Number (ABJ), 3) Determination of DHF case pattern for the last three 

years and the average of ABJ in the third year and 4) Area classification into stratification class. A method used for 

data forecasting of DHF case was seasonal autoregressive moving average (SARIMA), and the determination of area 

class pattern was conducted by using a neural network, meanwhile to obtain area stratification class used rule-based 

approach referring to guidelines controlling DHF outbreaks of the Ministry of Health of the Republic of Indonesia. 

Early identification was carried out by dividing into 4 area classes. Area class target included endemic (K1), sporadic 

(K2), a potential (K3) and free (K4). The testing of accuracy forecasting used relative mean absolute error (RMAE) 

for 12 months period. The results of the forecasting accuracy test on 17 districts in Sleman Regency showed RMAE 

average of 1.46 was considered low for it was still below 10%. Furthermore, the results of the early identification of 

area stratification classes in 2014 and 2015 from 17 districts showed that 3 of the four regions were endemic areas 

while in 2016 almost all districts were endemic areas and only one area was classified as sporadic. 

Keywords: DHF, Neural network, Rule-based stratification, Seasonal ARIMA, Area stratification. 

 

 

1. Introduction 

Dengue haemorrhagic fever (DHF) is a disease 

caused by dengue virus infection transmitted from 

one human to another through the bite of the Aedes 

mosquito from the subgenus Stegomyia [1], found in 

almost all parts of the world, especially in tropical 

and subtropical countries, both as endemic and 

epidemic diseases [2, 3]. The distribution of DHF was 

influenced by many factors (multi-factors) [4-7] 

among others climate & weather, population 

characteristics and environment [6, 8]. Based on data 

from the Ministry of Health in Indonesia, in 2015 

there were 90,425 cases of DHF, and 816 patients 

died. In 2016, there were 112,511 cases, and 871 

patients died. In 2017 to mid-December, it was 

recorded that DHF patients in 34 provinces in 

Indonesia were 71,668 people, and 641 of them died 

based on data in Ministry of Health. It happens due to 
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many factors which are known as the health 

epidemiology in public health science. 

The health epidemiology triangle consists of host, 

agent, and an environment in which each has a role in 

DHF transmission. The agent factor in the form of the 

dengue virus is transmitted through Aedes aegypti. 

Another factor had a big part in the environment, for 

example, geographical location, climatic and weather 

conditions in an area, which affects the increase of 

the spread pattern of DHF cases [9-11]. The trend of 

DHF cases generally occurs in the tropics and appears 

in the rainy season then decreases after the rainy 

season ends. This virus arises due to the influence of 

seasons and nature as well as human behavior. Next 

is the host factor, i.e., from the human side itself has 

the same role as the two previous factors, for example, 

the population, the number of dengue cases, the 

number of DHF patients died, and so on. The increase 

in the prevalence of infectious diseases can be 

influenced by regional spatial phenomena which 

have similar characteristics [12, 13]. DHF 

transmission pattern is formed from each health 

epidemiological factors, the interrelationship 

between factors, daily local conditions affecting the 

source of the disease, and environmental and 

population risk factors [14]. 

Development of the early identification of maps 

of DHF outbreaks had been carried out by previous 

researchers using several approaches. Research 

results showed that the risk map for the spread of 

DHF outbreaks is essential as an area early 

identification [15, 16] to reduce the tendency for a 

full spread. The same approach was conducted in 

Selangor Malaysia to map the distribution of DHF 

outbreaks. The purpose was to find out which areas 

were having the potential risk of DHF prevalence [12, 

17]. Several regions in Indonesia had already 

conducted researches on DHF risks mapping such as 

Kendari City – South East Sulawesi [18], South 

Denpasar, Magelang, Special Region of Yogyakarta, 

Banggai Regency and Palopo City, in which the 

purpose was to figure out which areas are most 

predominantly affected by DHF outbreaks. The 

problem of undetected virus spread supports the 

occurrence of dengue outbreaks. DHF usually occurs 

in parallel from one region to another due to a 

uniform spread of the virus [19]. Some previous 

studies performed the mapping after the DHF case 

occurred while this study developed an early 

identification model of areas having the potential to 

epidemic before dengue cases arise, by forecasting 

the number of dengue cases data involving health 

epidemiology variables including data on the number 

of dengue cases, larva-free number (ABJ), rainfall, 

air humidity, temperature, and wind speed. Based on 

this reason, an early identification of area 

stratification was needed to provide an overview of 

the severity of an area against the high prevalence of 

infectious diseases [19]. The stratification was 

carried out by referring to the control regulation of 

directorate general on the spread of the illness of the 

Ministry of Health of the Republic of Indonesia. 

The model developed after this referred to as the 

DHF epidemic area stratification system (DSSys), is 

one model that supports surveillance activities that 

shows that an area has the potential for epidemic so 

that a control tool is needed in the form of actual early 

identification as a form of prevention. It is one of the 

main advantages for the Ministry of Health to carry 

out prevention in the period before the outbreak. 

In [20] to get the stratification class of the dengue 

outbreak area, it must wait for DHF cases to occur 

while the proposed model does not have to wait for 

dengue cases to happen. 

 Differences from other studies are 1) Some 

studies do not involve the larva-free number variable 

(ABJ) for DHF surveillance activities for the concept 

of prediction. 2) The combination of the seasonal 

ARIMA method for forecasting the number of cases 

and ABJ which then utilizes the stratification 

algorithm to obtain trends in regional patterns that 

have the potential to occur in dengue cases. 

2. Related work 

The purpose of early identification area is to 

prevent the occurrence of outbreaks before the 

outbreak. The early identification area to predict the 

occurrence of an epidemic can be done by involving 

several variables in the study, for example in the case 

of dengue outbreak using climate and weather 

variables [6, 7, 21], vector variables mosquitoes and 

economic indicators [22, 23] and so on. 

SARIMA method in forecasting the incidence of 

DHF has been done by [24, 25], the advantage of 

using the SARIMA method is that the data has an 

internal structure, such as autocorrelation, seasonal 

trends or variations so affect climate and weather 

conditions in tropical regions such as Indonesia. 

SARIMA is popular concerning seasonal conditions 

in the data, and also in classifying the value of 

forecasting [26]. 

The application of forecasting of event data in 

Indonesia has been carried out in several studies, for 

example forecasting the incidence of dengue in the 

city of Palembang by determining the potential of the 

occurrence of the month but only involves one 

variable namely the incident case. Furthermore, the 

prevention model for DHF outbreaks is a prediction 
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Table 1. Presentation table of DHF patients number per year at Area-X, the year of 2014-2016 

No Area 2014 2015 2016 Larva Index  Stratification 

1 Mekar 6 5 8 -- Endemic (K1) 

2 Jaya 5 0 3 -- Sporadic (K2) 

3 Megah 0 0 0 < 95% Potential (K3) 

4 Sukasari 0 0 0 ≥ 95% Free (K4) 

 

model [27, 28] which only has the objective of short-

term forecasting of the ongoing outbreak or model 

early warning system [16, 29, 30] which aims to be a 

descriptive analysis of the region that has the 

potential to endemic but no regional cluster patterns 

in each area are predicted. 

The research that has been carried out is still 

limited to descriptive analysis in the form of a 

numerical table of each variable characteristic. Also, 

the results of the forecasting are not discussed about 

the threshold of the accuracy of the results which are 

then made into early identification model for the area 

of dengue occurrence. The main problem in this study 

is that to determine the class of stratification of the 

region must wait for dengue cases to occur. Therefore 

we need a prediction model of regional stratification 

patterns before the DHF cases occurs. 

The early identification of the DHF event area 

referred to in this study is the information presented 

on the regional map is the result of the forecasting 

process using the Seasonal Autoregressive Moving 

Average (SARIMA) method to obtain the value of the 

number of cases and the potential occurrence of the 

month, while the Neural Network is used to form a 

cluster pattern region based on data input on dengue 

cases and larva-free numbers. Determination of 

regional classification patterns is carried out by 

referring to the rules for determining regional 

stratification from the Ministry of Health of the 

Republic of Indonesia regarding the status of the 

region against DHF.  

3. Area stratification by the rule of the 

ministry of health in Indonesia 

Area stratification needs investigation following 

procedures and stages of the steps. The first step that 

must be carried out is the epidemiological 

surveillance of dengue hemorrhagic fever (DHF) in 

community health centers which includes the 

collection and recording of data on suspected DHF in 

the context of Epidemiology Investigation (PE)  [20]. 

Data processing and presenting is according to the 

following table example: 

From table 1 above, it is found out that the 

prevalence of DHF cases was calculated based on the 

year and location of the incidence in the last three 

years. Then, larva-free number (ABJ) was estimated 

on average each year in 12 months in one area. 

Stratification status consists of 4 classes namely 

endemic, sporadic, potential and free. This study 

developed a class model of this area stratification 

using rules-based made into algorithm form of DHF 

outbreak area stratification. 

4. Research methodology 

4.1 Study area 

 Sleman Regency is a part of Special Region of 

Yogyakarta province covering an area of 574.82 

km2and divided into 86 villages. It has 25 community 

health centers covering 17 districts based on data in 

Statistic Centers Bureau (BPS District Sleman). The 

estimated population in 2015 was 1,148,479 people 

with a population growth of 1.97% per year. 

4.2 Data and materials 

 This study used data on cases of DHF 

prevalences in 17 districts of Sleman Regency, 

Special Region of Yogyakarta province. DHF is 

closely related to climate and weather [31, 32], thus 

in addition to data on the number of DHF prevalences 

collected from the Health Service of Sleman Regency, 

the other data used were the climate & weather data 

obtained from the Meteorology, Climatology and 

Geophysics Agency and Adi Sucipto Airport 

Yogyakarta including variables (in the form of 

rainfall, humidity, air temperature and wind speed).  

 Another data input was Larva-free Number 

(ABJ) obtained from Health Service of Sleman 

Regency, Yogyakarta. The larva-free number in the 

epidemiological triangle hints that the virus is one of 

the major contributors to the occurrence of DHF 

outbreaks [16, 33]. The period used is monthly 

starting from 2010 to 2016. Next, from the three 

variables, the forecasting process was conducted 

using the seasonal ARIMA method to obtain the 

output in the form of the number of DHF cases. Table 

2 shows data characteristics used in this study. 

Whereas for data example of District_1 area is 

available in table 3 below: 
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Table 2. Variables and data characteristics of early 

identification model of DHF outbreaks Area Stratification 

No Variable’s 

Name 

Unit Symbol Function 

1 Number of 

DHF 

Prevalence 

Case X1 A parameter 

for the 

number of 

DHF 

Prevalence 

2 Larva-free 

number 

(ABJ) 

% X2 A parameter 

of density 

level of 

mosquitoes 

3 Rainfall mm X3 Average of 

rainfall in 

each area 

4 Humidity % X4 A parameter 

of humidity in 

each area 

5 Temperature oC X5 A parameter 

of 

temperature in 

each area 

6 Wind Speed Knot X6 A parameter 

of wind speed 

in each area 

 
Table 3 Data sample of district_1 area with variables 

including number of cases, larva-free number, rainfall, air 

humidity, air temperature, and wind speed 

  
Where: 

DBD = Number Cases of DHF  

ABJ = Larva-free Number (%) 

CH = Rainfall (mm) 

KL = Air Humidity (%)  

SH = Air Temperature (oC) 

KA = Wind Speed (Knot) 

4.3 Pre-processing data 

Pre-processing data was performed before 

forecasting using Seasonal ARIMA, and to obtain 

 

Table 4. The result of test of data stationary using ADF 

test 

No 
Name Of 

District 

ADF Value 

of DHF Case 

Numbers  

 

Lag 

Order 

 

P-

Value 

1 District_1 -2.1046 4 0.5327 

2 District_2 -2.7882 4 0.2544 

3 District_3 -3.4123 4 0.0607 

4 District_4 -3.0695 4 0.1398 

5 District_5 -5.2621 4 0.0100 

6 District_6 -3.1851 4 0.0971 

7 District_7 -3.2941 4 0.0796 

8 District_8 -3.7845 4 0.0243 

9 District_9 -3.4535 4 0.0541 

10 District_10 -3.8666 4 0.0206 

11 District_11 -3.7113 4 0.0300 

12 District_12 -3.9918 4 0.0150 

13 District_13 -3.8351 4 0.0220 

14 District_14 -3.5061 4 0.0476 

15 District_15 -3.2506 4 0.0866 

16 District_16 -2.8656 4 0.2229 

17 District_17 -2.9222 4 0.1998 

 

good forecasting value in statistics, it is necessary to 

test the stationary of time series data. Test of data 

stationery was conducted to series data of DHF 

number cases in 17 districts and series data of climate 

such as rainfall, air humidity, air temperature, and 

wind speed for an area of Sleman Regency. The 

testing was executed by using Augmented Dicky 

Fuller test (ADF Test) technique with the results of a 

trial that the time series data is stationarily shown in 

Table 4. 

Testing using the ADF Test method in Table 3 

shows that all data series used in this research 

(number of dengue cases, number of larvae, humidity, 

air temperature, rainfall and wind speed) are 

stationary because they have negative ADF values 

[34], so the method Seasonal ARIMA can be used in 

forecasting. In 17 sub-districts in the Sleman district, 

for example, the Gamping sub-district, the ADF Test 

value -2.1046, on the lag order 4 and the p-value 

0.5327 shows the stationary data series which is 

ready to be implemented in the data forecasting 

process. 

Furthermore, after the data have been tested for 

its stationary, analysis is needed for determining the 

amount of lag that will be used in forecasting. In the 

trials of this study, the best lag number was 72 lags. 

4.4 Forecasting step 

The next step of forecasting the number of cases 

was to detect the sequence of events in the last three 

years, the larva-free number per month on average in 

the past year and then categorized into area classes. 

Month DBD ABJ CH KL SH KA 

1 3 87.93 400.7 84 26.3 6 

2 9 94.33 322.7 84 26.4 5 

3 11 88.66 334.7 82 26.3 5 

4 5 86.44 264.6 84 26.8 4 

5 11 86.65 177.3 81 27.0 4 

6 2 85.61 0.000 75 26.3 4 

7 3 85.63 0.000 74 26.3 4 

8 1 86.31 0.000 70 26.0 4 

9 1 86.57 0.500 71 26.5 6 

10 1 88.84 19.00 71 27.9 5 

11 3 88.34 371.3 83 27.2 4 

12 1 88.35 388.5 83 27.2 5 
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From the data on the number of DHF cases in the last 

three years, ABJ and area classes; the distribution of 

training data for the 2010-2015 period and data 

testing for the 2016 data period were carried out and 

then they were used as input for neural network data 

to obtain area class patterns. Determination of area 

classes was made using a rule-based approach with 

the basic rules of stratification determination of the 

DHF outbreak area of the Ministry of Health of 

Indonesia which was divided into four namely 

endemic, sporadic, potential and free. Forecasting 

results, area class patterns, and determination of area 

stratification was tested respectively. Forecasting of 

DHF, ABJ and area class patterns used RMSE and 

MAE, while a determination of area stratification was 

performed by comparing real data in the field for the 

previous year data period. The technique of 

determining the stratification of this area is then used 

as a basis for reference in prevention, area control and 

supervision efforts before the outbreak takes place. 

4.5 Validation model 

Validation of data forecasting models for DHF 

and ABJ cases was carried out to determine the 

accuracy of the model in predicting the two variables 

in the next 12 months. The results of the model 

validation used data on monthly DHF prevalences in 

2010-2015 as data training to predict the incidence 

and average of ABJ in 2016 which were then 

compared with the empirical data of 2016 DHF 

incidence and average of ABJ. 

5. Early identification model of area 

stratification using forecasting technique 

This study focused on the development of early 

identification stratification models for DHF outbreak 

areas using forecasting techniques involving 

predictor variables such as the number of dengue 

cases, climate & weather (rainfall, air humidity, air 

temperature and wind speed) and larva-free number. 

The model was developed by predicting the number 

of cases using the seasonal ARIMA and the neural 

network method. A neural network was used to 

overcome data with linear and nonlinear patterns in 

time series problems [35]. Fig. 1 shows the 

development flow of the early identification 

stratification model for outbreak areas from the 

results of forecasting the number of DHF cases. Data 

input used was the number of DHF cases, weather & 

climate, and larva-free number (ABJ). The training 

data used was monthly data for the period of 2010 to 

2015, while the 2016 data was used as testing data. 

The value results of forecasting the number of DHF 

cases using the seasonal ARIMA method were then 

used as neural network input to obtain the area classes 

classified as K1, K2, K3 or K4 classes. The next step 

was to detect the prevalence of DHF cases in the last 

three years and to identify larva-free number (ABJ) 

in which the results were then classified using the 

rule-based approach using area stratification of the 

Ministry of Health of the Republic of Indonesia to 

obtain area stratification class. The primary output in 

the development of this model was the area 

stratification class based on the input variable of the 

number of cases, climate & weather, and larva-free 

number (ABJ). 
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Figure. 1 Early identification model for area stratification class of DHF outbreaks using forecasting technique 
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Figure. 2 Architecture of the neural network sub process early identification model 

 

Table 5. Sample classification test data stratification of outbreak areas 

NO Name Of District 
DHF Year In 

ABJ Class 
2012 2013 2014 

1 Kec Gamping  60 128 106 87.1 K1 

 

Table 6. Calculation results of hidden layer 

Kec X1 X2 X3 X4 Y Pred. Out 1 

1 0.415 0.255 0.3 0.7347 0.4 0.3559036 

 

 

In the architectural model of Fig. 1, the rule base 

stratification is used to obtain the class stratification 

area which is then used as an initial identification of 

the area of DHF outbreak. Neural network 

architecture from the early identification model for 

area stratification sub-process consists of 3 layers, 

namely the input layer, hidden layer, and output layer. 

Furthermore, the sub-process to determine the best 

architecture of the neural network in the stratification 

class area can be seen in Fig. 2. 

The best architecture is obtained by dividing into 

10 training test each hidden neuron 5, 10, 20, 30 and 

45. Next from each trial sum square error (SSE) is 

calculated to get the error value. The input layer is an 

input that contains a vector from the test data that the 

class will find. The input layer aims to distribute the 

input data in the hidden layer. The following is 

presented one sample vector test data that is used can 

be seen in the following Table 5. 

Hidden layers contain vector data training that 

has been known for its class. Hidden layers are used 

to calculate the distance between the test data vector 

and the training data vector. 

The output layer is the process of finding the 

maximum value of the vector output, then generating 

the value of the stratification class decision. Based on 

table 1, the test data in table 2 belongs to class K1. 

 

A rule-based approach was used as rule base in 

determining whether the district in mention was 

endemic (K1), sporadic (K2), a potential (K3) or free 

(K4) stratification class. To conduct area 

stratification class, the following three steps were 

required: 

1. Determination of DHF case numbers in Certain 

Area 

Data of the number of DHF cases were obtained 

from the Health Service of Sleman regency with a 

division of 17 districts in the form of 1800 Excel MS 

Excel records. To get data on the number of cases per 

month for each district was conducted by following 

the formula below: 

 

𝐽𝐾 = ∑ (𝐶)𝑛
𝑖=1                              (1) 

Where; 

  

JK = Number of DHF cases per month for    

                  each district.   

                                 

 C = The number of cases DHD that occur  

                                 in the district. 

 n = The number of districts. 

 

For example Gamping District in 2016 is 

calculated using Eq. (1) above, by making the 

following Table 7: 
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Table 7. Sample of calculating the number of DHF cases in each district per year 

Name of District 

(Wi) 

Year 

 

Month (b) Case 

(JKi) Jan 

(b1) 

Feb 

(b2) 

Mar 

(b3) 

to 

… 

Dec 

(b12) 

Distcrict_1 2015 4 16 7 … 0 57 

…… … … … … … … … 

District_ 17 2015 1 1 0 … 0 2 

Table 8. The example lag event in the past 3 years 

Period (P) Year (T) Month (B) 

Jan (B1) Feb (B2) March (B3) Up to Dec (B12) 

P1 2014 Weeks 1-4 Weeks 1-4 Weeks 1-4 …. Weeks 1-4 

P2 2015 Weeks 1-4 Weeks 1-4 Weeks 1-4 …. Weeks 1-4 

P3 2016 Weeks 1-4 Weeks 1-4 Weeks 1-4 …. Weeks 1-4 

 
 

The calculation is done by summing up the 

incidence of DHF cases every month for one year for 

each sub-district area, while for this study it takes a 

period of three years for each region with a total of 

17 sub-districts in the Sleman district. 

2. Detection of DHF Case Prevalence in the Last 3 

Years  

The prevalence of DHF that occurred in each area 

in the last three years was detected whether there was  

an event for three consecutive years, or there were 

cases but not consecutively or there were no cases 

during the previous three years but had a larva-free 

number of less than 95%. The flow arrangement for 

event detection in the last three (3) years used the 

following table example. 

The sequence of DHF cases was detected by 

calculating the number of cases each month then 

summed up within 12 months (1 year) and sorted by 

year of occurrence following the Table 4 format for 

the last three years. After the identification of the 

number of cases based on the following year, the area 

stratification is processed using the rule-based 

approach. 

 

Where: 

T = Year of DHF prevalence in an area in the 

last three years, T={1..3}. 

B = A month of prevalence in a year of DHF 

incidence, B={1..12}. 

K = The number of cases of DHF prevalence 

in month series in 3 years of prevalence, 

K={1..∾}. 

P = Period occurring from the lag of year of 

DHF prevalence, P={1..12} 

A = The average percentage of a larva-free 

number in a previous year in the area of 

DHF cases, A={1..100} 

S = Stratification class in the area of DHF 

cases, S={1..4}  S1 = endemic, S2 = sporadic, S3 

=potential and S4 = free. 

W = District area in which DHF cases occur, 

W={1..17} 

 

3. Rule-Based for the Determination of Area 

Stratification Class 

The following is the rule for determination of 

area stratification class following DHF control 

guidelines of the Minister of Health of the Republic 

of Indonesia. 

 
1. IF Case in Year=[1..3] Consecutively THEN Area 

=S1=endemic 
2. IF Case in Year=[1..3] Not Consecutively THEN 

Area=S2=sporadic 
3. IF Case in Year =[1..3] NONE AND (ABJ <= 95%) 

THEN Area=S3=potential 
4. IF Case in Year =[1..3] NONE AND (ABJ > 95%) 

THEN Area=S4=free 
 

Then, the algorithm flow was derived into 

pseudo-code. The following is a pseudo-code to 

detect the sequence of DHF events within the last 

three years classified into endemic class, while for 

sporadic, potential and free class follow the rule-

based determination of outbreak areas stratification.  

 

Algorithm: Stratification Class Area 

Input: JK: The number of DHF cases 

            W: District that DHF Cases Occur 

            A: The average percentage of Larva Free Number 

                 In previous year in the area of DHF case 

Output: Class of Stratification Area 

 

Start: 

1. for first_year=1 to third_year do 

2. begin 

3. for month  [1..12] to month  [25..36] do  

4.   if (JK_first_year ≥ 1) and (JK_second_year ≥ 1) and   
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5.      (JK_third_year ≥ 1) then   W  Endemic; 

6.   elseif (JK_first_year ≥ 1) and (JK_second_year = 0)  

      and (JK_third_year ≥ 1) then W  Sporadic; 

7.   elseif (JK_first_year = 0) and (JK_second_year ≥ 1)  

      and (JK_third_year ≥ 1) then W  Sporadic; 

8.   elseif (JK_first_year ≥ 1) and (JK_second_year ≥ 1)  

      and (JK_third_year = 0) then W  Sporadic; 

9.   elseif (JK_first_year = 0) and (JK_second_year = 0)  

      and (JK_third_year = 0) and (A ≤ 95%) 

      then W  Potential; 

10.  elseif (JK_first_year = 0) and (JK_second_year = 0)  

       and (JK_third_year = 0) and (A ≥ 95%) 

       then W  Free; 

11.    endif; 

12.  endfor; 

13. end. 

 

4. Determination of Area Classes 

The next process was to identify whether the 

area was classified into endemic (K1), sporadic 

(K2), potential (K3) and free (K4) area.  

6. Result and discussion 

6.1 Forecasting of DHF prevalence and larva-Free 

number (ABJ) 

This study generated the prediction of the number 

of DHF cases using 6-years data series (between 2010 

and 2015) on DHF cases in Sleman Regency 

consisting of 17 districts. The forecasting technique 

used was the seasonal ARIMA method, then the 

results of the forecasting were grouped into four 

classes called stratification classes, namely; 1) 

endemic (K1), 2) sporadic (K2), 3) potential (K3) and 

4) free (K4). 

To determine the area stratification class in 2014, 

the data on the number of dengue cases in the 

previous two years, 2012 and 2013, were needed. 

Sleman regency consisted of 17 sub-districts which 

16 districts belong to K1 stratification class, 1 district 

belong to K2 with ratio of 94.2 % endemic and 

5.68 % sporadic as shown in Table 9. 

In 2015, with the same provisions as in Table 9, 

Sleman regency had a stratification class which 14 

districts belong to K1 stratification class, 3 districts 

belong to K2 with ratio of 82.36 % endemic and 

17.64 % sporadic as shown in Table 10. 

In 2016, Sleman regency had a stratification class 

which 16 districts belong to K1 stratification class, 1 

district belong to K2 with ratio of 94.2 % endemic 

and 5.68 % sporadic as shown in Table 11. 

Forecasting result of the DHF and ABJ cases 

number in 2016, an area stratification rule table was 

made in the order of the table column, namely the 

number of DHF cases in the 1st, 2nd, 3rd year and the 

average percentage of ABJ in the 3rd year. 

6.2 Evaluation of forecasting models 

Evaluation of the results of DBD forecasting with 

SARIMA method in 17 sub-districts in Sleman-

Yogyakarta-Indonesia District using relative mean 

absolute error (rMAE). The resulting error value has 

a relatively small value with an average of less than 

5% for each region.  

 

 

Table 9. Area stratification class based on forecasting value in Sleman regency in the year of 2014 

No District 
DHF In Year Of 

ABJ Class 
2012 2013 2014 

1 Gamping  60 128 106 87.1 K1 

2 Godean  49 114 85 86.8 K1 

3 Moyudan  3 1 4 75.5 K1 

4 Minggir  4 8 1 80.5 K1 

5 Seyegan 1 9 12 94.4 K1 

6 Mlati  18 130 72 86.0 K1 

7 Depok  10 82 80 89.5 K1 

8 Prambanan 9 32 29 79.7 K1 

9 Berbah 7 40 46 90.2 K1 

10 Kalasan  27 72 64 90.2 K1 

11 Ngemplak  6 19 13 95.1 K1 

12 Ngaglik  17 54 51 85.5 K1 

13 Sleman  15 31 32 90.7 K1 

14 Tempel  1 6 6 95.0 K1 

15 Turi 1 3 0 91.4 K2 

16 Pakem  2 1 4 95.8 K1 

17 Cangkringan  6 6 10 85.6 K1 
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Table 10. Area stratification class based on forecasting value in Sleman regency in the year of 2015 

No District 
DHF In Year Of 

ABJ Class 
2013 2014 2015 

1 Gamping  128 106 57 87.6 K1 

2 Godean  114 85 77 87.1 K1 

3 Moyudan  1 4 10 72.2 K1 

4 Minggir  8 1 4 83.2 K1 

5 Seyegan 9 12 23 83.8 K1 

6 Mlati  130 72 39 83.2 K1 

7 Depok  82 80 88 86.4 K1 

8 Prambanan 32 29 20 95.2 K1 

9 Berbah 40 46 51 90.7 K1 

10 Kalasan  72 64 63 91.3 K1 

11 Ngemplak  19 13 13 95.3 K1 

12 Ngaglik  54 51 47 83.8 K1 

13 Sleman  31 32 25 92.3 K1 

14 Tempel  6 6 3 95.3 K1 

15 Turi 3 0 0 92.5 K2 

16 Pakem  1 4 0 96.6 K2 

17 Cangkringan  6 10 0 84.9 K2 

Table 11. Area stratification class based on forecasting value in Sleman regency in the year of 2016 

No District 
DHF In Year Of 

ABJ Class 
2014 2015 2016 

1 Gamping  60 128 106 87.1 K1 

2 Godean  49 114 85 86.8 K1 

3 Moyudan  3 1 4 75.5 K1 

4 Minggir  4 8 1 80.5 K1 

5 Seyegan 1 9 12 94.4 K1 

6 Mlati  18 130 72 86.0 K1 

7 Depok  10 82 80 89.5 K1 

8 Prambanan 9 32 29 79.7 K1 

9 Berbah 7 40 46 90.2 K1 

10 Kalasan  27 72 64 90.2 K1 

11 Ngemplak  6 19 13 95.1 K1 

12 Ngaglik  17 54 51 85.5 K1 

13 Sleman  15 31 32 90.7 K1 

14 Tempel  1 6 6 95.0 K1 

15 Turi 1 3 0 91.4 K2 

16 Pakem  2 1 4 95.8 K1 

17 Cangkringan  6 6 10 85.6 K1 

 

The result of forecasting value of the number of 

DHF cases using SARIMA and Vector 

Autoregressive method for the rMAE value is shown 

in Table 12. The comparison of an error value in 

Table 12 the proposed model has a lower error value 

compared with Vector Autoregressive method. 

Evaluation fitting results the number of DHF 

cases in 17 districts using the SARIMA has lower 

error compare with VAR method, for the average 

relative mean absolute error (rMAE) value of 0.1460 

and 0.2508. 

6.3 Prediction of area class pattern using neural 

networks 

The neural network model prediction was used to 

obtain area classification pattern learning in each area. 

Class prediction input was the number of DHF cases 

in 1st, 2nd, and 3rd year, and larva-free number 

(ABJ) in the third year and area classes, while the 

target output was the area stratification class. Tables 

13, 14 and 15 show the prediction result using the 

neural network. 
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Table 12. Evaluation forecasting result relative mean absolute error value SARIMA and VAR method 

No District SARIMA VAR 

1 Gamping  0.0181 0.0663 

2 Godean  0.3700 0.2028 

3 Moyudan  0.2350 0.8860 

4 Minggir  0.0970 0.1944 

5 Seyegan 0.3472 0.3333 

6 Mlati  0.0232 0.5775 

7 Depok  0.0544 0.0951 

8 Prambanan 0.1236 0.1389 

9 Berbah 0.0893 0.3849 

10 Kalasan  0.1274 0.0703 

11 Ngemplak  0.4229 0.5194 

12 Ngaglik  0.0317 0.3095 

13 Sleman  0.0071 0.0477 

14 Tempel  0.2569 0.2569 

15 Turi 0.0001 0.0000 

16 Pakem  0.0417 0.0417 

17 Cangkringan  0.2639 0.1389 

Average 0.1460 0.2508 

Table 13. Area classes of DHF cases data forecasting using neural network in year of 2014 

District X1 X2 X3 X4 Y Pred_Out_1 

1 0.415 0.255 0.300 0.7347 0.4 0.3559036 

2 0.320 0.125 0.245 0.7077 0.4 0.4055714 

3 0.035 0.000 0.015 0.3979 0.8 0.6421382 

4 0.025 0.005 0.020 0.7033 0.4 0.5744711 

5 0.105 0.025 0.005 0.7394 0.4 0.5418918 

6 0.255 0.120 0.090 0.7323 0.4 0.4630306 

7 0.440 0.105 0.050 0.7566 0.4 0.4124174 

8 0.040 0.005 0.045 0.6304 0.4 0.5776527 

9 0.155 0.005 0.035 0.7327 0.4 0.5176745 

10 0.690 0.080 0.135 0.7609 0.4 0.3276753 

11 0.125 0.015 0.030 0.7871 0.4 0.5176513 

12 0.195 0.035 0.085 0.7515 0.4 0.4840204 

13 0.170 0.055 0.075 0.7257 0.4 0.4999551 

14 0.010 0.000 0.005 0.7967 0.8 0.5644953 

15 0.010 0.000 0.005 0.7660 0.8 0.5710398 

16 0.005 0.000 0.010 0.7794 0.8 0.5684305 

17 0.020 0.000 0.030 0.7257 0.8 0.5685284 

Table 13 is the result of normalization of data the 

number of DHF case in 2014 such as shown in Table 

9. The data are inputted to neural network process and 

the output of neural network shown as predicted 

output (Pred_Out_1). 

Table 14 is the result of normalization of data the 

number of DHF case in 2015 such as shown in Table 

10. The data are inputted to neural network process 

and the output of neural network shown as predicted 

output (Pred_Out_1). 

Table 15 is the result of normalization of data the 

number of DHF case in 2015 such as shown in Table 

10. The data are inputted to neural network process 

and the output of neural network shown as predicted 

output (Pred_Out_1). Process training neural 

network is carried out ten times with the number of 

hidden units of 5, 10, 20, 30 and 45, respectively. In 

the information, the table above column Y is the 

target class that is used as a goal of the class of 

stratification (0.4 = endemic, 0.8 = sporadic), while 

the column Pred_Out_1 is a column for class 

prediction. 

Table 13, 14 and 15 is test-1 training for example 

in the search for regional stratification class area. 

Whereas for testing the evaluation results from test-1 

to test-10 are presented in Table 16, namely the 

presentation of the MSE value of the early 

identification model for stratification class area. A 

description of the column is in the following 

information: 
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Table 14. Area classes of DHF cases data forecasting using neural network in year of 2015 

District X1 X2 X3 X4 Y Pred_Out_1 

1 0.255 0.300 0.640 0.869 0.4 0.3032914 

2 0.125 0.245 0.570 0.851 0.4 0.3546066 

3 0.000 0.015 0.005 0.469 0.8 0.6403346 

4 0.005 0.020 0.040 0.811 0.4 0.5516995 

5 0.025 0.005 0.045 0.922 0.4 0.5210359 

6 0.120 0.090 0.650 0.862 0.4 0.3430622 

7 0.105 0.050 0.410 0.890 0.4 0.3979291 

8 0.005 0.045 0.160 0.789 0.4 0.5190650 

9 0.005 0.035 0.200 0.889 0.4 0.4874211 

10 0.080 0.135 0.360 0.906 0.4 0.4118421 

11 0.015 0.030 0.095 0.943 0.4 0.5043691 

12 0.035 0.085 0.270 0.877 0.4 0.4576891 

13 0.055 0.075 0.155 0.873 0.4 0.4848140 

14 0.000 0.005 0.030 0.945 0.8 0.5298144 

15 0.000 0.005 0.015 0.910 0.8 0.5413521 

16 0.000 0.010 0.005 0.929 0.8 0.5403610 

17 0.000 0.030 0.030 0.852 0.8 0.5475355 

Table 15. Area classes of DHF cases data forecasting using neural network in year of 2016 

District X1 X2 X3 X4 Y Pred. Out 1 

1 0.300 0.640 0.530 0.871 0.4 0.3025537 

2 0.245 0.570 0.425 0.868 0.4 0.3399673 

3 0.015 0.005 0.020 0.755 0.4 0.5668112 

4 0.020 0.040 0.005 0.805 0.4 0.5574203 

5 0.005 0.045 0.060 0.944 0.4 0.5174600 

6 0.090 0.650 0.360 0.860 0.4 0.3978530 

7 0.050 0.410 0.400 0.895 0.4 0.4023173 

8 0.045 0.160 0.145 0.797 0.4 0.5029460 

9 0.035 0.200 0.230 0.902 0.4 0.4592537 

10 0.135 0.360 0.320 0.902 0.4 0.3971803 

11 0.030 0.095 0.065 0.951 0.4 0.5036870 

12 0.085 0.270 0.255 0.855 0.4 0.4420305 

13 0.075 0.155 0.160 0.907 0.4 0.4665863 

14 0.005 0.030 0.030 0.950 0.4 0.5259665 

15 0.005 0.015 0.000 0.914 0.8 0.5428952 

16 0.010 0.005 0.020 0.958 0.4 0.5267437 

17 0.030 0.030 0.050 0.856 0.4 0.5300086 

 
Note: 

Kec = The name of District in Sleman Regency 

X1 = DHF Prevalence in 1st year Period 

X2 = DHF Prevalence in 2nd year Period 

X3 = DHF Prevalence in 3rd year Period 

X4 = Average of ABJ in 3rd year 

Y = The value of target that represent stratification    

                  Class 

Pred Out 1 = Area Class Prediction of Neural Network 

 

The area stratification class patterns indicated 

that all 17 districts had endemic tendencies in 2014, 

2015 and 2016 periods such as shown in Table 16. 

The model was able to provide an overview of the 

potential risk of outbreaks using forecast data input 

in the last 3 years and the average larva-free number 

(ABJ) in the 3rd year so that the model was capable 

of providing information one step ahead in a 12-

month period and automatically give 

recommendations for policy holder about the area 

stratification of the outbreak prevention. 

Results of error measurement training data neural 

network for early identification area stratification 

class pattern are shown in Table 16. To predict of 

class area neural network were trained in different 

number nodes, and resulted in different mean squared 

error (MSE) such as shown in Table 16. The smallest 

MSE was obtained in the architecture of neural 

network with 20 hidden nodes (test-10) in Table 16. 
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Table 16. Test results of mean squared error early identification area stratification cluster pattern 

Training 

Hidden Neuron 

5 10 20 30 45 

Test-1 0.685 0.732 0.702 0.742 0.705 

Test-2 0.603 0.524 0.562 0.665 0.592 

Test-3 0.542 0.884 0.601 0.606 0.526 

Test-4 0.495 0.875 0.558 0.517 0.495 

Test-5 0.467 0.865 0.518 0.480 0.472 

Test-6 0.431 0.856 0.497 0.462 0.457 

Test-7 0.447 0.843 0.459 0.497 0.441 

Test-8 0.419 0.832 0.430 0.423 0.428 

Test-9 0.408 0.820 0.397 0.414 0.413 

Test-10 0.398 0.818 0.394 0.404 0.403 

Table 17. Calculation of suitability for class stratification 

No Y Pred. Out 1 MAD Actual Predict Suitable 

1 0.4 0.5530 0.1530 Endemic Endemic Y 

2 0.4 0.5291 0.1291 Endemic Endemic Y 

.. ….. ……… ….. ………. ………. … 

.. ….. ……… ….. ………. ………. … 

49 0.8 0.7475 0.0524 Sporadic Sporadic Y 

50 0.4 0.7029 0.3029 Endemic Sporadic N 

51 0.4 0.6033 0.2033 Endemic Sporadic N 

 
Table 18. Confusion matrix table 

Prediction 

Actual 

Positive Negative 

True 400 27 

False 27 56 

 

Evaluation of the stratification class model is 

done by using the k-fold cross validation method by 

dividing the dataset into two parts, namely 80% 

training data, and 20% testing data. Class prediction 

is made by neural network techniques with the 

number of neurons hidden 5, 10, 20, 30 and 45, 

learning rates 0.1, 0.05, and 0.01 for 51 regions in 

Sleman Regency (17 areas in first year, second year 

and third year). Datasets used to carry out the test is 

51 regions by looking at the suitability of the 

prediction class with the actual class by calculating 

the calculation are shown in Table 17.  

Afterwards, testing evaluation was done using a 

confusion matrix to calculate accuracy, precision, 

and recall. Results of the calculation are presented in 

Table 18. Calculation of the confusion matrix is 

described as follows: 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100%                       (2) 

 

    = 
400+23

400+23+23+64
× 100% = 89,41 % 

 

Precision = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃
× 100%                                   (3) 

     = 
400+23

400+63
× 100% = 93,6 % 

Table 19. The highest potential month for prevalence in 

2010-2015 and the highest prevalence month based on 

forecasting result 

Year 1stPotention 2ndPotention 3rdPotention 

2010 February January April 

2011 March May February 

2012 December June July 

2013 July January February 

2014 March February June 

2015 February May March 

2016 March February November 

 

Results of the test calculation using a confusion 

matrix generated scores for accuracy and precision by 

89,41%, and 93,6%, respectively. The result is ideal 

for a large number of regions to know the pattern of 

stratification class. 

6.4 Prediction of the highest prevalence potential 

month 

The highest prevalence month can be predicted in 

each district. Data on the number of DHF cases from 

forecasting form a pattern about which months are 

having the potential of prevalence with a high number 

of casualties, and for that, the period of transmission 

identification, the period of the first transmission and 

the period of an outbreak will be figured out first. The 

analysis of the highest potential month for prevalence 

from 2010-2016 is available in Table 19. 

The potential for the occurrence of the month 

each year has a different pattern from 2010 to 2016 

as shown in Table 19, but it can be seen that the 
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monthly patterns of dengue cases often occur with a 

high number of cases. A month with the highest 

potential for dengue cases in February (the first 

highest month of dengue cases happening six times 

in the last seven years) and March (the second highest 

number of months in the past seven years). While 

other months to watch out for are January, May, and 

June (the third highest month twice in the last seven 

years), so that these months need to watch out for 

indications of an increase in dengue cases. 

6.5 Area identification for outbreak areas 

Visualization of the area early identification was 

described in the form of area mapping. The map 

provided information that the percentage of the 

endemic area had a more significant portion in each 

year. For example, in 2014, the comparison was four 

sporadic areas against 13 endemic regions, in 2015, 

five sporadic regions against 12 endemic regions, and 

in 2016, one sporadic area against 16 endemic 

regions thus it requires further investigation about a 

potential risk of outbreak transmission to the adjacent 

regions. 

In Sleman Regency, stratification class in 2014 

consisted of 76.4% endemic areas while the 

remaining 23.6% was sporadic areas. In 2015, it 

included 70.6% endemic areas and 29.4% sporadic 

areas. In 2016, it consisted of 94.1% endemic areas 

and 5.9% sporadic areas. In 2014 and 2015, areas in 

Highlands had three sporadic class regions. It was 

due to the low air temperature in high altitudes areas 

resulting in the susceptibility of Ae.agepty mosquito 

life hence those areas had a high percentage of ABJ, 

above 95%. 

 

 
Figure. 3 The map of early identification of area 

stratification of DHF outbreaks in 2014 

 

 

 
Figure. 4 The map of early identification of area 

stratification of DHF outbreaks in 2015 
 

 
Figure. 5 The map of early identification of area 

stratification of DHF outbreaks in 2016 

 

7. Conclusion and future work 

The early identification model of Dengue 

Hemorrhagic Fever (DHF) has been made to solve 

the problem by using several methods. Technically, 

the solving problem methods in this research are (1) 

Forecasting the DHF cases, (2) Seeking the class 

pattern of regional stratification, and (3) Mapping 

from the forecasting and prediction of area 

stratification class pattern results. 

 In this research, seasonal ARIMA appropriate for 

short term forecasting such as 1, 3 & 6 months. The 

neural network can be used to find stratification area 

patterns (endemic, sporadic, potential and free) so 

that the model can provide temporal and spatial 

information. Future works of this research is to get an 
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accurate of map prediction, by reducing the area 

scope such as villages. 

The most significant contribution of the study is 

development of identification model of dengue 

outbreak based on rule-based stratification. This 

model can be predict the dengue outbreak in one step 

ahead before occurrence.  

For the next research, area stratification classes of 

K1, K2, K3 and K4 are divided into the levels of area 

risk. The area of potential risk is calculated using 

spatial autoregressive (SAR), and then categorized as 

levels high, medium and low in each class, which are 

visualized in potential risk mapping. 
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