
Received: October 22, 2018 85

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.09

Graph-Based Algorithms for Discovering a Process Model Containing Invisible

Tasks

Riyanarto Sarno1* Kelly Rossa Sungkono1 Reynaldo Johanes1 Dwi Sunaryono1

1Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

* Corresponding author’s Email: riyanarto@if.its.ac.id

Abstract: An event log records the business processes of a company. Modeling event logs aim to help users in

analyzing business processes. One of the problems in modeling event logs automatically is the addition of invisible

tasks. Invisible tasks are dummy activities, other than activities of an event log, that are added to a process model to

describe a correct process model. This research proposes a graph-based algorithm to mine the data from an event log.

From the data, the graph-based algorithm establishes an additional-invisible-task process model by converting all of

the processes in the event log into a link list and adding invisible tasks and operators for parallel relations, such as

XOR Split or XOR Join. The experimental analysis explains that the fitness of the discovered process models by the

graph-based algorithm was as high as that of compared algorithms, such as Alpha# models, Alpha$ models, CHMM-

NCIT models, and CHMM-IT models. Furthermore, the graph-based algorithm is more efficient than existing

algorithms. This was proven by the time complexity of the graph-based, which is O(n2) while both of Alpha# and

Alpha$ algorithm have a time complexity of O(n4) and both of CHMM-IT and CHMM-NCIT algorithm have O(n3).

Keywords: Graph-database, Invisible tasks, Process discovery.

1. Introduction

A repository of facts or processes of an

organization is called an event log. The fact consists

of the name of a task, the executor of the task, and

the time of the task. These facts are processed for

process analysis and problem discovery [1]. To sum

up, an event log can be utilized to analyze and find

problems in business processes.

Because some facts in an event log keep

growing, process discovery facilitates the process of

analyzing the facts by arranging them in a process

model. Process discovery, as an element of process

mining, can handle many different issues in many

sectors: business [2 - 5], and fraud [6, 7], and

medical [8]. One of the problems in process

discovery that are addressed in this research is

handling invisible tasks.

Invisible tasks are dummy activities, other than

activities of an event log, that are added to a process

model. One reason for adding invisible tasks is

accommodating Split and Join relations in parallel

processes. There are several algorithms that handle

invisible tasks, such as Alpha# [9], Alpha$ [10],

Coupled Hidden Markov Model-Nonfree Choice

Invisible Task (CHMM-NCIT) [2] and Coupled

Hidden Markov Model-Invisible Task (CHMM-IT)

[5].

Both of Alpha# [9] and Alpha$ [10] determine

invisible tasks by forming tuples and analyzing the

tuples with a number of rules. Those algorithms

only take activities from the log, so the relations

between activities are determined by checking all

possible relationships based on all activities. Those

checking processes prolongs the processing time of

Alpha#. Furthermore, both of Coupled Hidden

Markov Model-Nonfree Choice Invisible Task

(CHMM-NCIT) [2] and Coupled Hidden Markov

Model-Invisible Task (CHMM-IT) [5] use Coupled

Hidden Markov Model (CHMM) and utilize Baum-

Welch algorithm to determine the weights of

variables of CHMM. However, those algorithm

check sequences of the event log and both of hidden

variables and observed variables, so the time

Received: October 22, 2018 86

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.09

complexities of CHMM-NCIT and CHMM-IT are

high.

In this research, a graph-based algorithm is

proposed to automatically model an event log

containing invisible tasks by converting the event

log into a graph-database and processing the graph-

database into a process model. Graph-database is

chosen because it can store only activities but also

their relations, so it negates the steps of checking all

possibilities relationships which are expected to

reduce the time complexity. This graph-based

algorithm is applied in Neo4j [11, 12] by using

Cypher syntax [13]. As a summary, the major

contributions of this research are:

[1] The graph-based algorithm is an algorithm that

can depict a process model containing invisible

tasks. The fitness value of the obtained process

model by using the proposed graph-database

verifies the contribution.

[2] The time complexity of the graph-based

algorithm is low because the graph-based

algorithm uses a graph-database that stores not

only activities but also their relationships. The

additional of invisible task is not can be

checked directly from the relationship without

looking for possible relationships between

activities continuously. The time complexity of

the graph-based algorithm will be compared

with other existing algorithms of invisible task

to prove this statement.

A focused issue in this research is detecting

invisible tasks in the process models. Because of

that, the other issues of process discovery are not

discussed in this research. Therefore, the event log

as the experiment data only contain the issue of

invisible tasks.

The graph-based algorithm is evaluated by

comparing the correctness and the time complexity

of results yielded by Alpha#, Alpha$, CHMM-NCIT,

and CHMM-IT algorithms. The correctness was

calculated using a fitness measurement. Fitness

measurement calculates completeness of facts that

are depicted in a process model.

2. Problem statement and preliminaries

The following works are related to the graph-

based algorithm, including invisible tasks and graph

database.

2.1 Business process model

A set of connected activities which is created for

a particular benefit is a business process. The

business process records what activities are carried

Skip Condition

Redo Condition

Switch Condition

Figure. 1 Three types of invisible tasks: (a) skip condition,

(b) redo condition, and (c) switch condition

out when activities occur, and what conditions,

initial or final conditions, during the execution. The

business process can be transformed into an image,

which is called a business process model.

A benefit of a business process model is

illustrating the process clearly. There are

considerable templates that represent a process

model, for example, Unified Modeling Language

(UML) [14], Causal Net [15], Business Process

Model and Notation (BPMN) [16], Petri Net [17],

and so forth. Every type of model needs diverse

characteristic, for example, Petri net utilizes tokens

to join activities in its model. On the other hand,

Causal Net depicts its activities by making them

associated straightforwardly.

2.2 Invisible tasks

Invisible tasks are unrecorded activities in an

event log that show up in a business process model.

There are several situations that trigger a process

model to display invisible tasks. These situations

distinguish different types of invisible tasks. Based

on the Alpha# algorithm [9], there are three types of

invisible tasks.

Received: October 22, 2018 87

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.09

2.1.1. Skip and redo invisible tasks

The first invisible task represents the skip

condition. A skip condition occurs when activities in

sequential relations are not executed in separated

processes. An example of a skip condition is shown

in Figure. 1. There are four traces as the input data

of a model in Figure. 1, i.e. [ABCDF, ACDF,

ABCEF, ACEF]. As shown in Figure. 1, there is a

skip condition when activity A can directly go to

activity C. A skip invisible task will be added

between those activities to depicting a skip

condition.

Then, there is another invisible task that

represents the redo condition. A redo condition

occurs when two or more activities are executed

repeatedly. An example of a redo condition is shown

in Figure. 1. There are three traces in the example,

i.e. [ABCBCD, ABCBCBCD, ABCBCD]. Based on

these traces, both activity B and activity C are

executed repeatedly. A redo invisible task will be

added between those activities to depicting a redo

condition.

2.1.2. Switch invisible tasks

The last invisible task represents the switch

condition. A switch condition occurs when there is

an activity of which it is uncertain where it is

heading or where it came from. An example of a

switch condition is shown in Figure. 1. There are

three traces in the example, i.e. [ABCF, ADEF,

ABEF]. Based on those traces, both activity B and

activity C are in a switch condition. To providing

the switch condition, an invisible task is added

between activity B and C.

2.3 Existing process discovery algorithms of

invisible tasks

Alpha# [12] is an algorithm used in process.

There are several algorithms of discovering a

process model containing invisible task. Those

algorithms are Alpha# [9], Alpha$ [10], Coupled

Hidden Markov Model-Nonfree Choice Invisible

Task (CHMM-NCIT) [2] and Coupled Hidden

Markov Model-Invisible Task (CHMM-IT) [5]. The

contribution of Alpha# and CHMM-IT is detecting

invisible tasks in the process model, while

Alpha$ and CHMM-NCIT can depict invisible task

and non-free choice in the process model. Both of

Alpha# and Alpha$ uses tuples that denote the

relationships of activity. Then, both of CHMM-IT

and CHMM-HRIT utilize Coupled Hidden Markov

Model to determine the relationships of activity.

There are several steps of Alpha# or

Alpha$ algorithm. First, the activities, including an

initial activity and the final activity, of the event log

are determined. For example, based on four traces

that are used to depict the model of skip condition in

Figure. 1, Tw= { A, B, C, D, E, F }, while the initial

activity is A and the final activity is F. The second

step is a set of activity pairs (DM) which fulfils the

first rule is created. The first rule is a as the first

activity of relationships with b and other activities

(for example activity k) and b as the end activity of

relationships with a and other activities (for example

activity l) and there is no relationship between

activity l as the first activity and activity k as the end

activity. Based on the example, DM = { (A, C) }

because A has relationship with B, C also has a

relationship with B, and there is no relationship

between B and itself.

The third step is RM as DM that fulfils the second

rule is determined. The rule is occurring a

relationship between two activities (for example

activity k and l) and a ~> k and l ~> b. This example

doesn’t have relationships that fulfil the second rule,

so RM is empty. The fourth step is arcs (YI) of the

model and places (XI) that are divided into Pin which

contains the first pairs for building relationships of

invisible tasks and Pout that contains the end pairs are

determined. Based on the example, Pin of XI =

{ (A,B) } and Pout of XI = { (B,C) }, so YI = { { (A,

B), (B, C) } }. The fifth step is activities that are in

both of Pin and Pout are replaced with invisible tasks

and the change is stored in DS. DS is { (A,

Invisible_Task), (Invisible_Task, C) }. The last step

is the process model is constructed with the result in

DS.

CHMM-IT and CHMM-NCIT are also have

several steps to depict invisible tasks. First, the

Coupled Hidden Markov Model is constructed.

Then, probabilities of the Coupled Hidden Markov

Model is trained with the Baum-Welch algorithm

[5]. Then, several rules are executed to depict the

invisible tasks. The steps to train the Coupled

Hidden Markov Model involves sequences of the

event log and two types of nodes, such as hidden

and observed variables, so the time complexity of

those algorithms is increased.

2.4 Graph database

Graph databases provide connection of data that can

be a guided chart for analysts [18]. Graph

databases are not similar to relational databases. A

relational database provides connection of tables as

a group of data with similar characteristics, while a

graph database forms connector of each data that is

Received: October 22, 2018 88

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.09

stored as a node. For discovering a process model,

the data is activities or events.
Table 1. An example of event log in database

Case_

Number

Activity_

Label

Starting_

Time

End_

Time

CN01 A 08:20 08:25

CN01 B 08:27 08:47

CN01 C 08:48 09:00

CN01 D 09:00 09:30

CN01 E 09:40 10:13

CN01 G 10:28 11:01

CN02 A 11:05 11:15

CN02 C 11:18 11:30

CN02 D 13:00 13:32

CN02 F 13:35 14:08

CN02 G 14:20 14:55

where :

Case_Number : identity number of processes of an

event log

Activity_Label : names of events or activities that are

executed in the processes

Starting_Time : the start time of execution of events or

activities

End_Time : the end time of execution of events or

activities

This research compares a relational database

with a graph database. A relational database has a

table with columns and rows, where the attributes

must be determined first. Hence, it is difficult for

users to change the attributes. An example of a

relational database is shown in Table 1, where

Case_Number, Activity_Label, Starting_Time, and

End_Time are the attributes.

In a relational database, relationships between

rows are not determined, so the relational database

must be modified by adding a new column, for

example, Previous_Act, which denotes the previous

activity. The modification can be seen in Table 2.

The additional column is determined manually by

users by looking at the database or forming an

additional query. Because the determination of

Previous_Act is determined in each case, not the

whole data, the Previous_Act column of the first

activity is zero.

Modifying a relational database consumes a

large amount of memory and time. On the other

hand, a graph database is easy to modify because it

is flexible and without modifying the table, a graph

database automatically defines the relations between

activities and their previous or next activities.

The nodes in a graph database are represented by

a row in the relational database. Attributes from the

relational database are saved in the nodes in a graph

database. For example, a graph database that

represents Table 1 is shown in a model of skip

condition, which is visualized on Figure. 1.

Table 2. The modified event log

CN AL
Starting_

Time

End_

Time

Previous_

Act

CN01 A 08:20 08:25 -

CN01 B 08:27 08:47 A

CN01 C 08:48 09:00 B

CN01 D 09:00 09:30 C

CN01 E 09:40 10:13 D

CN01 G 10:28 11:01 E

CN02 A 11:05 11:15 -

CN02 C 11:18 11:30 A

CN02 D 13:00 13:32 C

CN02 F 13:35 14:08 D

CN02 G 14:20 14:55 F

where :

CN : Case_Number

AL : Activity_Label

Previous_act : activities that are executed before an

activity that is described in the line of

the event log

- : no previous activity of the activity that

is in the same row

2.5 Control-flow pattern

This section explains how control-flow patterns

[19] can capture elementary aspects of processes

These patterns closely match the elementary control

flow concepts used in this research. These patterns

are a sequence and parallel patterns. The parallel

patterns consist of exclusive choice, simple merge,

parallel split, synchronization, multi-choice, and

structured synchronizing merge.

The sequence is a point about a relationship in

which one activity is processed after another activity

has been executed in the same process. The

exclusive choice is a pattern that has XOR Split as

the point of the workflow and simple merge is a

pattern that has XOR Join as the point of the

workflow. An AND Split is a point in parallel split

pattern and an AND Join is a point in

synchronization pattern. Finally, multi-choice has

OR Split as its point and structured synchronizing

merge has OR Join as its point.

2.6 Fitness

Fitness is a measurement of quality of a process

model based on the suitability of the model and an

event log. If a number of processes that are depicted

in the model is higher, the fitness value is higher.

To calculate the fitness, Eq. (1) shows the

calculation. Based on this equation, 𝑛𝑟𝑖𝑔ℎ𝑡_𝑐𝑎𝑠𝑒𝑠 is

the total number of processes that were depicted in

Received: October 22, 2018 89

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.09

the process model, while 𝑛𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑠𝑒𝑠 is the number

of processes of the event log.

For the example, based on the model of switch

condition in Figure. 1 (c), all traces, i.e. trace ABCF,

trace ADEF, trace ABEF can be depicted. Because

of that, 𝑛𝑟𝑖𝑔ℎ𝑡_𝑐𝑎𝑠𝑒𝑠 is three and 𝑛𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑠𝑒𝑠 is three.

In conclusion, the fitness value of the model of

switch condition is 1.0.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝐹) =
𝑛𝑟𝑖𝑔ℎ𝑡_𝑐𝑎𝑠𝑒𝑠

𝑛𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑠𝑒𝑠
 (1)

3. Proposed method

In this section, graph-based algorithm is

explained to modeling the event log into a process

model in Neo4j. Graph-based algorithm and Alpha#

algorithm are compared based on their time

complexity and fitness measurement.

The first step of graph-based algorithm is

converting the event log from CSV file into a graph-

database. After that, graph-based algorithm adds

parallel relationships and invisible tasks based on its

pseudocode in Table 3. The application of the

pseudocode should be in an order of rows of Table 3.

The sequence pattern is the starting point of the

pseudocode and the invisible task is the end point.

First, all activities are depicted as a model with

sequence relationships based on the pseudocode of

sequence pattern. Activity is a list of variants of

activities and all_activity is a list of all activities in

the event log. For example, based on traces [A,B,C],

[A,B,C], [A,C], activity has { A, B, C } and

all_activity has { A, B, C, A, B, C, A, C }. The

model is established by adding sequence

relationships if activities in activity are sequence in

each process of all_activity. The obtained sequence

relationships based on the example are A-

[:SEQUENCE]->B, B-[:SEQUENCE]->C, and A-

[:SEQUENCE]->C.

Secondly, the pseudocode of exclusive choice

until structured synchronizing merge patterns are

executed. Based on the example in previous

paragraph, the pseudocode of exclusive choice and

simple merge patterns is fulfilled. The result is A-

[:XORSPLIT]->B, B-[:XORJOIN]->C, A-

[:XORJOIN]->C.

Finally, the pseudocode of invisible task is executed.

An invisible task is created when an activity has

SPLIT relationships and JOIN relationships. The

invisible task is added between JOIN relationships

between the activity and other activities. Based on

the previous paragraph, activity A has two types of

relationships, i.e. XORSPLIT and XORJOIN. Then,

the invisible task is added between activity A and

activity C because their relationship is XORJOIN.

The final result is A-[:XORSPLIT]->B, B-

[:XORJOIN]->C, A-[:XORSPLIT]->Inv_Task,

Inv_Task-[:XORJOIN]->C. The illustration of this

result is shown in a submodel of Figure. 2 that is

starting from activity A and ending at activity C.

Table 3. Pseudocode of graph-based algorithm

Pattern Pseudocode

Sequence for idx=0 until idx=count_activity_

all_processes:

if all_activity[idx] and all_activity

[idx+1] are in one process:

for i=0 until i=count_variant_ activity:

if activity[i]=all_activity [idx]:

first_act = activity[i]

if activity[i]=all_activity [idx+1]

second_act = activity[i]

Create first_act-[:SEQUENCE]->

second_act

Exclusive

Choice

Match activity[i]-[:relation1]-

>activity[i+1]

if outgoing(activity[i])>1 and

ingoing(activity[i+1])=1 and

(outgoing(activity[i+1]=1 or

outgoing(activity[i+1]>1):

Create activity[i]-[:XORSPLIT]->activity

[i+1]

Delete [:relation1] from activity[i]-

[:relation1]- >activity[i+1]

Simple

Merge
Match activity[i]-[:relation1]-

>activity[i+1]

if (outgoing(activity[i])=1 or

outgoing(activity[i])=>1) and

ingoing(activity[i+1])>1:

Create activity[i]-[:XORJOIN]->activity

[i+1]

Delete [:relation1] from activity[i]-

[:relation1]- >activity[i+1]

Received: October 22, 2018 90

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.09

Parallel

Split
Match activity[i]-[:relation1]-

>activity[i+1]

Match activity[i]-[:relation1]-

>activity[i+2]

if outgoing(activity[i])>1 and

outgoing(activity[i+2])=outgoing(activity

[i]) and not (activity[i+1]-[:relation1]-

>activity[i] or activity[i+2]-[:relation1]-

>activity[i]):

Create activity[i]-[:ANDSPLIT]-

>activity[i+1]

Create activity[i]-[:ANDSPLIT]-

>activity[i+2]

Delete [:relation1] from activity[i]-

[:relation1]- >activity[i+1]

Delete [:relation1] from activity[i]-

[:relation1]- >activity[i+2]

Synchron-

ization

Match activity[i+1]-[:relation1]-

>activity[i]

Match activity[i+2]-[:relation1]-

>activity[i]

if ingoing(activity[i])>1 and

outgoing(activity[i+2])=

ingoing(activity[i]):

Create activity[i+1]-[:ANDJOIN]-

>activity[i]

Create activity[i+2]-[:ANDJOIN]-

>activity[i]

Delete [:relation1] from activity[i+1]-

[:relation1]->activity[i]

Delete [:relation1] from activity[i+2]-

[:relation1]->activity[i]

Multi

Choice
Match activity[i]-[:relation1]-

>activity[i+1]

Match activity[i]-[:relation1]-

>activity[i+2]

if outgoing(activity[i])>1 and

(outgoing(activity[i+2])<outgoing(activit

y[i]) and outgoing(activity[i+2])>1) and

not (activity[i+1]- [:relation1]-

>activity[i] or activity[i+2]- [:relation1]-

>activity[i]):

Create activity[i]-[:ORSPLIT]-

>activity[i+1]

Create activity[i]-[:ORSPLIT]-

>activity[i+2]

Delete [:relation1] from activity[i]-

[:relation1]- >activity[i+1]

Structural

Synchron-

ization

Merge
Match activity[i+1]-[:relation1]-

>activity[i]

Match activity[i+2]-[:relation1]-

>activity[i]

if ingoing(activity[i])>1 and

(outgoing(activity[i+2])<

ingoing(activity[i]) and

outgoing(activity[i+2]) >1):

Create activity[i+1]-[:ORJOIN]-

>activity[i]

Create activity[i+2]-[:ORJOIN]-

>activity[i]

Delete [:relation1] from activity[i+1]-

[:relation1]->activity[i]

Delete [:relation1] from activity[i+2]-

[:relation1]->activity[i]

Invisible

Task (Skip,

Switch, or

Redo)

Match activity[i]-[:relation1]-

>activity[i+1]

Match activity[i]-[:relation2]-

>activity[i+2]

if (:relation1=:XORSPLIT

and :relation2=:XORJOIN) or

(:relation1=:ORSPLIT

and :relation2=:ORJOIN):

Create invisible_task

Create activity[i]-[:relation1]-

>invisible_task

Create invisible_task-[:relation2]-

>activity[i+2]

Delete [:relation2] from activity[i]-

[:relation2]- >activity[i+2]

where :

activity[i]-[] : activity [i] as a beginning activity of a

relationship

[]->activity[i] : activity [i] as an end activity of a

relationship

[]->activity[i+1] : activity [i+1] as an end activity of a

relationship

[]->activity[i+2] : activity [i+2] as an end activity of a

relationship

count_activity : sum of count for all activities

create : cypher syntax for making only

activities or activities and their

relationships

delete : cypher syntax for deleteing

relationships or activities

i: invisible task : name of the invisible task

ingoing(activity) : sum of relations that come to the

activity

match : cypher syntax for searching the

statement that is followed this syntax

outgoing(activity): sum of relations that go from the

activity

:relation1, :relation2 : initial variable for determining

relationships in the graph-database

Received: October 22, 2018 91

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.09

Figure. 2 Result of modeling a process model by graph-based algorithm in redo condition

Figure. 3 Result of modeling a process model by graph-based algorithm in skip condition

Figure. 4 Result of modeling a process model by graph-based algorithm in switch condition

Figure. 5 Result of redo condition by Alpha# and Alpha$

Figure. 6 Result of skip condition by Alpha# and Alpha$

Figure. 7 Result of switch condition by Alpha# and Alpha$

Received: October 22, 2018 92

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.09

Figure. 8 Result of redo condition by CHMM-IT and CHMM-NCIT

Figure. 9 Result of skip condition by CHMM-IT and CHMM-NCIT

Figure. 10 Result of switch condition by CHMM-IT and CHMM-NCIT

Table 4. Fitness values of results constructed by different

algorithms and time complexity of algorithms

Algorithms
Condition Time

Complexity Redo Skip Switch

Graph-based 1.0 1.0 1.0 O(n2)

Alpha# 1.0 1.0 1.0 O(n4)

Alpha$ 1.0 1.0 1.0 O(n4)

CHMM-IT 1.0 1.0 1.0 O(n3)

CHMM-

NCIT
1.0 1.0 1.0 O(n3)

4. Result and analysis

4.1 Business process model

This evaluation uses simulation event logs that

describe skip condition, switch condition and redo

condition. All of the event logs have 60 cases,

wherein a redo-condition event log has three traces,

a skip-condition event log has four traces, and a

switch-condition event log has three traces. Traces

of redo-condition event log are ABCDE,

ABCBCDE, ABCBCBCBCDE. Traces of skip-

condition event log are ACDF, ABCDF, ACEF,

ABCEF. Traces of switch-condition event log are

ABCF, ABEF, ADEF. All of the event logs are

processed by two methods, i.e. graph-based

algorithm and Alpha#.

First, the graph-based algorithm converts the

event log in CSV format to a graph-database. Then,

graph-based algorithm determines parallel

relationships and invisible tasks in the graph-

database for obtaining a process model containing

invisible tasks. In this evaluation, there are three

process models that are obtained by graph-based

algorithm. Process models of Redo Condition, Skip

Condition, and Switch Condition by graph-based

algorithm are shown in Figure. 2, 3, and 4.

A process model of Figure. 2 has an invisible

task between activity B and activity C. Invisible task

is depicted between activity A and activity C in a

process model of Figure. 3. The invisible task

accommodates a skip condition of activity B. Based

on the traces, a skip condition of activity B is

discovered because several traces do not execute

directly activity C after activity C, but execute

activity B after activity A and before activity C.

Then, invisible task in Figure. 4 is depicted between

activity B and E to describe a switch condition.

After the process models of the graph-based

algorithm were obtained, the models of Alpha#,

Alpha$, CHMM-NCIT, and CHMM-IT were

obtained. Figure. 5 and 8 show the result of Redo

Received: October 22, 2018 93

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.09

condition, Figure. 6 and 9 show the result of Skip

condition, and Figure. 7 and 10 show the result of

Switch condition. Same as the results of the graph-

based algorithm, an invisible task in both of Figure.

5 and 8 occurs between activity B and activity C, an

invisible task in both of Figure. 6 and 9 occurs

between activity A and activity C to depict skip

condition of activity B and an invisible task in both

of Figure. 7 and 10 occurs between activity B and E

to depict switch condition.

4.2 Analysis

This evaluation compares the results of four

different algorithms based on fitness and time

complexity. The compared methods are the graph-

based algorithm with Alpha# algorithm,

Alpha$ algorithm, CHMM-IT algorithm, and

CHMM-NCIT algorithms. The fitness values

produced by these four algorithms were counted

(see Table 4).

Based on the traces of the event log to build a

model in redo condition, Figure. 2, 5 and 7 depict all

those traces. Because of this condition, the fitness

values of the graph-based algorithm and Alpha# are

1.0. Models that are established by all algorithms in

switch condition and skip condition also depict all

traces. It caused the fitness values of those

conditions are 1.0. The values can be seen in Table 4.

These high fitness values prove that graph-based

algorithms can model all of the processes from the

event log in a process model.

The second evaluation concerned the time

complexity of each method. The time complexity of

each algorithm is shown in Table 4. The graph-

based algorithm gets O(n2). The detailed time

complexity of graph-based algorithm is O(n2) for

converting event log into a graph-database, O(n2) for

executing exclusive choice until structured

synchronizing merge patterns, and O(n2) for

determining invisible tasks.

As the comparison algorithm, both of Alpha#

and Alpha$ consist of ten steps, wherein the first

step needs O(n) time complexity, the second step

needs O(n4), the third step needs O(n2) time

complexity, the fourth step needs O(n2) time

complexity, the fifth needs O(n2) time complexity,

and the last step need O(n) time complexity.

Because of that, Alpha# and Alpha$ spends O(n4).

Then, both of CHMM-NCIT and CHMM-IT have

several steps. The first step needs O(n2) time

complexity, the second step needs O(n3) time

complexity, and the last step needs O(n2) time

complexity. Overall, CHMM-NCIT and CHMM-IT

spend O(n3).

Based on Table 4, the graph-based algorithm has

the lowest time complexity. This is because the

graph-based algorithm already stores the relations

between activities before executing the rules for

determining invisible tasks.

5. Conclusion

Graph-based algorithm models business

processes containing invisible tasks based on an

event log. Graph-based algorithm uses graph-

database for storing activities and their relationships

based on the log.

Firstly, graph-based algorithm converts event

log in CSV format into a graph-database based on

the event log. Next, the graph database is improved

by adding invisible tasks and operators of parallel

relations to construct a process model containing the

invisible tasks. The process model that contains

invisible tasks is the final result of the graph-based

algorithm.

The results from the graph-based algorithm and

from other existing algorithms were compared. The

experiment conducted in this research showed that

they all had high fitness. However, the graph-based

algorithm is the most efficient method as proven by

the time complexity of the graph-based algorithm

(O(n2)), while both of Alpha# and Alpha# have a

time complexity of O(n4) and both of CHMM-NCIT

and CHMM-IT have a time complexity of O(n3).

The graph-based algorithm does not consider

anomalies in the event log. For future research, this

method can be developed to consider anomalies and

this method is tested in a large-scale event log.

Acknowledgments

Authors give a deep thank to Institut Teknologi

Sepuluh Nopember, the Ministry of Research,

Technology and Higher Education of Indonesia,

Direktorat Riset dan Pengabdian Masyarakat, and

Direktorat Jenderal Penguatan Riset dan

Pengembangan Kementerian Riset, Teknologi dan

Pendidikan Tinggi Republik Indonesia for

supporting the research.

References

[1] K. R. Sungkono and R. Sarno, “CHMM for

discovering intentional process model from

event logs by considering sequence of

activities”, In: Proc. of 2017 4th International

Conference on Electrical Engineering,

Computer Science and Informatics, pp. 1–6,

2017.

Received: October 22, 2018 94

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.09

[2] R. Sarno and K. R. Sungkono, “Coupled

Hidden Markov Model for Process Discovery

of Non-Free Choice and Invisible Prime Tasks”,

Procedia Computer Science, Vol. 124, pp. 134–

141, 2018.

[3] K. R. Sungkono and R. Sarno, “Constructing

Control-Flow Patterns Containing Invisible

Task and Non-Free Choice Based on

Declarative Model”, International Journal of

Innovative Computing, Information and

Control, Vol. 14, No. 4, 2018.

[4] K. R. Sungkono, R. Sarno, and N. F. Ariyani,

“Refining business process ontology model

with invisible prime tasks using SWRL rules”,

In: Proc. of 2017 11th International Conference

on Information Communication Technology

and System, pp. 215–220, 2017.

[5] R. Sarno and K. R. Sungkono, “Coupled

Hidden Markov Model for Process Mining of

Invisible Prime Tasks”, International Review

on Computers and Software, Vol. 11, No. 6, pp.

539–547, 2016.

[6] D. Rahmawati, M. A. Yaqin, and R. Sarno,

“Fraud detection on event logs of goods and

services procurement business process using

Heuristics Miner algorithm”, In: Proc. of 2016

International Conference on Information

Communication Technology and Systems, pp.

249–254, 2016.

[7] K. R. Sungkono and R. Sarno, “Patterns of

fraud detection using coupled Hidden Markov

Model”, In: Proc. of 2017 3rd International

Conference on Science in Information

Technology, pp. 235–240, 2017.

[8] T. Erdogan and A. Tarhan, “Process Mining for

Healthcare Process Analytics”, In: Proc. of

Software Measurement and the International

Conference on Software Process and Product

Measurement, pp. 125–130, 2016.

[9] L. Wen, J. Wang, W. M. P. van der Aalst, B.

Huang, and J. Sun, “Mining process models

with prime invisible tasks”, Data & Knowledge

Engineering, Vol. 69, No. 10, pp. 999–1021,

2010.

[10] Q. Guo, L. Wen, J. Wang, Z. Yan, and P. S. Yu,

“Mining Invisible Tasks in Non-free-choice

Constructs”, in Lecture Notes in Computer

Science, Springer International Publishing, pp.

109–125, 2016.

[11] Z. Besri and A. Boulmakoul, “Framework for

organizational structure re-design by assessing

logistics business processes in harbor container

terminals”, Transportation Research Procedia,

Vol. 22, pp. 164–173, 2017.

[12] J. Webber and I. Robinson, A programmatic

introduction to neo4j. Addison-Wesley

Professional, 2018.

[13] N. Francis, A. Green, P. Guagliardo, L. Libkin,

T. Lindaaker, V. Marsault, S. Plantikow, M.

Rydberg, P. Selmer, and A. Taylor, “Cypher:

An Evolving Query Language for Property

Graphs”, In: Proc. of ACM SIGMOD

International Conference on Management of

Data, 2018.

[14] Meiliana, S. Karim, S. Liawatimena, A.

Trisetyarso, B. S. Abbas, and W. Suparta,

“Automating functional and structural software

size measurement based on XML structure of

UML sequence diagram”, In: Proc. of 2017

IEEE International Conference on Cybernetics

and Computational Intelligence, pp. 24–28,

2017.

[15] W. M. P. van der Aalst, A. Adriansyah, and B.

F. Van Dongen, “Causal nets: a modeling

language tailored towards process discovery”,

In: Proc. of International Conference on

Concurrency Theory, pp. 28–42, 2011.

[16] A. A. Kalenkova, W. M. P. van der Aalst, I. A.

Lomazova, and V. A. Rubin, “Process mining

using BPMN: relating event logs and process

models”, Software & Systems Modeling, Vol.

16, No. 4, pp. 1019–1048, 2017.

[17] J. Dai, G. Su, Y. Sun, S. Ye, P. Liao, and Y.

Sun, “Application of advanced Petri net in

personalized learning”, In: Proc. of the 9th

International Conference on E-Education, E-

Business, E-Management and E-Learning, pp.

1–6, 2018.

[18] J. Joishi and A. Sureka, “Graph or Relational

Databases: A Speed Comparison for Process

Mining Algorithm”, arXiv preprint

arXiv:1701.00072, pp. 1–22, 2016.

[19] R. Sarno, W. A. Wibowo, F. Haryadita, Y. A.

Effendi, and K. R. Sungkono, “Determining

Process Model Using Time-Based Process

Mining and Control-Flow Pattern”,

TELKOMNIKA (Telecommunication

Computing Electronics and Control), Vol. 14,

No. 1, pp. 349–360, 2016.

