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1. Introduction

  Climate change is one of the most significant environmental 

changes the human race is currently facing today[1]. Several 

studies have shown that climate change has already affected 

human health and its impact is continuously increasing[1–4]. The 

relationship between climatic factors and disease manifestations 

was also identified. Most notably, the strongest associations were 

seen between climate change variables and vector-borne diseases 

like dengue[5–7]. The anticipated variations in global temperature, 

rainfall, and humidity due to climate change will greatly affect the 

biology and ecology of vectors and subsequently increase the risk of 

disease transmission[8–10].

  Dengue fever is considered one of the most important arboviral 

diseases in tropical and sub-tropical countries transmitted to humans 

via mosquito bites[11,12]. According to the report of the World Health 

Organization in 2017, approximately 3.9 billion people are highly 
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at risk for dengue, and an estimated 390 million infections occur 

annually with about 96 million having clinical manifestations[13]. 

As per the Epidemiology Bureau of the Department of Health, 

every year, thousands of cases have been reported in the country; 

the prevalence of dengue escalated from approximately 46 300 in 

2008 to more than 131 000 in 2017. The blood-feeding cycle of 

the mosquitoes is influenced by some factors such as climate[14]. 

In countries where vector life-cycle is highly domiciliary, climate 

significantly helps in the survival of infected mosquitoes[15].

  It has been predicted that the endemic range of dengue infection 

will expand geographically due to the threat of global warming[3]. 

The change in climate variables affects three components in dengue 

transmission, namely, the pathogen, the vector, and the mode of 

transmission[16]. For instance, ambient temperature increases the 

rate of replication of the dengue virus (pathogen) within the vector 

and also shortens its extrinsic incubation period favoring a faster 

transmission from one host to another[17]. A 2 曟°rise in temperature 

would significantly lengthen the lifespan of the vector mosquitoes 

and would allow the rapid rate of reproduction and activity. This 

also shortens the incubation time of larva, resulting in an increased 

capacity of offspring production and subsequently increasing 

the transmission potential and incidence of dengue fever[17,18].

Precipitation and humidity also play a vital role in the prevalence of 

dengue fever. These factors provide a conducive habitation for the 

aquatic stages of the mosquito life cycle, thereby, increasing vector 

density. The effects of precipitation and humidity on available water 

resources may aid in regulating the population size and behavior of 

the mosquito giving strong impacts on vector distribution[19].

  Several studies were conducted to establish the link between 

dengue and climatic variables and to forecast dengue outbreak 

and occurrence based on this relationship. Studies used different 

approaches such as statistical and mathematical models, spatial 

analysis, and numerous indices to demonstrate the relationship 

between climatic factors and dengue occurrence[20]. For instance, 

Chen and Hsieh developed a vector-host dynamic model that focuses 

on temperature-dependent entomological parameters to determine 

the transmission dynamics of dengue fever with regards to the 

effects of temperature[21]. A spatial model of the socioeconomic 

and environmental determinant of dengue fever was also developed 

by Delmelle et al. to permit better detection of high-risk areas 

and to fortify the resiliency of the population[22]. An association 

between dengue fever incidence and meteorological factors in 

Guangzhou, China from 2005-2014 was tested using Distributed 

Lag non-linear models and Generalized Estimating Equations 

models with piecewise linear spline functions in an attempt to 

provide  an early warning and time control to predict the likely 

potential of climate change on dengue occurrence[23]. Li et al. and 

Hii et al. used different methods of time series Poisson analysis,  

generalized additive model approach and a multivariate regression 

model, respectively, to develop a dengue fever model and project 

its incidence using climatic variables[24,25]. Wu et al. also used a 

time series analysis to develop a predictor model that used weather 

variables to forecast the occurrence of dengue fever in Taiwan. 

However, Autoregressive Integrated Moving Average (ARIMA) 

models revealed a negative association between monthly temperature 

deviation, relative humidity and the incidence of dengue fever[26]. 

Nevertheless, best prediction models for dengue may vary from one 

region to another due to their complexity and methodology, and their 

high dependence on the nature of the variables used and the type 

of data collected. Therefore, there is no universal model for global 

analysis and prediction that exists.

  Monitoring and predicting the incidence of dengue may aid in 

the early public health mitigations to minimize its morbidity and 

mortality. In this study, we applied the ARIMA model for dengue 

fever with extensive use of remote sensing data in the four selected 

regions of the Philippines that recorded the highest prevalence 

of dengue from 2008-2015. The researchers find this model the 

most suitable for the study because it can deal with the stochastic 

dependence of consecutive data and to account for auto-correlations 

in time-series as well as seasonality, long-term trends, and lags. To 

minimize the limitations of climate data coming from meteorological 

stations in spatial and time scales, the researchers used the most 

accessible remote sensing data for climate variables, namely Global 

Satellite Mapping of Precipitation (GSMaP) data for rainfall and 

MODIS LST (MOD11A2) for night and day surface temperature 

as a proxy for temperature. This study aims to correlate climatic 

factors with the incidence of dengue fever (2008-2015) to develop 

a predictor model that will provide a theoretical basis for scientific 

guidance on its prevention.

2. Materials and methods

2.1. Study site

  This study was conducted in four regions of the Philippines that 

were identified as the areas most affected by dengue fever in 2015 

based on retrospective data. Regions included are the National 

Capital Region (NCR), Central Luzon Region (Region 栿), Ilocos 

Region (Region栺), and CALABARZON (Region 桇-A). Their 

combined cases account for more than half (55.7%) of the total 

recorded dengue cases in the entire country. Among the 17 regions 

of the Philippines, regions 桇-A, NCR, 栿, and栺are the densest 

concerning population with relative percentages of 14.7%, 12.75%, 

11.11%, and 4.98%, respectively. These four regions belong to the 

largest main island of the Philippines, Luzon, which is located on 

the northern part of the archipelago (Figure 1) and is regarded as the 

political and economic center of the nation.

  Because of its geographical location, the entire Philippines only 

experience two seasons based on rainfall volume, namely: the wet 

season (May to October) and the dry season (November to April). 

With regards to temperature, the warmest months are from March 

to October and the coldest months are usually recorded during 

November to February due to the winter monsoon.
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Figure 1. Regional Philippine map.

Image was taken from Neda Office. The Southern Tagalog Region is divided into two: 

CALABARZON Region (Region 桇-A) and MIMAROPA Region (Region 桇-B).

2.2. Remote sensing data

  For the researchers to extensively use remote sensing data, with the 

advantages of spatial coverage with high resolution and temporal 

availability, they utilized the GSMaP data as an alternative for surface 

rainfall measurement. The daily GSMaP/MVK (version 6) data[27] 

with a spatial resolution of 0.1伊0.1 degrees were extracted and 

accumulated to calculate the monthly amount of rainfall. Monthly 

Land Surface Temperature data from MODIS LST (MOD11C3 

with 0.05伊0.05 spatial resolution)[28] with a 1 km spatial resolution 

was also used as a proxy for air temperature. In addition to climate 

variables, one of the most commonly used remote sensing-derived 

environmental variables, the normalized difference vegetation index 

(NDVI) from MODIS (MOD13Q1) with a 250 m spatial resolution 

was also used for modeling its influence on dengue. These remote 

sensing-based parameters were aggregated to compute for the mean 

monthly variable for the Philippines as presented in Figure 2.

2.3. Statistical analysis

  To suit the models to the monthly incidence of dengue in the four 

regions by statistical “forecast” package in RStudio software, the 

Box-Jenkins methodology was used[29]. The gathered prevalence 

of dengue from 2008 to 2014 were statistically treated to develop a 

time series model that could project possible incidence of dengue. 

The recorded cases during the year 2015 were used as controls for 

validating the model. A natural log transformation was also used to 

stabilize dengue counts and avoid a non-constant variation of the 

cases.

  The model was structured based on the standard form of the 

ARIMA (p,d,q)(P, D, Q)s, where p is the order of auto-regression; 

d, degree of differencing; q, order of moving average; P, seasonal 

auto-regression; D, degree of seasonal differencing; Q, seasonal 

<25

25-50

50-100

100-200

200-300

300-400

400-500

500-600

600-700

>700

(mm)

Scale 1:10 000 000

0  55 110   220    330
km

115曘E                        120曘E                         125曘E 115曘E                        120曘E                         125曘E

Scale 1:10 000 000

0  55 110   220    330
Km

<13

13-16

16-19

19-22

22-25

25-28

28-30

31-34

>34

LST (曟)

115曘E                        120曘E                         125曘E115曘E                        120曘E                         125曘E

5 曘
N

   
   

   
   

   
   

   
   

   
 1

0 曘
N

   
   

   
   

   
   

   
   

  1
5 曘

N
   

   
   

   
   

   
   

   
   

20
曘

N
 

5 曘
N

   
   

   
   

   
   

   
   

   
 1

0 曘
N

   
   

   
   

   
   

   
   

  1
5 曘

N
   

   
   

   
   

   
   

   
   

20
曘

N
 

5 曘
N

   
   

   
   

   
   

   
   

   
 1

0 曘
N

   
   

   
   

   
   

   
   

  1
5 曘

N
   

   
   

   
   

   
   

   
   

20
曘

N
 

5 曘
N

   
   

   
   

   
   

   
   

   
 1

0 曘
N

   
   

   
   

   
   

   
   

  1
5 曘

N
   

   
   

   
   

   
   

   
   

20
曘

N
 

Monthly precipitation (GSMaP), April 2015 Monthly LST (MODIS MOD11C3), April 2015N N

Figure 2. Monthly GSMap data and LST data.

Dara in Figure are not overlapped. For example, the first one is <25, the next will be 25<= and <100, and so on.



63Maria Ruth B. Pineda-Cortel et al./Asian Pacific Journal of Tropical Medicine 2019; 12(2): 60-66

moving average; and s, seasonal period. In order to fit the log-

transformed time series data without covariates, different forms of 

ARIMA models (different combinations of p, d, q, P, D, and Q) were 

tested. The best ARIMA model was selected with the lowest Akaike 

Information Criterion: measures the relative goodness of fit of a 

model across the four regions. Afterward, using the selected ARIMA 

components (p, q, P, Q from 0 to 2), multivariate ARIMA models 

were fitted with log-transformed dengue cases in relation with all 

the climate variables and time lags, which were chosen by their best 

correlation with dengue. Finally, variables with P-values that met 

95% level of confidence were restricted via backward elimination 

and were included in the final model from all independent variables 

(rain, LSTd, LSTn, and NDVI). 

3. Results

  Firstly, each data from the four regions were examined to show 

seasonality and interannual variations of dengue incidence with 

climate and environmental variables (rain, LSTd, LSTn, and NDVI) 

during the period 2008 to 2014 as shown in Figure 3. This was done 

to ensure the suitability of the ARIMA model for studying monthly 

dengue data in each site. Histogram, an autocorrelation (ACF) 

of standardized residuals and Ljung-Box test were used to verify 

the adequacy of each model for each region similar to previous 

studies[30,31,32].

  Figure 4 shows the time series of the prevalence of dengue fever in 

the four regions of study from 2008 to 2015. The highest peak for 

both the Ilocos Region and Central Luzon Region was observed in 

2011 while the highest in CALABARZON region and the National 

Capital Region were recorded in 2015 and 2010, respectively. A 

seasonal pattern was also apparent and consistent in all four regions 

with incidence starting to rise in June, peaking during August, and 

lowest during April as seen in Figure 5.
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Figure 4. Time series of dengue cases in the four studied regions. 
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Figure 5. Monthly mean plots for dengue in the four studied regions.
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Figure 3. Seasonality and interannual variations of dengue incidence with climate and environmental variables.
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reported incidence of dengue, the fitted model in red, and the blue 

line serves as the predicted model in 2015. A comparison of the 

reported incidence and model fitted using a scatter plot (Figure 7) 

showed the regression function with its root mean square error value 

for a fitted period of the 2008 to 2015 data. The final model for each 

region was then confirmed using Ljung-box test of the residual with 

no correlation for fitted data.
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  In order to validate the model, the best time series ARIMA model 

with final independent variables found for each region was applied 

to forecast incidence of dengue during January to December 2015. 

Figure 8 shows the comparison of the predicted dengue cases with 

the reported incidence for Regions栺, 栿, 桇-A, and NCR. The 

results revealed that, in general, the modeled dengue at every region 

followed the trend of the reported incidence (Figure 8A) and showed 

a good linear regression with a square of correlation of 0.869 5 for 

the four regions (Figure 8B). 

4. Discussion

  Evaluating the adverse health effects related to climate change 

often involves analysis of different geographical and temporal 

scales. Development of prediction models of smaller scale by using 

localized parameters, such as host condition, vector density, weather 

parameters, and other environmental variables could accurately 

project the actual risk of human cases[26]. In this study, the 

researchers utilized different combinations of the best ARIMA model 

components obtained from four regions of the Philippines, namely, 

Ilocos Region, Central Luzon Region, CALABARZON region, 

and National Capital Region to investigate the influence of weather 

variability on dengue cases and predict future incidences. Time-

series analysis was used for this study in establishing the relationship 

between the changes of weather parameter, environmental factors, 

and the incidence of infectious diseases like dengue[33,34]. Weather 

variables were selected based on the best correlation of dengue with 

precipitation, LSTd, LSTn, and NDVI at varying time lags for 2008-

2015 period data. Numerous studies have supported this claim, for 

example, Sang et al. revealed that the occurrence of dengue fever 

is positively correlated with both temperature and precipitation 

but with different time lags[35]. Whereas, Wang et al. showed that 

dengue is significantly associated with relative humidity[36].

  The results of the study revealed that climate is an essential 

driver of dengue incidence. Temperature is significantly associated 

with dengue incidence, which corresponds to the result of 

other studies[26,37,38]. Temperature affects the potential spread 

of the dengue by shortening the extrinsic incubation period of 
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the virus within its vector and the developmental cycle of the 

mosquitoes[39]. The Philippines is considered a tropical country 

with monthly minimum temperature ranging from 22°曟 to 26°曟 

year-round according to the Philippine Atmospheric Geophysical 

and Astronomical Services Administration giving a conducive 

environment for Aedes mosquitoes to propagate, thereby, increasing 

vector density and facilitating a faster spread of the virus. 

  Rainfall also plays a crucial role in dengue transmission. It affects 

the life cycle of mosquitoes, such as mating and oviposition by 

providing a conducive habitat for propagation. Although this study 

finds rainfall as an important factor in predicting the incidence of 

dengue, other studies suggested that this variable did not have a 

significant role in the prediction of dengue fever[26,38]. The breeding 

sites for dengue vectors are mostly containers with water either 

filled manually or by rainfall. When vessels are manually filled for 

storage of water, vector quantity can then be basically independent 

of rainfall[38]. Also, excessive rainfall leading to flooding can also 

remove vector habitats, thus, reducing the vector population[8].

  The result of validation exhibited the different performance of the 

ARIMA model in predicting the occurrence of dengue fever cases 

centered on weather factors. The correlation of the projected with 

the reported cases of dengue from January to December 2015 was 

found to be highly significant. However, it should be noted that the 

model was limited to the weather and environmental factors and did 

not consider other variables such as mosquito abundance, land cover, 

and population size. Furthermore, social factors such as population 

movement and importation of dengue fever cases were neglected 

in the study. Hence, further researches should be conducted that 

includes both socio-economic and ecological factors.

5. Conclusion

  This study focused on presenting climate and environmental 

factors in modeling and predicting dengue fever in four regions 

of the Philippines. A consistent dataset of GSMaP rain, MODIS 

LST and NDVI for the 2008-2015 period was processed and used 

in ARIMA models. The identification of these variables, which 

were significantly correlated with dengue incidence, allowed the 

researchers in incorporating them in ARIMA models as external 

regressors. The results revealed that the remote sensing-based time 

series model is capable of assessing the temporal dependence of 

dengue incidence in the study setting. The model could well reflect 

the trend of dengue fever incidence in the chosen locale. Predicted 

dengue incidence for January to December 2015 period described 

well epidemics of dengue that occurred highest in the rainy season. 

Such a finding could be used as a guide in developing an early 

warning model based on weather forecasts and in planning public 

health prevention programs. However, eliminating the contribution 

on human activities pose a significant challenge in existing statistical 

approaches in projecting and modeling of dengue occurrence.
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