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1. Introduction

  Mesenchymal stem cells (MSCs) possess characteristics of 

multipotent cells. Considering stem cells and mesenchymal 

progenitors of cells, they can differentiate into several tissues. Stem 

cells are able to self-renew, and at the same time, by asymmetric cell 

division or after specific activation, to generate lineage progenitor 

cells or differentiated cells. MSCs can be found in different human 

tissues such as fat, umbilical cord (UC), skin, placenta, amniotic 

Among resources of mesenchymal stem cells, human umbilical cord appears to be a rising 

source capable of differentiating into all germ layers, reaching and repairing lesion areas, 

and promoting wound repair, and it has also the capacity to influence the immune response. 

Human umbilical cord-derived mesenchymal stem cells are considered to be an optimal 

resource compared with other mesenchymal stem cells sources because they require a non-

invasive recovery. All these characteristics allow their use in heterogeneous applications. 

Human umbilical cord-derived mesenchymal stem cells can regenerate tissues, stimulate 

angiogenesis, modulate inflammatory pathway signals and recruit endogenous stem cell. 

Human umbilical cord-derived mesenchymal stem cells suppress mitogen-induced signals 

and modulate the activation and proliferation of several immune cells, modifying lymphocyte 

phenotypes activity. In culture, human umbilical cord-derived mesenchymal stem cellss 

show the capacity to create several tissues such as bone, cartilage, and fat. Human umbilical 

cord-derived mesenchymal stem cells can be isolated from the different compartments 

of umbilical cord and processed by using different techniques. Clinical applications of 

human umbilical cord-derived mesenchymal stem cells include graft-versus-host disease, 

autoimmune diseases such as Sjögren's syndrome and diabetes mellitus types 1 and 2, 

gynecological disorders like endometriosis. Recent studies have shown possible application 

on rheumatoid arthritis, osteoarthritis, and neuronal degenerative diseases. This review is 

focused on the resources, molecular profiles, propriety, in vitro characterizations, clinical 

applications and possible future usage of human umbilical cord-derived mesenchymal stem 

cells.
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fluid, synovial membranes, muscle and fetal tissues[1-5]. Due to their 

immunomodulatory properties and potential for tissue regeneration, 

they can be used therapeutically, especially for autoimmune and 

degenerative diseases.

  UC, a fetal-placental unit component, is composed of vessels (two 

arteries and one vein) surrounded by a specific mesenchymal tissue 

named Wharton’s jelly. Among UC components, there are MSCs 

that demonstrate similar characteristic to other MSC sources. Human 

umbilical cord-derived mesenchymal stem cells (UC-MSCs) are 

an optimal resource compared with others, as MSCs require non-

invasive recovery and they are a source of a good amount of MSCs. 

Moreover, they are not compounded by ethical problems and can be 

used for heterogeneous application[6,7]. For this reason, the aim of our 

systematic review is to discuss characteristics, the isolation methods 

and in vitro and in vivo studies and applications of UC-MSCs.

2. Materials and methods   

2.1. Search and screening of literature

  We searched the following electronic bibliographic databases: 

MEDLINE, EMBASE, PsycINFO, Global Health, The Cochrane 

Library (Cochrane Database of Systematic Reviews, Cochrane 

Central Register of Controlled Trials, Cochrane Methodology 

Register), Health Technology Assessment Database, and Web 

of Science (science and social science citation index). The 

search strategy included only terms relating to or describing the 

intervention, adapted for use with other bibliographic databases in 

combination with database-specific filters for controlled trials (where 

these are available): “human umbilical cord stem cells”; “isolation 

of cord stem cells”; “immunomodulation of human umbilical cord 

stem cells”; “tissue regenerative properties of human umbilical cord 

stem cells”; and “human umbilical cord stem cells therapies”. The  

search included articles in English language from the inception of 

the abovementioned databases to 1 April 2019.

2.2. Data extraction

  Titles and/or abstracts of studies retrieved using the search strategy 

and those from additional sources were screened independently by 

two review authors (D.R., C.C.) to identify studies that potentially 

meet the inclusion criteria outlined above. The full texts of these 

potentially eligible studies were retrieved and independently assessed 

for eligibility by two review team members (D.L., C.V.). Any 

disagreement between them over the eligibility of particular studies 

was resolved through discussion with a third (external) collaborator. 

A standardized, pre-piloted form was used to extract data from the 

included studies for assessment and evidence synthesis. Two review 

authors extracted data independently (S.D.A.A., T.K.), discrepancies 

were identified and resolved through discussion (with a third external 

collaborator where necessary). Missing data were requested from 

study authors, when required.

2.3. Data synthesis

  Considering the range of different outcomes measured across the 

studies and the very limited number of trials, we provided a narrative 

synthesis of the findings from the included articles. In particular, we 

divided these results into subchapters: “history and characteristic of 

MSCs and UC-MSCs”, “isolation and storage of UC-MSCs”, “in 
vitro and animal study” and “human protocols”.

3. Results

  We identified 13 809 articles, using the search strategy as detailed 

in the “Materials and methods” section, and 875 additional sources. 

After duplicates removed, we screened the remaining 234 articles: 

afterwards, we excluded 127 articles (89 were not published in 

English, 38 did not report detailed information about the topic). 

We retrieved and evaluate the remaining 107 articles, and further 

excluded 56 of them since they did not report detailed information 

about the topic. Data extracted from the remaining 51 studies are 

synthetized in the next sections. The full search, screening, and 

selection of the articles was summarized in the flow diagram of 

preferred reporting items for systematic reviews and meta-analyses 

(Figure 1).

3.1. History and characteristic of MSCs and UC-MSCs

  Since Conheim’s first discovery in 1867, concerning the presence 

of non-hematopoietic stem cells in bone marrow, numerous studies 

have been published. The stem cells, first observed in bone marrow 

as plastic-adherent fibroblastic cells capable of creating colonies 

in vitro[8], were named MSCs. They demonstrated the ability to 

differentiate into a variety of mesodermal cell types in vitro, such 

as osteoblasts, chondrocytes, adipocytes, and myoblasts[2,9,10]. 

MSCs can be found in several human tissues such as fat sources, 

dental pulp, tendon, UC, skin, placenta, amniotic fluid, synovial 

membranes, muscle and fetal tissues[10-16]. The UC, similar to 

bone marrow, contains a considerable amount of MSCs. The UC-

MSCs are easily collected at the time of birth following either 

normal vaginal delivery or cesarean section and can be used in 

the heterogeneous application. Their cost is yet considerably less 

expensive when compared to other invasive procedures such as bone 

marrow aspiration. Several studies demonstrated that UC-MSCs have 

a similar surface phenotype, differentiation capability, and immune 

properties compared to bone marrow and adipose MSCs. UC-MSCs, 

in particular, have more in common with fetal MSCs in terms of 

their in vitro expansion potential[17]. UC-MSCs have the ability to 

generate multipotent in vitro and adherent cells with osteogenic 

and chondrogenic potential. There are two different morphological 

phenotypes: flattened fibroblasts (majority) and spindle-shaped 

fibroblasts (minority) and they exhibit similar cell surface markers. 

MSCs are negative for CD34, CD26, CD31, CD73, CD90, CD105, 

CD44, and human lymphocyte antigen (HLA)-DR. They are 

positive for mesenchymal progenitor markers SH2, SH3, and SH4; 

adherent molecules CD29, CD44 and HLA-A, B, C. However, 
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a difference in CD90 expression was observed. Both morphological 

phenotypes of MSCs have shown the ability to differentiate into 

osteogenic and chondrogenic lines, but the flattened type has shown 

less capability in terms of differentiation and adipogenesis. This 

characteristic justifies the lesser sensitivity of UC-MSCs compared 

with bone marrow MSCs in generating adipogenic tissues[18,19]. 

Comparative proteomic analysis of bone marrow, placenta and 

adipose tissue derived from MSCs showed that 90 proteins were 

expressed differently according to their functional tissue orientation 

towards chondrogenic, adipogenic or osteogenic differentiation, such 

as apoptosis, oxidative stress and peroxiredoxin activity, stathmin, 

transgelin, tropomyosin, and heat shock protein 27. Placenta-

derived MSCs, similar to UC-MSCs, have a lower potential for 

undergoing adipogenesis but have a higher potential for undergoing 

osteogenesis compared to other MSCs[15]. Due to the presence of 

highly up-regulated apoptosis, oxidative stress and peroxiredoxin 

activity proteins, fetal-MSCs seem to be potential in the treatment 

of cellular ischemic disease caused by hypoxic conditions[20]. UC-

MSCs are easily found, manageable and expandable in vitro; they 

can be used in the heterogeneous application, cryogenically stored 

and reanimated. MSCs must be managed in compliance with good 

medical practice. Therefore, cells must be tested in accordance with 

the high standards of sterility protocols, quality control, storage and 

documentation[21].

3.2. Isolation and storage of UC-MSC

  In order to carry out UC-MSC isolation and storage, informed 

consent should be obtained from each donor-mother prior to delivery. 

Afterwards, collection is obtained from the UC or explanted from 

several body compartments. Collected tissue should be then stored in 

0.9% saline solution, handled and processed in a sterilized container 

within 12-24 h after delivery, using phosphate buffered saline in 

order to remove blood residues. Among the various techniques 

used to isolate UC-MSCs, we address hereby the most commonly 

practiced[22].

3.3. Explant method 

  The first step is to remove blood vessels from the UC and cut them 

into small parts. Later on, the UC fragments are put into a culture-

treated dish where they are attached to the bottom, using a medium 

replaced every 3.7 days for 2-4 weeks until a high level of fibroblast 

concentration is obtained. Following this, the UC fragments are 

detached through a trypsin solution and filtered. As one can imagine, 

the main limit of this technique is the low rate of retrieved cells due 

to the gross tissue fragments within the medium[22].

3.4. Enzymatic digestion method 

  In this method, it is important to remove the blood vessels, cut the 

UC into small parts of about 4 cm in well-lit conditions with a sterile 

blade, then mince and digest them with a specific enzyme solution at 

37 曟. Among the different enzymes, the most used are collagenase 

and hyaluronidase, with or without trypsin. Subsequently, cells 

are divided into two parts: the first is frozen in liquid nitrogen; the 

second is cultured with standard conditions and specific culture 

media. For instance, it is possible to use the alpha minimum essential 

Records identified through 
database searching 
            (n=13 809)

Additional records identified 
through other sources 
            (n=875)

Records after duplicates removed 
                 (n=576)

Records screened
        (n=234)

Records excluded: 127 
(n=89: not in English)
(n=38: not reporting 

information about the topic)

Full-text articles assessed
for eligibility
               (n=107)

Full-text articles excluded, 
with reasons
(n=56: not reporting

 information about the topic)

Studies included in
 quantitative synthesis 
            (n=51)

Figure 1. Flow diagram of full search, screening and selection of articles.
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culture media supplemented with 2 mmol/L L-glutamine, 100  U penicillin 

/1 000 U streptomycin and 15% fetal bovine serum[22,23]. The 

culture medium is changed every 3-7 days for at least 2 weeks until 

a high level of fibroblast concentration is obtained. After culture, 

cells are divided into two parts as before: one frozen and the other 

used for immunophenotypic assays[24]. Cells are counted by an 

automated cell counter system and the growth rate is calculated 

through doubling time evaluation. Flow cytometry analysis is usually 

arranged in the dark for 30 min at room temperature using specific 

antibodies such as CD105-PerCP-Cy5.5, CD31-phycoerythrin (PE), 

CD73-allophycocyanin, CD34-PE, PE-CD11b, CD90-fluorescein 

isothiocyanate, CD44-PE, CD19-PE, PE-CD117, CD146-PE and 

HLA-DR-PE[22].

3.5. In vitro and animal study

  Among MSCs, UC-MSCs show remarkable plasticity, capable 

of differentiating in vitro into different lines of multipotent cells: 

adipocytes, osteoblasts, myogenic cells, neurons, and cardiomyocytes. 

They demonstrate a simultaneous immune-privilege due to the lack of 

HLA-DR and immune-modulatory properties. These characteristics 

have made UC-MSCs a new clinical tool in the exploration of new 

medical frontiers in several autoimmune and chronic inflammatory 

disorders and in the repair of injured tissue[25-30]. Several studies 

were carried out, both in vitro and in vivo, to demonstrate the 

capability of UC-MSCs in modulating the immune system, 

repopulating and regenerating damaged tissues as well as in 

producing immunomodulation and immunosuppression function, 

changing the pathological mechanism of some diseases[24]. 

  UC-MSCs are candidate cells in the treatment of autoimmune 

diseases thanks to their immunomodulatory properties, for example, 

their ability to modify systemic lupus erythematosus disease by 

increasing the frequency of peripheral T-regulatory (Treg) cells and 

re-establishing the balance between lymphocytes T helper (Th)1- and 

Th2-related cytokines[25]. Yang et al demonstrated that UC-MSCs 

co-cultured with peripheral blood mononuclear cells are capable of 

suppressing mitogen-induced peripheral blood mononuclear cell 

activation and proliferation, modifying T lymphocyte phenotypes in 
vitro and changing the cytokine secretion profile. They are capable 

of determining a shift into anti-inflammatory cytokine pattern. 

Polyethylene glycol 2, transforming growth factor-b, and interleukin 

(IL)-10 are also up-regulated, with a contemporarily significant 

down-regulation of the pro-inflammatory cytokine pattern as 

interferon-c[31]. UC-MSCs can influence natural killer cell-mediated 

interferon-毭production. They suppress the causes of IL-12/IL-18 

rise due to the phosphorylation of signal transducers and activators 

of transcription 4, nuclear factor-kB, T-bet activity and releasing of 

activin-A[32]. 

  UC-MSCs also express nucleotide-binding oligomerization domain 

2 capable of regulating the inflammatory intestinal background in 

adult animals, which is, as already known, linked with inflammatory 

bowel diseases such as Chron’s disease. In vivo studies have shown 

how UC-MSCs administered in mice with colitis, thanks to the 

activation of nucleotide-binding oligomerization domain 2 with its 

ligand, muramyl dipeptide, increase anti-inflammatory responses, 

thus raising the production of IL-10 and other immune regulatory 

molecules such as forkhead box protein P3, transforming growth 

factor-毬, arginase type栻, C-C motif chemokine ligand 22, heme 

oxygenase-1, and tumor necrosis factor毩stimulated gene 6, 

promoting the infiltration of Treg cells and reducing the production 

of inflammatory cytokines. In particular, UC-MSCs injected 

into the bloodstream of mice do not reach the inflamed bowel 

directly but form aggregates in the peritoneum where they produce 

immunoregulatory molecules, including tumor necrosis factor-α 

stimulated gene-6, that reduce intestinal inflammation[33,34]. Diabetes 

mellitus is a chronic metabolic disease consisting of uncontrolled 

high levels of glucose in the blood. Diabetes mellitus type 1 affects 

young people with autoimmune destruction of pancreatic毬-cells[35] 

and is mainly in Th1 disease correlated with the synergic action of 

CD4+ and CD8+ cells on the毬-cell destruction process. Moreover, 

Th17, with their interleukin and reduction in Treg concentration, 

may play a crucial role in triggering autoimmunity in the early 

stages of several autoimmune diseases, including diabetes mellitus 

type 1[36-39]. In a study by Montanucci et al, using an in vitro 

microencapsulated  drug biohybrid UC-MSCs, they demonstrated 

the reduction of effector Th1 cells, the expansion of Treg cells which 

led to the rebalancing of the effector T cell/Treg ratio, up-regulation 

of indoleamine 2,3-dioxygenase 1, which is a master regulator of 

tolerance that mediates the differentiation in Treg. Nevertheless, no 

suppressive activity on Th17 cells was observed and the Th17 is 

insensitive to UC-MSCs immunomodulation[40]. Similar evidence 

was found in another autoimmune disorder, Sjögren’s syndrome, 

using the same technology of the biohybrid drug system. Sjögren’s 

syndrome is a systemic autoimmune disorder characterized by 

chronic inflammation of exocrine glands. In Sjögren’s syndrome 

models, microencapsulated UC-MSCs reduce T cell proliferation. 

CPUC-MSCs in particular decrease both Th1 and Th17 cells in 

Sjögren’s syndrome. They regulate several modified interferon-

毭inducible factors that play a role in the immunomodulation 

effect such as indoleamine 2,3-dioxygenase 1, which is similar 

to an up-regulated diabetes mellitus model and inducible nitric 

oxide synthase[26]. In vitro studies demonstrated how MSCs and 

UC-MSCs cultured with specific growth-factors can differentiate 

into cells exhibiting features of hepatocytes. Interestingly, UC-

MSCs express some hepatic markers as albumin,毩-fetoprotein, 

connexin 3 and demonstrate that they are capable of being grafted 

as well as long-term self-maintenance in recipient livers[41]. Burra 

et al have standardized pre-in vitro isolation procedures to obtain 

a UC-MSCs population with hepatogenic properties that can be 

used for in vivo transplantation. Mice with UC-MSC transplants 

demonstrated a tendency to resolve liver damage rapidly, influencing 

inflammation in liver antioxidant enzyme activity and the inhibition 

of myofibroblasts and stellate cell activation[42]. 

  Osteoarthritis is a degenerative chronic disease characterized by the 

degeneration and destruction of articular cartilage due to chondrocyte 

hypertrophy and apoptosis, together with changes in subchondral 

bone and osteophyte formation. Evidence shows that a soluble 

factor, named Kartogenin, is capable of differentiating MSCs into 

chondrocytes, thereby allowing new cartilage formation. Moreover, 

MSCs play a role not only in chondrogenic lineage differentiation 
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but also in modulating the immune response that leads to anti-

inflammatory effects[28]. The UC-MSCs are another potential cell 

source for treating osteoarthritis characterized by a high expression 

of hyaluronic acid, sulfated glycosaminoglycans, and collagen. They 

exhibit CD276 that are observed in undifferentiated chondrocyte, 

indicating the immune privilege of UC-MSCs. 

  UC-MSCs are currently being studied in scaffolds smeared with 

human UC-MSCs with the aim of cartilage regeneration specific to 

three-dimensional polylactide-co-glycolide in rabbit models with a 

chondral defect, which has exhibited positive results[29]. Evidence 

has shown the ability of transplanted MSCs-derived neural stem 

cells to follow lineage under specific neuronal growth-factors, 

to survive and differentiate into progenitors or neuron-like cells 

expressing neuron-specific markers such as nestin, glial fibrillary 

acidic protein,毬-tubulin栿, neuron-specific protein TH, and neuron-

specific enolase[43]. Intracerebrally transplanted UC-MSCs can 

reach the ischemic brain injury in rat models. After implantation, 

UC-MSCs are detectable in the damaged area expressing neuron-

specific markers[44,45]. Moreover, a reduction in the number of 

activated microglia, blocking immune cell infiltration activity, as 

well as a remarkable reduction of the extensive neuronal damage 

were observed, occurring during the ischemia-reperfusion and 

demonstrating the cytoprotective activity of UC-MSCs[46]. This 

cytoprotective activity is mostly correlated with the immune-

regulatory effect of UC-MSCs transplanted due to the modulation 

and scavenging of the host body’s immune response cells under 

inflammatory conditions as a result of a stroke. They can also 

enhance the proliferation of endogenous neurogenesis by suppressing 

apoptosis, secreting neurotrophic factors and inducing vascularization 

and angiogenesis[47]. A similar effect on traumatic brain injury in rat 

models was investigated, where UC-MSCs transplantation combined 

with hyperbaric oxygen treatment resulted in the significant recovery 

of neurological and cognitive functions[48]. This was also noted in 

rat models with spinal cord injury where intravenous or intraspinal 

transplantation of UC-MSCs showed a neuroprotective effect[49]. 

There are interesting studies concerning the effect of UC-MSCs 

in some neurodegenerative diseases such as Parkinson’s disease. 

Parkinson’s disease is characterized by a continuous dopaminergic 

cell loss in the nigrostriatal dopaminergic system at the basal 

ganglia. Authors demonstrated that the transplantation of neuronal 

differentiation into a dopaminergic phenotype of UC-MSCs in 

a Parkinson’s disease rat model can reduce the symptoms of the 

disease[50]. Liu et al, investigating the protective effect of UC-MSCs 

related with a multifunctional mediator, hepatocyte growth factor 

on the Parkinson’s disease cell model, showed the ability of UC-

MSCs + hepatocyte growth factor in promoting the regeneration 

of cells damaged by Parkinson’s disease through the regulation of 

intracellular Ca2+ levels[51]. 

  Endometriosis is a common, benign, estrogen-dependent and 

chronic gynecological disorder characterized by the presence 

of endometrial glands and stroma outside the uterine cavity that 

cause chronic pelvic pain and infertility[52-61]. Several non-

resolutive strategies, both surgical and medical, are used against this 

disease[62-64], but today stem cell therapy is a promising new and 

unprecedented strategy[65]. Among the several sources of stem cells, 

UC-MSCs are the strongest candidates for cell-based therapy. The 

presence of nerve fibers in endometriosis lesions are well known in 

literature and they play a role in both pathogenic and symptomatic 

manifestation[66,67]. 

  UC-MSCs have a specific use in therapies that include the use 

of cells. Moreover, they demonstrate anticancer effects on 

solid tumors mediated by cell-to-cell and/or non-cellular contact 

mechanisms. When UC-MSCs were used in mice with mammary 

adenocarcinomas, they demonstrated the ability to migrate to 

metastatic tumor sites, suggesting their homing abilities. This 

anticancer effect with a reduction of growth rate was observed also 

in ovarian cancer, osteosarcoma and breast adenocarcinoma[68-78]. 

Several molecules are produced by UC-MSCs, including cytokines, 

glycosaminoglycans, hyaluronic acid, chondroitin sulfate, cell 

adhesion molecules, and growth factors, which play a role in the 

anticancer effect[79-88].

3.6. Human protocols

  Several in vitro and in vivo studies have shown already that UC-

MSCs are safe and non-tumorigenic both in laboratory animals and 

non-human primates[83], and some clinical trials have already started. 

For example, MSCs, UC-MSCs included, can be administered to 

patients with autoimmune and chronic diseases such as Crohn’s 

disease. Some phase 3 clinical trials are currently ongoing with 

the aim to confirm the safety and the efficacy of this new therapy. 

Multiple administration of both autologous and allogeneic MSCs, 

derived from various sources including bone marrow, adipose 

tissue, and UC treatment, are feasible and have not been associated 

with any serious adverse event; principally, no tumor formation 

has been documented in humans until now. Furthermore, studies 

are underway in order to confirm the efficacy in fistulizing Crohn’s 

disease[89], and although stem cell therapy is not already a standard 

treatment for inflammatory bowel diseases, it may become a useful 

treatment, especially for severe or recurrent inflammatory bowel 

disease patients[90]. Multiple sclerosis is an immunologically 

mediated disease of the central nervous system. Several clinical 

trials were done to investigate the safety and the possible use of 

MSCs in multiple sclerosis, UC-MSCs included[91]. Hou et al 
underlined the effectiveness and the safety of UC-MSCs, and they 

also demonstrated that the inflammatory activity was significantly 

reduced after treatment. Furthermore, no other clinical relapse and no 

new magnetic resonance imaging lesions were detected in a 4-year 

treatment period. This evidence highlights the need to proceed with 

clinical trials in order to explore MSCs transplantation as a potential 

new therapy for patients with aggressive multiple sclerosis[92].

  Hypertensive diseases during pregnancy affect almost 10% of 

women worldwide and are categorized into gestational hypertension, 

chronic hypertension, and preeclampsia/eclampsia[93-101]. UC-MSCs 

in patients with preeclampsia show high expression of neuroglial 

markers, suggesting a commitment to neuroglial differentiation, thus 

transplantation of exogenous uncommitted MSCs may be a viable 

option for the treatment of preeclampsia[102-104]. 
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3.7. Cell-free therapy and MSCs as drug vehicles

  Although our systematic review focused on UC-MSCs, we 

must consider another two aspects in the clinical and therapeutic 

application of stem cells. The first is the cell-free therapy through 

microvesicles and exosomes derived from stem cells. Exosomes, 

small lipid vesicles of 40-130 nm, and microvesicles, larger 

than exosomes (100-1 000 nm), are included in the larger group 

of extracellular vesicles and they are secreted from MSCs[105]. 

Some studies, in fact, affirm that the MSCs play a regenerative role 

through a paracrine mechanism microvesicle-mediated[106,107]. 

Extracellular vesicles have the ability to carry nucleic acids, proteins 

and lipids with several roles: in biochemical processes by donating 

miRNAs that can silence the RNA translation, in inflammation 

by carrying and transferring inflammatory cytokines, in cell-to-

cell communication[105,107]. Furthermore, the RNAs carried by 

extracellular vesicles maintain their function showing the role 

of extracellular vesicles in epigenetic signalling[105]. For these 

reasons, microvesicles and exosomes have shown to influence 

injuries, infections and diseases with a high number of clinical 

and therapeutic applications: they have shown a cardio, renal and 

neuroprotective activity, a role in pancreas recovery, pneumonia, 

pulmonary hypertension, acute respiratory disease syndrome, 

the prevention of silico-induced lung fibrosis, against liver 

fibrosis[107,108]. Furthermore, they help re-epithelization by inducing 

cellular proliferation and angiogenesis[108] and they have shown 

an immunomodulatory role in systemic lupus erythematosus[107]. 

However, further studies are needed to evaluate the possible 

therapeutic application of extracellular vesicles in clinical practice. 

The second aspect is the drug delivery using MSCs as vehicles. 

MSCs, in fact, have some important advantages in target therapy due 

to their homing and self-maintenance capability and inflammatory 

microenvironment interaction[109]. MSCs have been engineered 

to express anti-proliferative, pro-apoptotic and anti-angiogenic 

factors for the treatment of several diseases. The most common 

application is for the treatment of cancer: MSCs, in fact, can localize 

and integrate into tumor stroma and deliver anti-cancer agents or 

oncolytic viruses[110]. In the end, MSCs can play in different ways a 

crucial role in future therapies. 

4. Discussion 

  Among MSCs sources, UC-MSCs as a resource seem to possess 

some brilliant advantages. UC-MSCs can be collected by a simple 

procedure after delivery, reusing a waste product and applying it 

for autologous or allogeneic procedures. Furthermore, these cells 

show multipotency, low immunogenicity, and immunosuppressive 

activity. These properties give hope for several different clinical 

applications[79]. Several pre-clinical in vitro and in vivo studies have 

shown the safety and the ability of these special cells in homing, 

adhesion, proliferation and differentiation into specific lineages and 

functions; the capacity to reply to surrounding signals, conditioning 

the behaviour of neighbour cells, as well as the capacity to regulate 

cellular and tissue processes such as tumorigenesis, inflammation, 

apoptosis and proliferation. These qualities are opening up new 

therapeutical scenarios, as some clinical trials are currently 

demonstrating for different degenerative, chronic and inflammatory 

diseases. 
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