
Received: August 2, 2018 22

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.03

An Optimal Software Test Case Mechanism using Grey Wolf-FireFly Method

Parag Rastogi 1*

1Subharti Institute of Technology and Engineering, Swami Vivekanand Subharti University,

Computer Science & Engineering, India

* Corresponding author’s Email: parag0305@gmail.com

Abstract: Software testing is a major technique for designing the software without fault and use the resources

efficiently for the development of any software. The software bugs can be detected by the process of executing an

application or a program. Test Case Generation (TCG) is a method to identify the test data and satisfy the software

testing criteria. An automatic TC technique automatically determines where the TC or test data generates by utilizing

search based optimization method. In this paper, Gref-Wolf and Firefly algorithm (GWFF) method is used for

optimization of TC and generation of path coverage within the minimal execution time. In general, the challenging

task is constraint handling in which the fitness function is directly affected by updating the positions of the searching

agents. In proposed method, there is no direct relation between the fitness function and search agents, because the

agents update their positions with respect to the locations of alpha, beta and delta. Experimental results showed that

the GWFF method helped to generate path convergence within minimal execution time. Comparing to the existing

methods such as Bee Colony Algorithm (BCA), Particle Swarm Optimization (PSO) and Cuckoo Search (CS), the

proposed GWFF method provided better performance in terms of fitness values.

Keywords: Execution time, Firefly optimization algorithm, Gref-Wolf algorithm, Software testing, Test case

generation.

1. Introduction

Software has become an indispensable part of day

to day activities and is very significant in

technological as well as economic development [1].

Nowadays, software is significantly used in many

fields such as home appliances, nuclear-power-plants,

automobiles, telecommunications, medical devices

and so on [2]. A software testing process is a

significant task and indispensable stage to build high

quality software to make it free from bugs and defects

and to improve the quality. The software quality

estimation uses several factors such as reliability,

efficiency, software functionality, testability and so

on [3, 4]. Earlier researches focused on to reduce

complexities and the failure rate of the system. It is a

difficult task to compute the best cost in a large area

with a population at the random movement of many

components [5]. At present, the software testing takes

more time and cost and makes the software

development process as an expensive task. But, the

cost of testing decreases with the reduction of testing

time [6]. However, most of the software delivered

without enough testing, which is due to marketing

pressures and the aim to save testing time and cost,

but delivering the software without sufficient testing

may lead to loss of revenue [7].

The software testing is an essential technique and

it is very helpful for software developers. Several

existing research works implemented to improve the

quality of the software and their improvement is

noted. The PSO algorithm generates the path

coverage data, then the search direction of next

iteration depends on the previous iteration coverage

data [8]. The fuzzy clustering method is utilized to

decrease the testing period as well as the number of

TCs. This methodology uses Cyclomatic complexity

to define the full-fledged conditional coverage, but

this technique was more expensive [9]. The

combination of fuzzy logic and CS algorithm used for

software cost prediction and it provided the accurate

Received: August 2, 2018 23

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.03

prediction rate [10]. An environmental factor of

developing software classifies the two classes such as

testing environment and operational environment.

[11]. In this paper, GWFF method is applied for

optimizing the TC and generation of path coverage.

The traditional engineering issues has been prevalent

among analysts and improved in different

investigations. The heuristic strategies that have been

received to optimize this issue are: GWO, PSO, BCA,

CS and Ant Colony algorithm. However, the existing

strategies gives most extreme cost though the

proposed GWO able to discover a plan with the

minimum cost. In general, the GWO indicates high

performance in solving challenging issues, because

of the operators that are intended to enable GWO to

avoid local optima effectively and converge towards

the optimum rapidly. Moreover, this paper studied

ATM machine withdrawal operation related TC

generated from the combinational system diagram

graph are merged with the State Chart and Sequence

Diagram Graph (SCSEDG). The TCs are optimized

through proposed GWFF and within the minimal

execution time maximizes the generation of path

coverage.

The organization of the paper is as follows. The

existing recent research works on TC optimization

described in section II. The proposed system,

generation and optimization of a TC by employing

GWFF method described in section III. Section IV

shows comparative experimental result. The section

V, explains the withdrawal operation of ATM

machine case study. Finally, the conclusion is made

in section VI.

2. Literature Review

Several techniques for TC optimization suggested

by various researchers are listed in this section. The

below section contains existing methodologies used

for TC, the advantages and the limitations faced by

the method are briefly discussed.

R.K. Sahoo, D.P. Mohapatra, and M.R. Patra [12]

implemented a Firefly search technique used for

generating and optimizing the random TC with test

data. The fitness function was used to select the

values of test data for effective and efficient method.

The algorithm was compared with existing methods

and the results showed that the FireFly algorithm

produced optimal results which were more accurate

with less time. The automated generation of test data

work efficiently to generate best firefly solution only

for smaller programs.

M. Khari, P. Kumar, D. Burgos, and R.G. Crespo

[13] proposed the improvement of an automated tool

with significant components. The two essential

components of software testing are test suite

optimization and generation. This method provided a

set of minimal test cases with maximum path

coverage’s compared to other algorithms. The

automated fault detection was implemented by

generating optimal test suite. The automated testing

model should be hybridized for better results in every

aspect and the algorithm required a large number of

inputs.

M. Boopathi, R. Sujatha, C.S. Kumar, and S.

Narasimman [14] proposed a hybrid technique

namely Markov chain and Artificial Bee Colony

(ABC) optimization methods those were used to

achieve the software code coverage. A number of

paths were generated using Linear-Code-Sequence-

And-Jump (LCSAJ) coverage. The LCSAJ was

employed to decrease the number of independent

paths related to the paths generated by original path

testing. The calculation of test tolerability and

reliability of different kinds of critical software was

difficult to calculate through ABC optimization with

mutation testing.

B.S. Ahmed [15] developed a method for

reducing the number of TCs in configuration-aware

structural testing. The generation of optimized test

suite was carried out by the combinatorial

optimization algorithm for sampling the input

configuration. The evaluation results showed that the

use of CS in the combinatorial test suites generated

better results for optimization. The strategy proved its

effectiveness in detecting faults at programs by using

the functional testing approach. The method

consumes more time for detecting faults in

programming languages.

R.K. Sahoo, S.K., Nanda, D.P. Mohapatra, and

M.R. Patra, [16] proposed a hybrid BCA for

generating and optimizing the test cases from

combinational UML diagrams. The objective of this

proposed Hybrid BCA was to optimize the test cases

and generation of path coverage within the minimal

execution time. This gave better results in

comparison with particle swarm and Bee colony

algorithm. The proposed system took less time to

choose the best test path and it is more capable,

reliable for the development of software. The method

was unable to enhance the test case or test data

generation for large programs. The approach

consumed large amount of time.

To overcome the above addressed limitations, a

GWFF method is implemented to produce an

automatic and optimized test case with less execution

time.

Received: August 2, 2018 24

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.03

3. Proposed methodology

Model driven testing is a method that signifies the

behavioural model and encodes the system

performance with particular terms and conditions.

The model includes a group of objects that express by

variables and object relationship. This research work,

obtained an automated optimized TC or test data with

potential test paths from combinational system

graphs. The production and improvement of TCs by

GWFF optimization technique from combinational

IML diagrams. Here, ATM machine based cash

withdrawal operation is considered for generating the

TCs using SCSEDG. By using GWFF, the TCs are

optimized. The objective of the proposed method is

to optimize the TCs and generation of path coverage

with minimal execution time. The proposed method

takes minimum time to select the best path by

avoiding the local optima and it is more reliable for

the development of software. While intergating the

firefly algorithm with GWO, the proposed method

will handle large program to find the optimal

solutions.

3.1 Conversion of State Chart Diagram to State

Chart Diagram Graph

State chart diagram is under UML that describe

the time taken by a software system. It majorly

consists of transitions of states. The state-chart

diagram represents the different states and events and

different effects change the state. Fig. 1 represents the

state-chart diagram and a state chart diagram graph

for the withdrawal task of an ATM. Table 1

represents the dependency table for overall operation

of ATM which is shown in the state chart diagram

graph.

Figure.1 State chart diagram and state-chart diagram graph of overall operation of an ATM

Table 1. Dependency table of overall operation of an ATM through state-chart diagram graph

Symbol Activity Name Possible Number

of Outputs

Dependency Input Expected Outputs

A Insert Pin

Number

1(B) X User promotes to

enter Pin number

B: Pin number is forwarded

for

validation

B Pin Number

Validation

2(C,D) A Pin number

provided by the

user

C: Valid pin number

D: Invalid pin number

Received: August 2, 2018 25

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.03

D Invalid Pin 1(Y) B Incorrect Pin

number Message

F: Message displayed for

incorrect

pin number

C Valid Pin 1(E) B Correct Pin

entered message

E: Amount is forwarded for

Checking

E Amount

Withdrawal

2(F, G) C User promotes to

enter withdrawal

amount

F: Withdrawal request not

granted

G: Request granted for valid

withdrawal amount

F Displaying

Error Message

1(Y)

D Invalid amount

entered message

Y: Error message displayed

G Balance

Enquiry

1(Z) E Remaining

balance after

withdrawal

operation

Z: Remaining Balance

Message

printed

Figure.2 SCSEDG of withdrawal operation of an ATM

Where,

1. Check the withdrawal amount,

2. Check if negative or Zero.

3., 6., 9.,12., 15., Verified.

4., 7., 10., 13., Invalid amount.

Check withdrawal limit.

8. Check if multiple of 100.

11. Check today’s withdrawal limit

14. Check bank balance avaliability.

16. Valid amount message forwarded.

17. Incorrect amount message forwarded.

Received: August 2, 2018 26

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.03

Table 2. Sequence diagram graph based dependency table of ATM machine withdrawal operation

Symbol Activity

Name

Possible

Number of

Outputs

Dependency Input Expected Outputs

E1 Check if

amount is

non-negative

or non-zero

2(E2, E7) X1 Amount entered by the

user

E2: Amount is forwarded for

further checking

E7: Invalid amount

E2 Check

withdrawal

limit

2(E3, E7) E1 Amount entered by the

user

E3: Amount is forwarded for

further checking

E7: Invalid amount

E3 Check if

amount is a

multiple of

100 or not

2(E4 E7) E2 Amount entered by the

user

E4: Amount is forwarded for

further checking

E7: Invalid amount

E4 Check

today‘s

withdrawal

limit

2(E5, E7) E3 Amount entered by the

user

E5: Amount is forwarded for

Further checking

E7: Invalid amount

E5 Check bank

balance

availability

2(E6, E7) E4 Amount entered by the

user

E6: Amount is checked

E7: Invalid amount

E6 Granting

withdrawal

request

1(Z1)

E5 Remaining balance

after withdrawal

operation

Z: Remaining Balance

Message

print

E7 Not Granting

withdrawal

request

1(Y1) E1, E2, E3,

E4, E5

Invalid amount entered

by the user

Y1: Error message displayed

3.2 Conversion of sequence diagram to sequence

diagram graph

Sequence diagram explains how the objects

interact with each other for a particular test scenario.

Fig. 2 represents the SCSEDG for the withdrawal

task of an ATM. Table 2 represents the dependency

table for the withdrawal operation of ATM which is

shown in the sequence diagram graph.

3.3 Generation and optimization of test cases

After generating SCSEDG graph, next stage

generates and improve the TCs. The existing method

uses several meta-heuristic methods for optimization,

but in proposed method, for optimizing the TCs, the

GWFF algorithm is applied. The test coverage

criteria are calculated through TCs which covered a

number of elements and the generation of TCs are

reduced. The case generation using proposed method

architecture is presented in Fig. 3.

At first, the population size and TC generations

or number of iterations are fixed by the user. Then, a

preliminary population is arbitrarily generated and

their consistence fitness values are estimated and

stored. The best initial optimal values are estimated.

After that, the candidate solutions are ordered based

on their fitness values. The maximum fitness values

represent the solutions nearer to the optimality. After

arranging the operation, bottom half of the poor

solutions are rejected and uses the first half of the best

solutions. These solutions undergo two various

phases of optimization methods like GW and FF

algorithms.

Phase 1: Grey-Wolf-Optimization
In GWO, the optimization is done by meta-

heuristic techniques, which is bio-inspired from

nature of grey wolves. In a grey wolf community

there are four categories of grey wolves namely alpha,

beta, delta, and omega [20]. Among that alpha is

considered to be the leader of the group. Beta wolves

assist alpha in decision making and hunting which are

considered to be the next eligible candidate for an

alpha, if alpha attains the stage of retirement or death

while hunting. Delta wolves are elder wolves or

former alpha wolves or sentinels or scout that protects

the boundaries of their group. Omega wolves are the

least prioritized wolves which need to submit their

prey to all other wolves and follow all other category

wolves.

Assume that every wolf is searching solution in

the search space. The 𝑤𝑖 = ⟨𝑤𝑖1, 𝑤𝑖2, ……𝑤𝑖𝑛⟩
represents position vectors in the search space,

Received: August 2, 2018 27

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.03

whereas the dimension of the problem is shown as 𝑛.

The fitness function (based on problem definition) is

employed to estimate the position of the wolves.

Based on the fitness value the best wolves are

classified as first solution that is represented as 𝛼 ,

second is 𝛽, and third is 𝛿respectively. In the best

solution searching process, the wolves update their

position according to the position of 𝛼, 𝛽 𝑎𝑛𝑑 𝛿. In

the starting stage, the wolf population is generated

and the position of every wolf is initialized. After the

initialization of the coefficients, every wolf (search

agent) fitness value is estimated. After that, best

fitness solutions are selected as first, second and third

such as α, β, and δ, respectively.

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗ − 𝐴1
⃗⃗ ⃗⃗ . (𝐷𝛼

⃗⃗⃗⃗ ⃗), 𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗ − 𝐴2
⃗⃗ ⃗⃗ . (𝐷𝛽

⃗⃗⃗⃗ ⃗), 𝑋3
⃗⃗⃗⃗ =

𝑋𝛿
⃗⃗ ⃗⃗ − 𝐴3

⃗⃗ ⃗⃗ . (𝐷𝛿
⃗⃗⃗⃗ ⃗) (1)

𝑥(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =
𝑋1⃗⃗⃗⃗ ⃗+𝑋2⃗⃗⃗⃗ ⃗+𝑋3⃗⃗⃗⃗ ⃗

3
 (2)

In each iteration of the algorithm, the wolf’s

position update based on the position of wolves α, β

according to the Eq. (1), (2). On the basis of new

positions, the value of the fitness function of wolves

is calculated and 𝛼, 𝛽 𝑎𝑛𝑑 𝛿 will be selected. The

GWO algorithm is used for ranking up every host

resource based on their efficiency and utilization. As

a result, the makespan decrease gradually.

Furthermore, the swarm intelligent methods are

usually employed to solve the optimization problems

that don’t have a leader to monitor the entire

proceeding period. This limitation is resolved in

GWO method; the grey wolves have individual

leadership capacity. Moreover, this algorithm uses

few parameters and implementation is simple.

Phase 2: Fire-fly algorithm

The behaviour of fireflies flying in the tropical

summer sky is used to propose a new FireFly

algorithm (FF). The basic characters of FF are

searching a prey, communicating and finding a mate

by using bioluminescence with flashing patterns.

These natural properties of FF are used to implement

various metaheuristic algorithms. In this paper, some

characteristics of FF are idealized to develop a FF-

inspired algorithm. For simplicity, only three rules

were followed:

a) There is no problem arises in their sex, because

the FF will be attracted to other FF (i.e., all the

FF are unisex).

b) The brightness is directly proportional to the

attractiveness of FF. For instance, the less

flashing FF will move towards the brighter

flashing FF. The brightness may be decreased

because of increasing distance between the FF.

When comparing the particular FF with less

bright FF, this individual will move randomly in

the space.

The analytical form of the cost function is related

to the brightness of FF. In particular, the value of the

cost function is directly proportional to the brightness

for maximization problem. The other forms of fitness

function related to the brightness of FF are defined in

genetic algorithm.

The movement of a firefly 𝑖 is attracted to another

more attractive (brighter) firefly 𝑗 is determined in Eq.

(3).

𝑥𝑡+1
𝑖 = 𝑥𝑖

𝑡 + 𝛽0𝑒
−𝛾𝑟2

𝑖𝑗(𝑥𝑡
𝑖 − 𝑥𝑡

𝑗) + 𝛼휀𝑡
𝑖 (3)

Where 𝛽0 is the attractiveness at 𝑟 = 0 , the

second term is due to attraction, while the third term

is randomization with vector of random variables 휀𝑖

being drawn from a Gaussian distribution. The

distance between any two fireflies 𝑖 and 𝑗 at 𝑥𝑖 and

𝑥𝑗 can be the Cartesian distance 𝑟𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖2
 or

the 𝐼2 − 𝑛𝑜𝑟𝑚.

Received: August 2, 2018 28

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.03

Figure.3 Basic structure of proposed methodology

4. Experimental result and discussion

The proposed GWFF technique was implemented

in Net-Beans (version 8.2) on PC with 3.2 GHz with

i5 processor. The proposed GWFF methodology is

used for the generation of TCs with possible TCs

from the combinational system diagram graph which

combines the SCSEDG. The state chart diagram is

under UML describe the time taken by a system

software and this diagram consists of transitions of

states. In our research, the withdrawal of ATM task

is an example for chart diagram. The proposed

method performance is measured using Mean Time

Between Failures (MTBF).

MTBF: The MTBF includes the overall time

period of TCs failure and overall time period to repair

the TCs and its measure the software reliability. The

MTBF mathematical description is presented in Eq.

(4).

𝑀𝑇𝐵𝐹 =
1

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑜𝑓𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑
𝑡𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠 (4)

The Table 3 represents the fitness values and TCs

/ test data with various iterations. In this case, 200

iterations are considered. The function value depends

upon the parametric values of the input variables.

Fitness values of the proposed method GWFF are

compared with the existing methods like Hybrid

Received: August 2, 2018 29

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.03

method i.e. Particle Swarm Optimization + Bee

Colony Algorithm (PSBCA) [16] and BCA [17]. The

existing method PSBCA is unable to handle the large

programs for test case generations. In addition to this,

the method BCA obtained the optimal value at 160

iterations, whereas the PSBCA reached 120 iterations

for optimal solutions. The proposed GWFF method

found that the solution reached its optimum value

after 90 iterations.

The TC/test data of the proposed GWFF are

tabulated in Table 4 in terms of maximum fitness

values and the results are shown in Fig. 4.

The Table 4 shows that around 45% of TCs or test

data have the higher the fitness function f(x) value

and lies in between 0.7 and 1.0 fitness range using

PSBCA but in case of BCA, only 25% of TCs or test

data are available within the fitness value between 0.7

and 1.0. Finally, the proposed GWFF achieved 70%

of TCs or test data having higher function f(x) value

and lies between 0.7 and 1.0. Table 4 describes the

fitness values of both existing method and GWFF

method. From the table, the results proved that the

GWFF method achieved better fitness values than the

PSBCA and BCA.

Table 3. Fitness functional values of each test cases or test data with iteration numbers

Iteration

Number

BCA [17] PSBCA [16] GWFF

TCs/test data TCs/test data TCs/test data

1 4000 4500 4800

20 7600 10100 13100

40 14600 19800 20000

60 20900 24400 26500

80 26600 31400 36600

90 29400 35300 44000

100 32300 38600 44000

120 39000 42800 44000

140 43000 43800 44000

160 44000 43900 44000

180 44000 44000 44000

200 44000 44000 44000

Figure.4 Percentage of TCs or test data vs fitness value ranges

Figure.5 Different iteration vs TCs/Test data

Received: August 2, 2018 30

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.03

Table 4. % of TCs or test data in terms of maximum

fitness value

Fitness Value

Range

% of

TCs/Te

st data

(BCA)

% of

TCs/Test

data

(PSBCA)

% of

TCs/Test

data(GFW

W)

0 ≤ f(x) < 0.3 40 30 25

0.3≤ f(x) < 0.7 35 25 20

0.7≤ f(x) < 1.0 25 45 70

The Fig. 4 represents the fitness value range with

respect to the different number of TCs/test data. The

proposed scheme obtains an automated TCs or test

data belongs to the ATM withdrawal operation

employing GWFF method. The Fig. 5 indicates the

relation between two different variables such as

different TCs and various iterations are shown in

Table 3. Here, at 90th iterations the GWFF method

attained an optimal solution approximately. The

proposed scheme generated the TC or test data for

Bank ATMs withdrawal operation using GWFF. The

proposed method performance is presented in Table

5.

An experimental analysis of the proposed research

work performance is measured through evaluation

metrics such as MTBF and execution time. The

proposed GWFF takes 18.2 Sec of execution time for

selecting the best test path and its more capable,

reliable for developing the software.

The Table 6 represents the comparative study of

the ATM withdrawal operation based on different

optimization techniques and proposed method’s

performance. All optimization methods are used in a

similar fitness value range but the percentage of test

data are different. Compare to all existing methods,

the proposed GWFF algorithm achieved 70% of TCs/

test data having a high fitness function value and lies

between 0.7 and 1.0.

5. Case study of withdrawal task of an ATM

machine

The generated TC paths include a set of nodes

which is the subset of the original set of nodes. By

using SCSEDG system graph, the GWFF algorithm

finds out the seven major possible traversing path. In

all seven paths, only one path can generate an optimal

result and remaining six paths doesn’t obtain the

optimal result.

Path 1: X -> A -> B -> D -> F -> Y

Path 2: X -> A -> B -> C -> E -> E1 -> E7 -> F -> Y

Path 3: X -> A -> B -> C -> E -> E1 -> E2 -> E7 ->

F ->Y

Path 4: X -> A -> B -> C -> E -> E1 -> E2 -> E3 ->

E7 -> F -> Y

Path 5: X -> A -> B -> C -> E -> E1 -> E2 -> E3 ->

E4 ->E7 -> F -> Y

Path 6: X -> A -> B -> C -> E -> E1 -> E2 -> E3 ->

E4 ->E5 -> E7 -> F -> Y

Path 7: X -> A -> B -> C -> E -> E1 -> E2 -> E3 ->

E4 -> E5 -> E6 -> G -> Z

The path number represents as Path 1, Path 2, Path

3, Path 4, Path 5, and Path 6. All six paths give the

improper optimal result and these paths are

unsuccessful to achieve the ATM withdrawal

operation. Only path 7 gives the proper optimized

solution and it showed successful withdrawal

operation.

Table 5. Performance of proposed GWFF method

Methodologies MTBF Execution Time

BCA - -

PSBCA - -

GWFF 48msec 18.2

Table 6. Bank ATM withdrawal operation based

optimization techniques

Methodology

Employed

Fitness Value

Range

% of Test

Cases/Test

Data

PSO and BCA [16] 0 ≤ f(x) < 0.3 30

0.3≤ f(x) < 0.7 25

0.7≤ f(x) < 1.0 45

CS Algorithm [17] 0 ≤ f(x) < 0.3 30

0.3≤ f(x) < 0.7 15

0.7≤ f(x) < 1.0 55

Bee Colony Bat

Algorithm [18]

0 ≤ f(x) < 0.3 35

0.3≤ f(x) < 0.7 25

0.7≤ f(x) < 1.0 45

Harmony search

meta-heuristic search

Technique [19]

0 ≤ f(x) < 0.3 25

0.3≤ f(x) < 0.7 55

0.7≤ f(x) < 1.0 20

Proposed GWFF 0 ≤ f(x) < 0.3 25

0.3≤ f(x) < 0.7 54

0.7≤ f(x) < 1.0 70

Table 7. Path movement through different nodes in ATM withdrawal operation employing SCSEDG

<Path 1 <Path 2 <Path 3 <Path 4 <Path 5 <Path 6 <Path 7

State X State X State X State X State X State X State X

A(m1,a,b) A(m1,a,b) A(m1,a,b) A(m1,a,b) A(m1,a,b) A(m1,a,b) A(m1,a,b)

B(m2,b,c) B(m2,b,c) B(m2,b,c) B(m2,b,c) B(m2,b,c) B(m2,b,c) B(m2,b,c)

Received: August 2, 2018 31

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.03

D(m4,b,c) C(m3,c,b) C(m3,c,b) C(m3,c,b) C(m3,c,b) C(m3,c,b) C(m3,c,b)

F(m13,c,d) E(m5,b,c) E(m5,b,c) E(m5,b,c) E(m5,b,c) E(m5,b,c) E(m5,b,c)

State Y > E1(m5,b,c) E1(m5,b,c) E1(m5,b,c) E1(m5,b,c) E1(m6,b,c) E1(m6,b,c)

 E7(m12,b,c) E2(m6,b,c) E2(m6,b,c) E2(m6,b,c) E2(m7,b,c) E2(m7,b,c)

 F(m13,c,d) E7(m12,b,c) E3(m7,b,c) E3(m7,b,c) E3(m8,b,c) E3(m8,b,c)

 State Y> F(m13,c,d) E7(m12,b,c) E4(m8,b,c) E4(m9,b,c) E4(m9,b,c)

 State Y> F(m13,c,d) E7(m12,b,c) E5(m10,b,c) E5(m10,b,c)

 State Y> F(m13,c,d) E7(m12,b,c) E6(m11,c,b)

 State Y> F(m13,c,d) G(m14,b,d)

 State Y> State Y>

This case study represents the model-driven

generation of TCs or test data for large programs. The

GW optimization is used to find the path very

efficiently and quickly. This proposed method

enhanced the efficiency and produced the optimized

TCs.

6. Conclusion

In a model-driven approach based automated

software testing, TCs are very useful. In this work, an

evolutionary meta-heuristic algorithm called GWFF

was proposed. The automated TCs was optimized

with the test data by using this GWFF algorithm. This

algorithm was used to generate the TCs which were

optimized by taking an example of withdrawal

operation through an ATM machine automatically.

Test data values were selected based on the fitness

function. This proposed approach optimized the TCs

that were maximized with minimum iterations and

time. An experimental analysis demonstrated that the

GWFF method takes 16.4 Sec for the generation of

path coverage. Compare to all existing methods, the

proposed GWFF algorithm achieved 65% of TCs/

test data having higher fitness function value and lies

between 0.7 and 1.0. The proposed GWFF method

gave better results compared to PSO, CS, and BCA.

In future, generate the path coverage by using

different optimization technique to minimize the

execution time better than the present work with the

help of different case study.

References

[1] C. Jin, and S.W. Jin, “Prediction approach of

software fault-proneness based on hybrid

artificial neural network and quantum particle

swarm optimization”, Applied Soft Computing,

Vol.35, pp.717-725, 2015.

[2] Y. Shi, M. Li, S. Arndt, and C. Smidts, “Metric-

based software reliability prediction approach

and its application”, Empirical Software

Engineering, Vol.22, No.4, pp.1579-1633, 2017.

[3] S.K. Dubey, and B. Jasra, “Reliability assessment

of component based software systems using

fuzzy and ANFIS techniques”, International

Journal of System Assurance Engineering and

Management, Vol.8, No.2, pp.1319-1326, 2017.

[4] Y. Abdi, S. Parsa, and Y. Seyfari, “A hybrid one-

class rule learning approach based on swarm

intelligence for software fault prediction”,

Innovations in Systems and Software

Engineering, Vol.11, No.4, pp.289-301, 2015.

[5] C. Diwaker, P. Tomar, R.C. Poonia, and V. Singh,

“Prediction of Software Reliability using Bio

Inspired Soft Computing Techniques”, Journal of

Medical Systems, Vol.42, No.5, p.93, 2018.

[6] N. Khurana, R.S. Chhillar, and U. Chhillar, “A

Novel Technique for Generation and

Optimization of Test Cases Using Use Case,

Sequence, Activity Diagram and Genetic

Algorithm”, JSW, Vol.11, No.3, pp.242-250,

2016.

[7] B.S. Ahmed, “Test case minimization approach

using fault detection and combinatorial

optimization techniques for configuration-aware

structural testing”, Engineering Science and

Technology, an International Journal, Vol.19,

No.2, pp.737-753, 2016.

[8] C. Mao, “Generating test data for software

structural testing based on particle swarm

optimization”, Arabian Journal for Science and

Engineering, Vol.39, No.6, pp.4593-4607, 2014.

[9] G. Kumar, and P.K. Bhatia, “Software testing

optimization through test suite reduction using

fuzzy clustering”, CSI transactions on ICT, Vol.1,

No.3, pp.253-260, 2013.

[10] A. Kaushik, S. Verma, H.J. Singh, and G.

Chhabra, “Software cost optimization

integrating fuzzy system and COA-Cuckoo

optimization algorithm”, International Journal

of System Assurance Engineering and

Management, Vol.8, No.2, pp.1461-1471, 2017.

[11] A. Zaryabi, and A.B. Hamza, “A neural network

approach for optimal software testing and

maintenance”, Neural Computing and

Applications, Vol.24, No.2, pp.453-461, 2014.

[12] R.K. Sahoo, D.P. Mohapatra, and M.R. Patra,

“A Firefly Algorithm Based Approach for

Received: August 2, 2018 32

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.03

Automated Generation and Optimization of Test

Cases”, International Journal of Computer

Sciences and Engineering, Vol.4, No.8, pp.54-

58, 2016.

[13] M. Khari, P. Kumar, D. Burgos, and R.G.

Crespo, “Optimized test suites for automated

testing using different optimization techniques”,

Soft Computing, pp.1-12, 2017.

[14] M. Boopathi, R. Sujatha, C.S. Kumar, and S.

Narasimman, “Quantification of Software Code

Coverage Using Artificial Bee Colony

Optimization Based on Markov Approach”,

Arabian Journal for Science and Engineering,

Vol.42, No.8, pp.3503-3519, 2017.

[15] B.S. Ahmed, “Test case minimization approach

using fault detection and combinatorial

optimization techniques for configuration-

aware structural testing”, Engineering Science

and Technology, an International Journal,

Vol.19, No.2, pp.737-753, 2016.

[16] R.K. Sahoo, S.K., Nanda, D.P. Mohapatra, and

M.R. Patra, “Model Driven Test Case

Optimization of UML Combinational Diagrams

Using Hybrid Bee Colony Algorithm”,

International Journal of Intelligent Systems and

Applications, Vol.9, No.6, pp.43, 2017.

[17] R.K. Sahoo, D.P. Mohapatra, and M.R. Patra,

“Model Driven Approach for Test Data

Optimization Using Activity Diagram Based on

Cuckoo Search Algorithm”, I.J. Information

Technology and Computer Science, Vol.10,

pp.77-84, 2017.

[18] R.K. Sahoo, D.P. Mohapatra, and M.R. Patra,

“Automated Testing Approach for Generation

and Optimization of Test Cases using Hybrid

Bat Algorithm. International Journal of

Computer Applications, Vol.161, No.7, 2017.

[19] R.K. Sahoo, D. Ojha, D.P. Mohapatra, and M.R.

Patra, “Automatic generation and optimization

of test data using harmony search algorithm”,

Computer Science & Information Technology,

p.23, 2016.

[20] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey

wolf optimizer”, Advances in engineering

software, Vol.69, pp.46-61, 2014.

