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Abstract: An event log records the business processes of a company. Modeling event logs aim to help users in 

analyzing business processes. One of the problems in modeling event logs automatically is the addition of invisible 

tasks. Invisible tasks are dummy activities, other than activities of an event log, that are added to a process model to 

describe a correct process model. This research proposes a graph-based algorithm to mine the data from an event log. 

From the data, the graph-based algorithm establishes an additional-invisible-task process model by converting all of 

the processes in the event log into a link list and adding invisible tasks and operators for parallel relations, such as 

XOR Split or XOR Join. The experimental analysis explains that the fitness of the discovered process models by the 

graph-based algorithm was as high as that of compared algorithms, such as Alpha# models, Alpha$ models, CHMM-

NCIT models, and CHMM-IT models. Furthermore, the graph-based algorithm is more efficient than existing 

algorithms. This was proven by the time complexity of the graph-based, which is O(n2) while both of Alpha# and 

Alpha$ algorithm have a time complexity of O(n4) and both of CHMM-IT and CHMM-NCIT algorithm have O(n3). 
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1. Introduction 

A repository of facts or processes of an 

organization is called an event log. The fact consists 

of the name of a task, the executor of the task, and 

the time of the task. These facts are processed for 

process analysis and problem discovery [1]. To sum 

up, an event log can be utilized to analyze and find 

problems in business processes. 

Because some facts in an event log keep 

growing, process discovery facilitates the process of 

analyzing the facts by arranging them in a process 

model. Process discovery, as an element of process 

mining, can handle many different issues in many 

sectors: business [2 - 5], and fraud [6, 7], and 

medical [8]. One of the problems in process 

discovery that are addressed in this research is 

handling invisible tasks. 

Invisible tasks are dummy activities, other than 

activities of an event log, that are added to a process 

model. One reason for adding invisible tasks is 

accommodating Split and Join relations in parallel 

processes. There are several algorithms that handle 

invisible tasks, such as Alpha# [9], Alpha$ [10], 

Coupled Hidden Markov Model-Nonfree Choice 

Invisible Task (CHMM-NCIT) [2] and Coupled 

Hidden Markov Model-Invisible Task (CHMM-IT) 

[5]. 

Both of Alpha# [9] and Alpha$ [10] determine 

invisible tasks by forming tuples and analyzing the 

tuples with a number of rules. Those algorithms 

only take activities from the log, so the relations 

between activities are determined by checking all 

possible relationships based on all activities. Those 

checking processes prolongs the processing time of 

Alpha#. Furthermore, both of Coupled Hidden 

Markov Model-Nonfree Choice Invisible Task 

(CHMM-NCIT) [2] and Coupled Hidden Markov 

Model-Invisible Task (CHMM-IT) [5] use Coupled 

Hidden Markov Model (CHMM) and utilize Baum-

Welch algorithm to determine the weights of 

variables of CHMM. However, those algorithm 

check sequences of the event log and both of hidden 

variables and observed variables, so the time 
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complexities of CHMM-NCIT and CHMM-IT are 

high. 

In this research, a graph-based algorithm is 

proposed to automatically model an event log 

containing invisible tasks by converting the event 

log into a graph-database and processing the graph-

database into a process model. Graph-database is 

chosen because it can store only activities but also 

their relations, so it negates the steps of checking all 

possibilities relationships which are expected to 

reduce the time complexity.  This graph-based 

algorithm is applied in Neo4j [11, 12] by using 

Cypher syntax [13]. As a summary, the major 

contributions of this research are: 

[1] The graph-based algorithm is an algorithm that 

can depict a process model containing invisible 

tasks. The fitness value of the obtained process 

model by using the proposed graph-database 

verifies the contribution. 

[2] The time complexity of the graph-based 

algorithm is low because the graph-based 

algorithm uses a graph-database that stores not 

only activities but also their relationships. The 

additional of invisible task is not can be 

checked directly from the relationship without 

looking for possible relationships between 

activities continuously. The time complexity of 

the graph-based algorithm will be compared 

with other existing algorithms of invisible task 

to prove this statement. 

A focused issue in this research is detecting 

invisible tasks in the process models. Because of 

that, the other issues of process discovery are not 

discussed in this research. Therefore, the event log 

as the experiment data only contain the issue of 

invisible tasks. 

The graph-based algorithm is evaluated by 

comparing the correctness and the time complexity 

of results yielded by Alpha#, Alpha$, CHMM-NCIT, 

and CHMM-IT algorithms. The correctness was 

calculated using a fitness measurement. Fitness 

measurement calculates completeness of facts that 

are depicted in a process model.  

2. Problem statement and preliminaries 

The following works are related to the graph-

based algorithm, including invisible tasks and graph 

database. 

2.1 Business process model 

A set of connected activities which is created for 

a particular benefit is a business process. The 

business process records what activities are carried 

 

 
Skip Condition 

 
Redo Condition 

 

Switch Condition 

Figure. 1 Three types of invisible tasks: (a) skip condition, 

(b) redo condition, and (c) switch condition 

 

out when activities occur, and what conditions, 

initial or final conditions, during the execution. The 

business process can be transformed into an image, 

which is called a business process model. 

A benefit of a business process model is 

illustrating the process clearly. There are 

considerable templates that represent a process 

model, for example, Unified Modeling Language 

(UML) [14], Causal Net [15], Business Process 

Model and Notation (BPMN) [16], Petri Net [17], 

and so forth. Every type of model needs diverse 

characteristic, for example, Petri net utilizes tokens 

to join activities in its model. On the other hand, 

Causal Net depicts its activities by making them 

associated straightforwardly. 

2.2 Invisible tasks 

Invisible tasks are unrecorded activities in an 

event log that show up in a business process model. 

There are several situations that trigger a process 

model to display invisible tasks. These situations 

distinguish different types of invisible tasks. Based 

on the Alpha# algorithm [9], there are three types of 

invisible tasks. 
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2.1.1. Skip and redo invisible tasks 

The first invisible task represents the skip 

condition. A skip condition occurs when activities in 

sequential relations are not executed in separated 

processes. An example of a skip condition is shown 

in Figure. 1. There are four traces as the input data 

of a model in Figure. 1, i.e. [ABCDF, ACDF, 

ABCEF, ACEF]. As shown in Figure. 1, there is a 

skip condition when activity A can directly go to 

activity C. A skip invisible task will be added 

between those activities to depicting a skip 

condition. 

Then, there is another invisible task that 

represents the redo condition. A redo condition 

occurs when two or more activities are executed 

repeatedly. An example of a redo condition is shown 

in Figure. 1. There are three traces in the example, 

i.e. [ABCBCD, ABCBCBCD, ABCBCD]. Based on 

these traces, both activity B and activity C are 

executed repeatedly. A redo invisible task will be 

added between those activities to depicting a redo 

condition. 

2.1.2. Switch invisible tasks 

The last invisible task represents the switch 

condition. A switch condition occurs when there is 

an activity of which it is uncertain where it is 

heading or where it came from. An example of a 

switch condition is shown in Figure. 1. There are 

three traces in the example, i.e. [ABCF, ADEF, 

ABEF]. Based on those traces, both activity B and 

activity C are in a switch condition. To providing 

the switch condition, an invisible task is added 

between activity B and C. 

2.3 Existing process discovery algorithms of 

invisible tasks 

Alpha# [12] is an algorithm used in process. 

There are several algorithms of discovering a 

process model containing invisible task. Those 

algorithms are Alpha# [9], Alpha$ [10], Coupled 

Hidden Markov Model-Nonfree Choice Invisible 

Task (CHMM-NCIT) [2] and Coupled Hidden 

Markov Model-Invisible Task (CHMM-IT) [5].  The 

contribution of Alpha# and CHMM-IT is detecting 

invisible tasks in the process model, while 

Alpha$ and CHMM-NCIT can depict invisible task 

and non-free choice in the process model. Both of 

Alpha# and Alpha$ uses tuples that denote the 

relationships of activity. Then, both of CHMM-IT 

and CHMM-HRIT utilize Coupled Hidden Markov 

Model to determine the relationships of activity. 

There are several steps of Alpha# or 

Alpha$ algorithm. First, the activities, including an 

initial activity and the final activity, of the event log 

are determined. For example, based on four traces 

that are used to depict the model of skip condition in 

Figure. 1, Tw= { A, B, C, D, E, F }, while the initial 

activity is A and the final activity is F. The second 

step is a set of activity pairs (DM) which fulfils the 

first rule is created. The first rule is a as the first 

activity of relationships with b and other activities 

(for example activity k) and b as the end activity of 

relationships with a and other activities (for example 

activity l) and there is no relationship between 

activity l as the first activity and activity k as the end 

activity. Based on the example, DM = { (A, C) } 

because A has relationship with B, C also has a 

relationship with B, and there is no relationship 

between B and itself. 

The third step is RM as DM that fulfils the second 

rule is determined. The rule is occurring a 

relationship between two activities (for example 

activity k and l) and a ~> k and l ~> b. This example 

doesn’t have relationships that fulfil the second rule, 

so RM is empty. The fourth step is arcs (YI) of the 

model and places (XI) that are divided into Pin which 

contains the first pairs for building relationships of 

invisible tasks and Pout that contains the end pairs are 

determined. Based on the example, Pin of XI = 

{ (A,B) } and Pout of XI = { (B,C) }, so YI = { { (A, 

B), (B, C) } }. The fifth step is activities that are in 

both of Pin and Pout are replaced with invisible tasks 

and the change is stored in DS. DS is { (A, 

Invisible_Task), (Invisible_Task, C) }. The last step 

is the process model is constructed with the result in 

DS. 

CHMM-IT and CHMM-NCIT are also have 

several steps to depict invisible tasks. First, the 

Coupled Hidden Markov Model is constructed. 

Then,  probabilities of the Coupled Hidden Markov 

Model is trained with the Baum-Welch algorithm 

[5]. Then, several rules are executed to depict the 

invisible tasks. The steps to train the Coupled 

Hidden Markov Model involves sequences of the 

event log and two types of nodes, such as hidden 

and observed variables, so the time complexity of 

those algorithms is increased. 

2.4 Graph database 

Graph databases provide connection of data that can 

be a guided chart  for  analysts  [18].  Graph 

databases are not similar to relational databases. A 

relational database provides connection of tables as 

a group of data with similar characteristics, while a 

graph database forms connector of each data that is 
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stored as a node. For discovering a process model, 

the data is activities or events. 
Table 1. An example of event log in database 

Case_ 

Number 

Activity_ 

Label 

Starting_ 

Time 

End_ 

Time 

CN01 A 08:20 08:25 

CN01 B 08:27 08:47 

CN01 C 08:48 09:00 

CN01 D 09:00 09:30 

CN01 E 09:40 10:13 

CN01 G 10:28 11:01 

CN02 A 11:05 11:15 

CN02 C 11:18 11:30 

CN02 D 13:00 13:32 

CN02 F 13:35 14:08 

CN02 G 14:20 14:55 

where :  

Case_Number : identity number of processes of an 

event log 

Activity_Label : names of events or activities that are 

executed in the processes 

Starting_Time : the start time of execution of events or 

activities 

End_Time : the end time of execution of events or 

activities 

 

This research compares a relational database 

with a graph database. A relational database has a 

table with columns and rows, where the attributes 

must be determined first. Hence, it is difficult for 

users to change the attributes. An example of a 

relational database is shown in Table 1, where 

Case_Number, Activity_Label, Starting_Time, and 

End_Time are the attributes. 

In a relational database, relationships between 

rows are not determined, so the relational database 

must be modified by adding a new column, for 

example, Previous_Act, which denotes the previous 

activity. The modification can be seen in Table 2. 

The additional column is determined manually by 

users by looking at the database or forming an 

additional query.  Because the determination of 

Previous_Act is determined in each case, not the 

whole data, the Previous_Act column of the first 

activity is zero. 

Modifying a relational database consumes a 

large amount of memory and time. On the other 

hand, a graph database is easy to modify because it 

is flexible and without modifying the table, a graph 

database automatically defines the relations between 

activities and their previous or next activities. 

The nodes in a graph database are represented by 

a row in the relational database. Attributes from the 

relational database are saved in the nodes in a graph 

database. For example, a graph database that 

represents Table 1 is shown in a model of skip 

condition, which is visualized on Figure. 1. 

 
Table 2. The modified event log 

CN AL 
Starting_ 

Time 

End_ 

Time 

Previous_ 

Act 

CN01 A 08:20 08:25 - 

CN01 B 08:27 08:47 A 

CN01 C 08:48 09:00 B 

CN01 D 09:00 09:30 C 

CN01 E 09:40 10:13 D 

CN01 G 10:28 11:01 E 

CN02 A 11:05 11:15 - 

CN02 C 11:18 11:30 A 

CN02 D 13:00 13:32 C 

CN02 F 13:35 14:08 D 

CN02 G 14:20 14:55 F 

where :  

CN : Case_Number 

AL : Activity_Label 

Previous_act : activities that are executed before an 

activity that is described in the line of 

the event log 

- : no previous activity of the activity that 

is in the same row 

2.5 Control-flow pattern 

This section explains how control-flow patterns 

[19] can capture elementary aspects of processes 

These patterns closely match the elementary control 

flow concepts used in this research. These patterns 

are a sequence and parallel patterns. The parallel 

patterns consist of exclusive choice, simple merge, 

parallel split, synchronization, multi-choice, and 

structured synchronizing merge. 

The sequence is a point about a relationship in 

which one activity is processed after another activity 

has been executed in the same process. The 

exclusive choice is a pattern that has XOR Split as 

the point of the workflow and simple merge is a 

pattern that has XOR Join as the point of the 

workflow. An AND Split is a point in parallel split 

pattern and an AND Join is a point in 

synchronization pattern. Finally, multi-choice has 

OR Split as its point and structured synchronizing 

merge has OR Join as its point. 

2.6 Fitness 

Fitness is a measurement of quality of a process 

model based on the suitability of the model and an 

event log. If a number of processes that are depicted 

in the model is higher, the fitness value is higher. 

To calculate the fitness, Eq. (1) shows the 

calculation. Based on this equation, 𝑛𝑟𝑖𝑔ℎ𝑡_𝑐𝑎𝑠𝑒𝑠  is 

the total number of processes that were depicted in 
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the process model, while 𝑛𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑠𝑒𝑠 is the number 

of processes of the event log. 

For the example, based on the model of switch 

condition in Figure. 1 (c), all traces, i.e. trace ABCF, 

trace ADEF, trace ABEF can be depicted. Because 

of that, 𝑛𝑟𝑖𝑔ℎ𝑡_𝑐𝑎𝑠𝑒𝑠 is three and 𝑛𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑠𝑒𝑠 is three. 

In conclusion, the fitness value of the model of 

switch condition is 1.0. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝐹) =  
𝑛𝑟𝑖𝑔ℎ𝑡_𝑐𝑎𝑠𝑒𝑠

𝑛𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑠𝑒𝑠
 (1) 

 

3. Proposed method 

In this section, graph-based algorithm is 

explained to modeling the event log into a process 

model in Neo4j. Graph-based algorithm and Alpha# 

algorithm are compared based on their time 

complexity and fitness measurement. 

The first step of graph-based algorithm is 

converting the event log from CSV file into a graph-

database. After that, graph-based algorithm adds 

parallel relationships and invisible tasks based on its 

pseudocode in Table 3. The application of the 

pseudocode should be in an order of rows of Table 3. 

The sequence pattern is the starting point of the 

pseudocode and the invisible task is the end point. 

First, all activities are depicted as a model with 

sequence relationships based on the pseudocode of 

sequence pattern. Activity is a list of variants of 

activities and all_activity is a list of all activities in 

the event log. For example, based on traces [A,B,C], 

[A,B,C], [A,C], activity has { A, B, C } and 

all_activity has { A, B, C, A, B, C, A, C }. The 

model is established by adding sequence 

relationships if activities in activity are sequence in 

each process of all_activity. The obtained sequence 

relationships based on the example are A-

[:SEQUENCE]->B, B-[:SEQUENCE]->C, and A-

[:SEQUENCE]->C. 

Secondly, the pseudocode of exclusive choice 

until structured synchronizing merge patterns are 

executed. Based on the example in previous 

paragraph, the pseudocode of  exclusive  choice  and 

simple merge patterns is fulfilled. The result is A-

[:XORSPLIT]->B, B-[:XORJOIN]->C, A-

[:XORJOIN]->C. 

Finally, the pseudocode of invisible task is executed. 

An invisible task is created when an activity has 

SPLIT relationships and JOIN relationships. The 

invisible task is added between JOIN relationships 

between the activity and other activities. Based on 

the previous paragraph, activity A has two types of 

relationships, i.e. XORSPLIT and XORJOIN.  Then, 

the invisible task is added between activity A and 

activity C because their relationship is XORJOIN. 

The final result is A-[:XORSPLIT]->B, B-

[:XORJOIN]->C, A-[:XORSPLIT]->Inv_Task, 

Inv_Task-[:XORJOIN]->C. The illustration of this 

result is shown in a submodel of Figure. 2 that is 

starting from activity A and ending at activity C. 

 
Table 3. Pseudocode of graph-based algorithm 

Pattern Pseudocode 

Sequence for idx=0 until idx=count_activity_ 

all_processes: 

if all_activity[idx] and all_activity 

[idx+1] are in one process: 

for i=0 until i=count_variant_ activity: 

if activity[i]=all_activity [idx]: 

first_act = activity[i] 

if activity[i]=all_activity [idx+1] 

second_act = activity[i] 

Create first_act-[:SEQUENCE]-> 

second_act 

Exclusive 

Choice 

Match activity[i]-[:relation1]-

>activity[i+1] 

if outgoing(activity[i])>1 and 

ingoing(activity[i+1])=1 and 

( outgoing(activity[i+1]=1 or 

outgoing(activity[i+1]>1): 

Create activity[i]-[:XORSPLIT]->activity 

[i+1] 

Delete [:relation1] from activity[i]-

[:relation1]- >activity[i+1] 

Simple 

Merge 
Match activity[i]-[:relation1]-

>activity[i+1] 

if ( outgoing(activity[i])=1 or 

outgoing(activity[i])=>1 ) and 

ingoing(activity[i+1])>1: 

Create activity[i]-[:XORJOIN]->activity 

[i+1] 

Delete [:relation1] from activity[i]-

[:relation1]- >activity[i+1] 
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Parallel 

Split 
Match activity[i]-[:relation1]-

>activity[i+1] 

Match activity[i]-[:relation1]-

>activity[i+2] 

if outgoing(activity[i])>1 and 

outgoing(activity[i+2])=outgoing(activity

[i]) and not ( activity[i+1]-[:relation1]-

>activity[i] or activity[i+2]-[:relation1]-

>activity[i] ): 

Create activity[i]-[:ANDSPLIT]-

>activity[i+1] 

Create activity[i]-[:ANDSPLIT]-

>activity[i+2] 

Delete [:relation1] from activity[i]-

[:relation1]- >activity[i+1] 

Delete [:relation1] from activity[i]-

[:relation1]- >activity[i+2] 

Synchron- 

ization 

Match activity[i+1]-[:relation1]-

>activity[i] 

Match activity[i+2]-[:relation1]-

>activity[i] 

if ingoing(activity[i])>1 and 

outgoing(activity[i+2])= 

ingoing(activity[i]): 

Create activity[i+1]-[:ANDJOIN]-

>activity[i] 

Create activity[i+2]-[:ANDJOIN]-

>activity[i] 

Delete [:relation1] from activity[i+1]- 

[:relation1]->activity[i] 

Delete [:relation1] from activity[i+2]- 

[:relation1]->activity[i] 

Multi 

Choice 
Match activity[i]-[:relation1]-

>activity[i+1] 

Match activity[i]-[:relation1]-

>activity[i+2] 

if outgoing(activity[i])>1 and 

( outgoing(activity[i+2])<outgoing(activit

y[i]) and outgoing(activity[i+2])>1) and 

not ( activity[i+1]- [:relation1]-

>activity[i] or activity[i+2]- [:relation1]-

>activity[i] ): 

Create activity[i]-[:ORSPLIT]-

>activity[i+1] 

Create activity[i]-[:ORSPLIT]-

>activity[i+2] 

Delete [:relation1] from activity[i]-

[:relation1]- >activity[i+1] 

 

Structural 

Synchron-

ization 

Merge 
Match activity[i+1]-[:relation1]-

>activity[i] 

Match activity[i+2]-[:relation1]-

>activity[i] 

if ingoing(activity[i])>1 and 

( outgoing(activity[i+2])< 

ingoing(activity[i]) and 

outgoing(activity[i+2]) >1 ): 

Create activity[i+1]-[:ORJOIN]-

>activity[i] 

Create activity[i+2]-[:ORJOIN]-

>activity[i] 

Delete [:relation1] from activity[i+1]- 

[:relation1]->activity[i] 

Delete [:relation1] from activity[i+2]- 

[:relation1]->activity[i] 

Invisible 

Task (Skip, 

Switch, or 

Redo) 

Match activity[i]-[:relation1]-

>activity[i+1] 

Match activity[i]-[:relation2]-

>activity[i+2] 

if ( :relation1=:XORSPLIT 

and :relation2=:XORJOIN ) or 

( :relation1=:ORSPLIT 

and :relation2=:ORJOIN ): 

Create invisible_task 

Create activity[i]-[:relation1]-

>invisible_task 

Create invisible_task-[:relation2]-

>activity[i+2] 

Delete [:relation2] from activity[i]-

[:relation2]- >activity[i+2] 

 

where : 

activity[i]-[] : activity [i] as a beginning activity of a 

relationship 

[]->activity[i] : activity [i] as an end activity of a 

relationship 

[]->activity[i+1] : activity [i+1] as an end activity of a 

relationship 

[]->activity[i+2] : activity [i+2] as an end activity of a 

relationship 

count_activity : sum of count for all activities 

create : cypher syntax for making only 

activities or activities and their 

relationships 

delete : cypher syntax for deleteing 

relationships or activities 

i: invisible task : name of the invisible task 

ingoing(activity) : sum of relations that come to the 

activity 

match : cypher syntax for searching the 

statement that is followed this syntax 

outgoing(activity): sum of relations that go from the 

activity 

:relation1, :relation2 : initial variable for determining 

relationships in the graph-database 
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Figure. 2 Result of modeling a process model by graph-based algorithm in redo condition 

 
Figure. 3 Result of modeling a process model by graph-based algorithm in skip condition 

 

 

 
Figure. 4 Result of modeling a process model by graph-based algorithm in switch condition 

 

 

 
Figure. 5 Result of redo condition by Alpha# and Alpha$ 

 

 

 
Figure. 6 Result of skip condition by Alpha# and Alpha$ 

 

 

 
Figure. 7 Result of switch condition by Alpha# and Alpha$ 
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Figure. 8 Result of redo condition by CHMM-IT and CHMM-NCIT 

 

 
Figure. 9 Result of skip condition by CHMM-IT and CHMM-NCIT 

 

 
Figure. 10 Result of switch condition by CHMM-IT and CHMM-NCIT 

 

Table 4. Fitness values of results constructed by different 

algorithms and time complexity of algorithms 

Algorithms 
Condition Time 

Complexity Redo Skip Switch 

Graph-based 1.0 1.0 1.0 O(n2) 

Alpha# 1.0 1.0 1.0 O(n4) 

Alpha$ 1.0 1.0 1.0 O(n4) 

CHMM-IT 1.0 1.0 1.0 O(n3) 

CHMM-

NCIT 
1.0 1.0 1.0 O(n3) 

4. Result  and analysis 

4.1 Business process model 

This evaluation uses simulation event logs that 

describe skip condition, switch condition and redo 

condition. All of the event logs have 60 cases, 

wherein a redo-condition event log has three traces, 

a skip-condition event log has four traces, and a 

switch-condition event log has three traces. Traces 

of redo-condition event log are ABCDE, 

ABCBCDE, ABCBCBCBCDE. Traces of skip-

condition event log are ACDF, ABCDF, ACEF, 

ABCEF. Traces of switch-condition event log are 

ABCF, ABEF, ADEF. All of the event logs are 

processed by two methods, i.e. graph-based 

algorithm and Alpha#. 

First, the graph-based algorithm converts the 

event log in CSV format to a graph-database. Then, 

graph-based algorithm determines parallel 

relationships and invisible tasks in the graph-

database for obtaining a process model containing 

invisible tasks. In this evaluation, there are three 

process models that are obtained by graph-based 

algorithm. Process models of Redo Condition, Skip 

Condition, and Switch Condition by graph-based 

algorithm are shown in Figure. 2, 3, and 4. 

A process model of Figure. 2 has an invisible 

task between activity B and activity C. Invisible task 

is depicted between activity A and activity C in a 

process model of Figure. 3. The invisible task 

accommodates a skip condition of activity B. Based 

on the traces, a skip condition of activity B is 

discovered because several traces do not execute 

directly activity C after activity C, but execute 

activity B after activity A and before activity C. 

Then, invisible task in Figure. 4 is depicted between 

activity B and E to describe a switch condition. 

After the process models of the graph-based 

algorithm were obtained, the models of Alpha#, 

Alpha$, CHMM-NCIT, and CHMM-IT were 

obtained. Figure. 5 and 8 show the result of Redo 
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condition, Figure. 6 and 9 show the result of Skip 

condition, and Figure. 7 and 10 show the result of 

Switch condition. Same as the results of the graph-

based algorithm, an invisible task in both of Figure. 

5 and 8 occurs between activity B and activity C, an 

invisible task in both of Figure. 6 and 9 occurs 

between activity A and activity C to depict skip 

condition of activity B and an invisible task in both 

of Figure. 7  and 10 occurs between activity B and E 

to depict switch condition. 

4.2 Analysis 

This evaluation compares the results of four 

different algorithms based on fitness and time 

complexity. The compared methods are the graph-

based algorithm with Alpha# algorithm, 

Alpha$ algorithm, CHMM-IT algorithm, and 

CHMM-NCIT algorithms.  The fitness values 

produced by these four algorithms were counted 

(see Table 4). 

Based on the traces of the event log to build a 

model in redo condition, Figure. 2, 5 and 7 depict all 

those traces. Because of this condition, the fitness 

values of the graph-based algorithm and Alpha# are 

1.0. Models that are established by all algorithms in 

switch condition and skip condition also depict all 

traces. It caused the fitness values of those 

conditions are 1.0. The values can be seen in Table 4. 

These high fitness values prove that graph-based 

algorithms can model all of the processes from the 

event log in a process model. 

The second evaluation concerned the time 

complexity of each method. The time complexity of 

each algorithm is shown in Table 4. The graph-

based algorithm gets O(n2). The detailed time 

complexity of graph-based algorithm is O(n2) for 

converting event log into a graph-database, O(n2) for 

executing exclusive choice until structured 

synchronizing merge patterns, and O(n2) for 

determining invisible tasks. 

As the comparison algorithm, both of Alpha# 

and Alpha$ consist of ten steps, wherein the first 

step needs O(n) time complexity, the second step 

needs O(n4), the third step needs O(n2) time 

complexity, the fourth step needs O(n2) time 

complexity, the fifth needs O(n2) time complexity, 

and the last step need O(n) time complexity. 

Because of that, Alpha# and Alpha$ spends O(n4). 

Then, both of CHMM-NCIT and CHMM-IT have 

several steps. The first step needs O(n2) time 

complexity, the second step needs O(n3) time 

complexity, and the last step needs O(n2) time 

complexity. Overall, CHMM-NCIT and CHMM-IT 

spend O(n3). 

Based on Table 4, the graph-based algorithm has 

the lowest time complexity. This is because the 

graph-based algorithm already stores the relations 

between activities before executing the rules for 

determining invisible tasks. 

5. Conclusion 

Graph-based algorithm models business 

processes containing invisible tasks based on an 

event log. Graph-based algorithm uses graph-

database for storing activities and their relationships 

based on the log. 

Firstly, graph-based algorithm converts event 

log in CSV format into a graph-database based on 

the event log. Next, the graph database is improved 

by adding invisible tasks and operators of parallel 

relations to construct a process model containing the 

invisible tasks. The process model that contains 

invisible tasks is the final result of the graph-based 

algorithm. 

The results from the graph-based algorithm and 

from other existing algorithms were compared. The 

experiment conducted in this research showed that 

they all had high fitness. However, the graph-based 

algorithm is the most efficient method as proven by 

the time complexity of the graph-based algorithm 

(O(n2)), while both of Alpha# and Alpha# have a 

time complexity of O(n4) and both of CHMM-NCIT 

and CHMM-IT have a time complexity of O(n3). 

The graph-based algorithm does not consider 

anomalies in the event log. For future research, this 

method can be developed to consider anomalies and 

this method is tested in a large-scale event log. 
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