
Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

eISSN: 2237-2083
DOI: 10.17851/2237-2083.25.3.971-1010

 The choice of software and hardware in psycholinguistics:
review and opinion

A escolha de software e hardware na psicolinguística:
revisão e opinião

Thiago Oliveira da Motta Sampaio
Language Acquisition, Processing and Syntax Lab – LAPROS
Universidade Estadual de Campinas, Campinas, São Paulo / Brasil
thiagomotta@iel.unicamp.br

Resumo: Nos últimos anos, diversos softwares foram criados para
auxiliar a elaboração de experimentos em ciências cognitivas. A oferta de
softwares de simples utilização deveria facilitar o trabalho dos iniciantes,
porém, acabou trazendo novos problemas e dúvidas. Que software usar?
Qual deles é o mais adequado ao meu estudo e por quê? Através de
uma revisão sobre computação, linguagem de programação e técnicas
de apresentação de estímulos visuais, este artigo pretende fomentar a
discussão a respeito (i) dos diversos tipos de softwares para estimulação,
(ii) da importância de conhecer os detalhes técnicos do hardware utilizado
e (iii) da compatibilização hardware-software-método como uma variável
a ser controlada durante o desenvolvimento do protocolo experimental.
Palavras-chave: psicolinguística; ciências cognitivas; linguagens de
programação; métodos.

Abstract: In recent years, several software have been designed to aid
in the development of experiments in cognitive sciences. The offer of
user-friendly software should help beginners in their initial studies;
however, it has brought new problems and questions. Which software

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017972

should one use? Which one is more appropriate for my research and why?
The present paper brings a quick and panoramic review of computer
science, programming languages, and the presentation of visual stimuli.
Through these three topics, I intend to promote a discussion (i) on the
main types of software for stimulation in cognitive sciences, (ii) on the
importance of being attentive to the hardware specifications, and (iii)
on some compatibility issues between software-hardware methods as
independent variables in our experiments.
Keywords: psycholinguistics; cognitive sciences; programming
languages; methods.

Received on December 5, 2016
Accepted on March 27, 2017

1. Introduction

The following study will not present a hypothesis to be tested by
an experimental method. This is a paper on methods, aimed at questioning
the routine of a cognitive scientist who works with experimental
psychology/psycholinguistics, especially that which concerns the
development of experiments on a computer.

First, it is important to emphasize that the drafting of an experiment
on the computer does not necessarily require advanced knowledge of
computer programming. There is a wide range of software for this task for
both advanced users and beginners in computer programming; therefore,
grants to buy software are not necessarily a problem. For the majority of
experiments, one need not shell out hundreds of dollars for the acquisition
of software, since there are many open source options, which are fairly
efficient and easy to learn. Nevertheless, for some reason, these types of
software are not well known among Brazilian researchers.

The second question that I wish to present in this article is that,
despite the broad offer of applications, we should not completely trust
the software in the task of the communication between the user and the
machine. Contrary to recent operating systems, the software do not hide
from the user the configurations that are impossible to be performed by

973Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

the hardware, nor do they provide the necessary information about the
behavior of the hardware during the test. Many times we believe we have
total control of our variables without realizing that the computer is not
properly executing the tasks that we asked it to execute.

After presenting my main questions, I intend to begin a discussion
about these two aspects. Section 2 follows by problematizing the common
view of computer programming knowledge; section 3 aims to clarify
what computer programming languages are and how they work; section
4 presents a wide range of software for experimental design in cognitive
sciences, among programming languages, toolboxes, as well as paid and
free software with graphic user interface (GUI); section 5 discusses the
problems involved in the controlled visual experiments that stem from
the lack of knowledge about the hardware used in its application. I will
close this paper with some final considerations.

2. A quick discussion on software and hardware

Computer Science has a rule that seems to predict the rhythm
of technological progress: Moore’s Law (1965). This law demonstrates
that computers increase their complexity exponentially, doubling their
processing capacity every two years. If we use this rule to look back to the
past, we can see that the beginning of computer programming occurred
in the 1960s, exactly with the invention of the first chip.

Through Moore’s Law, it is possible to predict that even the most
enthusiastic of users are unable to keep up with technological progress in
its totality. While the quantity of information increases over time, people
take on more responsibilities, which requires a certain amount of time
to update themselves on all fronts of technology.

In this context, we are invaded by the idea that the children of
today are digital natives and naturally learn to use advanced technologies
that even the technology enthusiasts are no longer able to dominate.
However, on many occasions, this topic was discussed in personal
conversations and even at a round table discussion at the 3rd Meeting for
Scientific and Cultural Dissemination, held at the University of Campinas,
and it was found that this is only a half-truth.

It is undeniable that there are (i) young users who truly take
advantage of the accessibility to new technologies, to dominate their
resources and become excellent programmers. On the other hand,

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017974

what we observed in most of cases is that (ii) the software (especially
proprietary software) have become increasingly available both financially,
as they have become cheaper, and user friendly. This brings an illusion
of technological inclusion, in which many less advanced users are able,
with relative ease, to perform tasks that would be highly complex for
computer enthusiasts only a few years ago.

This can be observed quite clearly when we verify the evolution
of mobile operating systems. Ever-increasingly popular, these systems,
which today nearly every child has in his/her pocket, have reached the
point of dividing or even substituting functions that were carried out
exclusively by expensive and inaccessible computers. The result is
that many of these people who considered themselves to be experts in
information technology have nothing more than a vast knowledge about
how to use the wide range of software available on the market. These users
are able to use many types of computer programs in a skillful manner
through its user interface, in the front-end (Figure 1). However, they
often have an extremely limited knowledge about the communication
between software and hardware, and of troubleshooting, the back-end.

FIGURE 1 – Kernel (nucleus) of the system: the bridge between
software and hardware

Note: Kernel is the center of an operating system, its nucleus. It is responsible for
serving as a bridge between the software and the hardware of a computer. Front-End
users (interface-users) are generally limited to the knowledge of the software, without
the need to understand the inner workings of the computer at the other levels. We can
make an allusion to the visible part of an iceberg, when the major part of the rock is
submerged and outside of our field of vision.

DEVICES

SOFTWARE
(text editor, spreadsheets, image editor,audio player, etc.)

KERNEL
(system nucleus, operating the communication between software

and hardware)

PROCESSOR MEMORY

975Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

It is not difficult to find an enthusiast from the 1990s or the
beginning of the 21st century who has had to deal with innumerous
incompatibility issues of a new hardware (ex. sound and video cards),
or the issues of installing a compatible hardware, but without the right
driver1 to carry out the communication between the operating system
and the computer.

When we install Windows or Linux for the first time, they generate
generic drivers so that the hardware functions in minimal configurations.
The drivers for each component are searched after installation so that we
can use the machine in its full potential. Formerly, we should manually
search for drivers and install them. By passing through these experiences
and searching for solutions, users ended up gaining at least the basic
notions of hardware-software communication.

Today, both the hardware and the software, as well as the
communication between them, have become more efficient, allowing
the operating systems to hide the options that the hardware does not
support (much of this due to the presence of the correct drivers for the
installed hardware), which avoids part of the more basic problems that we
faced in the 1990s. In addition, the most recent versions of the systems
already come with a library of the most commonly used drivers. When
the system do not contain the proper driver for the devices, they offer
the option of an automatic search. Moreover, the user can always find
the driver on the manufacturer’s webpage, in CDs or in flash drives that
come with the device.

Mobile devices can also suffer from the underuse of its functions
caused by generic drivers. One key example is the quality of photos of a
smartphone. Contrary to the iOS, which have standardized their hardware
and forces third-party developers to use the official applications, Android
needs to adapt itself to the diverse types of hardware from different
brands. Each brand has an optimized photo application for their devices,
with a wide range of filters that improve the performance of the images
in the post-processing. Third-party applications, however, use a generic
driver to directly access any camera, which has consequences on the
image quality.

1 Software containing instruction of communication between the operating system and
the hardware.

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017976

The knowledge on how the computer receives the inputs may
not be necessary for some users, since everything seems to be properly
working. By contrast, this knowledge can be important for us to make
better choices of software, to solve some technical issues and, especially,
when we wish to strictly control how the hardware presents the stimuli
and collects behavioral data.

The first step towards discussing the communication between
the software and the hardware is the discussion on what the computer
programming languages are and how they work. To achieve this, I
will limit myself to those which are commonly used by researchers
in cognitive sciences, which includes psycholinguistics, in the main
American and European laboratories.

3. What are the Computer Programming Languages

Classic computers2 receive input in the form of electric current
inflows, corresponding to the numbers 0 (turned off) and 1 (turned on),
which we call bits. This makes it possible to distinguish two pieces of
information. To increase the amount of information to be processed,
computers were developed in such a way as to work in an eight-bit
(1 byte) system. Each sequence of eight bits can be related to different
information. For example, the representation of the number 8 corresponds
to the sequence 00111000, while the letter “e” (lower case) corresponds
to the sequence 01100101. This binary code, known as the machine
code, is the only one understandable by the machines. However, giving
instructions to the computer directly in binary code is not the easiest
way of programming. For this reason, computer programming languages
(hereinafter called CPL) arose in an attempt to make it more accessible.

2 In a nutshell, classic computers are different than quantum machines. Please notice
that the classic machines work with the transmission of bits, which can vary between
the off (0) and on (1) states. The quantum machines work with so-called qubits, or
quantum bits, in which the information, in addition to the binary states, can be in
a position overlaying 0 and 1 (vectors). This will have an effect on the quantity of
information transmitted each time and in the manner of transmission and reading of
the information by the quantum computers.

977Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

The CPLs are classified according to their level of abstraction.
The low level languages have an operation that is closest to the group
of instructions supported by the computers, which demands a greater
learning curve. The high level languages are closer to human language,
using functions in syntactic and semantic relationships that are easily
memorized and learned (Figure 2).

FIGURE 2 – CPLs and levels of abstraction

Note: The first step in a computer programming course is to write a code that makes the
machine show the phrase “Hello World” on the screen. Figure A corresponds to the letters
in binaries; Figure B uses an Assembly to exhibit this phrase; Figure C presents the same
command in C language; Figure D executes the exhibition of the text in Python. Please
note that the writing of the code becomes easier from A to D. The arrow exemplifies
the concepts of languages of low-level abstraction (closer to the binaries) and those of
high-level abstraction (closer to human languages). The manner in which we should
write and organize the functions and arguments is called syntax.

Assembly is a prime example of a low-level language. Actually,
Assembly is not exactly a specific CPL, but rather the name given to the
single language of each processor, containing a legible and memorizable
structure of the group of instructions that a computer can perform.
More advanced programmers can use Assembly to give instructions
to the computer or even to develop applications. The drawback of
the development in Assembly is that they are not intelligible to other

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017978

computers. Moreover, programming in Assembly is still a task for experts
in the field.

Computer programming only became popular with the
development of higher-level languages. By contrast, as in natural
language, when two interlocutors do not know a common language,
a translator/interpreter is necessary to establish communication. This
generates a processing cost and, consequently, an increase in the
computer’s response time.

A language is a software that allows us to create a sequence
of steps/functions called ‘algorithm’3. This algorithm will be read
and executed by the computer, however, computers only understand
binaries. For these instructions to be understood by the hardware, the
language needs to be ‘compiled’, which means, translated to binaries
what, for instance, is done by C and C++, or ‘interpreted’, which
means, transforming the command lines into a byte code, which will be
interpreted by a virtual computer, which is done, for instance, by Java
and Python.

One of the most commonly used languages today is ‘C’. As it is
created with the aim of developing operating systems, C is considered
the lingua franca of computer programming, much in the same way as
English is among natural languages. Hardware manufacturers, in addition
to Assembly, generally also write a code that maps the functions of its
devices directly to C, thus facilitating the work of developers. Despite
the practicality introduced by this language, computer programming
was still relatively restricted. In addition, many users have quite specific
needs that could be carried out in a simpler fashion and in a different
programming logic than that used by C. Thus a wide range of high-level
languages began to appear, such as Python, R, Matlab, and Java. The
advantage of these languages is that all allow us to execute each step of
the code throughout the programming to verify if it will function properly
in practice. This in turn facilitates (i) the identification and localization of
errors, which are normally indicated by the console itself (screen where
the code is written) during programming and (ii) the learning, due to its

3 An algorithm, in general, can be defined as an ordered sequence of steps that lead to
a specific result; hence, it is a finite sequence. An algorithm does not necessarily need
to be something mathematical or computational.

979Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

immediate feedback and identification of the syntactic arguments through
different colors, as can be seen in the example of Python (Figure 2).

Java is widely used, since, in addition to being free, it was heavily
marketed by its developer, Sun, which today is owned by Oracle. The
market then began to demand prior knowledge of Java to hire computer
programmers, which led universities to offer technology courses on Java.
Although it has lost market space more recently, Java is the programming
language adopted by Google to develop applications for Android systems.
The Java is interpreted and translates the code to a virtual machine (Java
Virtual Machine, JVM). This virtual computer is like an emulator that
simulates a machine in any computer, preventing the code from having
to be recompiled.

Python works in a similar way, using a virtual machine that is
installed in any computer and allows it to be executed in any computer,
regardless of the operating system. This favors the portability of its
codes and makes it one of the preferred languages of those who work
with experimental methods.

Matlab is a proprietary software based in C and Java. It was
created with the aim of facilitating programming based in data matrixes.
Though the codes written in Matlab run directly within the software,
Matlab contains a compiler and a runtime that allows us to run our codes
outside of its interface. One free option to Matlab is GNU Octave, whose
syntax is quite similar to that of Matlab, which facilitates migration.
Another option with a similar syntax is Julia (BEZANSON et al., 2014),
which, in some tasks, presents an excellent performance.

By contrast, R is well-known by all linguists and other researchers
who work with statistics, corpus analysis, or data mining. It is a free
software developed to facilitate the work with numerical and statistics
data, which is widely used in cognitive sciences. Psycholinguists
commonly use R to analyze data due to its programming logic and to the
diverse, freely distributed scripts for this purpose, but nothing hinders
it from being used for the design and the application of experiments.

In sum, we have thus far observed that the processor contains an
architecture that receives a type of information to execute an algorithm.
This information can be elaborated by means of a programming language
that, in addition to facilitating the tasks of the developer, can also be
translated to the machine through the compilers and interpreters, in

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017980

exchange for a performance loss related to the processing cost of the
algorithm and of the translation method. Now that we have a basic
understanding of the communication between the hardware and the
software, we will now continue our discussion on software developed
for the creation and presentation of stimuli in cognitive sciences.

4. Software for experiment design in Cognitive Psychology

One of the greatest difficulties of a student who decides to work
with the experimental method is learning how to control the stimuli and
psychometric data-collection properly. Moreover, I have noticed that,
in Brazil, most experiments are carried out on proprietary software that
costs more than a thousand dollars and could just as easily have been
carried out on free software. For this reason, I propose a change in the
relationship of Brazilian psycholinguists with software for experimental
design.

In this light, we have come across four basic problems that,
though in no specific order, will be considered and discussed throughout
this section:

(i) Choice: the variety of software available for experimental design;

(ii) Familiarity with the task: the lack of familiarity with more basic
concepts on hardware-software interface and programming;

(iii) Learning: the learning curve; and

(iv) Portability: the software options can be limited according to the
operating system.

As regards the choice, for some decades now, the options available
to develop psychometric tests were scarce, forcing beginners to use the
resources available in their laboratory. This facilitated the choice factor
but affected the learning factor, given that we needed to become familiar
with the available software. Today, we have seen a growth of software
for experimental design, providing us with more and more options.

Today, it is usual for American and European labs to have three
to four options available to facilitate the work of their researchers and
visitors that may have experience in one or more of them. When choosing

981Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

a post-doc, it is also usual for laboratories to demand experience in one or
two types of software, corresponding to those in which their researchers
work with. This brings a uniformity in the way in which the research is
conducted in the lab. On the other hand, what should be an advantage,
in certain cases, ends up becoming a problem.

Today, dozens of software can be used to develop experiments.
Some of these offer us the creative freedom of Turing complete4 languages,
including C, Presentation, Java, R, Python, and Matlab, together with
its toolboxes. Others give us the advantage of the learning curve at the
expense of the freedom of creation in proprietary software with a GUI,
such as E-Prime, Paradigm, and SuperLab. Still others combine the GUI,
the freedom of programming, as well as the portability between different
operating systems, such as PsychoPy and OpenSesame, both free.

The most pressing question falls on the beginners. Still
unexperienced and having to divide their attention among undergraduate
studies, scientific training, and proposals for grants and for the M.A.
program, they can present even more difficulties, both concerning the
choice and the getting used to a software during their first experiments.
At this first moment, even those who believe they have a good level of
knowledge, will most likely opt for the most practical option, regardless
of whether it is in fact more practical for him/her, or whether it is the
best option for his experiment.

As seen above, programming languages allow us to create
everything that our skill as a programmer allows. In this light, it is perfectly
possible to use it to create any kind of experiment, from the simplest
and recurrent to the more complex, with completely new methods. Even
so, writing all of the necessary commands for communication between
software and hardware, in addition to rewriting everyday functions,
can hinder and prolong this work. To facilitate the task, many research
groups with skills in computer programming have developed software
to make life easier.

4 According to Alan Turing, a computer programming language should contain (i) a
means of repetition or of conditional jump and (ii) an end, allowing for the generation
and reading of a result from the programmed algorithm. Upon attending to these
conditions, the language is called Turing Complete. Turing Complete languages allow
us to program everything that our programming skills allow.

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017982

The following subsections present and discuss some of these
options. Technical comparisons, such as accuracy and precision in
psychometric data-collection or their processing speed, however, are
outside of the scope of this paper, especially since these measurements
can change according to the hardware used. To guarantee that the times
presented are not altered due to problems in the system and/or hardware,
it is necessary to use external measures (PLANT et al., 2004; PLANT;
TURNER, 2009). If these comparisons are interesting for you, I would
suggest beginning by reading the battery of tests conducted by Garaizar
et al. (2014), comparing the E-Prime 2, PsychoPy, and DMDX, or the
article by De Leeuw & Motz (2015), which compares the response
times of PsychToolbox 3 with those of jsPsych running in browsers and
facilitating the viability of web-based experiments.

4.1 Experimental software options #1: Toolboxes

A toolbox is a group of functions written for specific purposes.
With these tools, we do not need to code all communication between the
hardware and the software. We simply need to use the existing functions
and to define their parameters, which facilitates and automatizes the
more common tasks, in our case, of the presentation of stimuli and of
data collection. The graph below shows us some of the toolboxes used
for experiments in cognitive sciences:

983Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

GRAPH 1 – Some toolbox options used for experimentation in cognitive sciences5

For Python
•	 ExPyriment
•	 PyGame
•	 Vision Egg

Krause & Lindermann (2014)
Shinners (2011)

Straw (2008)
For C

•	 PsyToolKit Stoet (2010)
For Java

•	 PsychJava www.psychjava.com5

For Matlab
•	 Psychtoolbox 3 Kleiner et al. (2007)

For JavaScript (Web-based Experiments)
•	 jsPsych De Leeuw (2014)
•	 JATOS Lange; Kühn; Filevich (2015)

ExPyriment (KRAUSE; LINDERMANN, 2014) was drawn
up to be a universal platform. It has functions for behavioral and
neurophysiological experiments, and it is multiplatform, thanks to
Python. Its idea is to have a structured, linear logic that is easy to
transpose the experimental design to the code. One of its advantages is
the possibility of running on a version for Android. In its site, it is possible
to find tutorials and demos to be studied and used in other experiments
(see Annex).

The developers of Vision EGG (STRAW, 2008) were searching
for a simpler way to use Python programming for graphic processing,
especially for 3D graphics. Therefore, they use OpenGL API6 and develop
the toolbox as an interface for visual stimuli experiments.

5 The PsychJava website has been offline for some time now. I was unable to verify
the reason. As it was already incorporated into other software, I believe that the project
has been discontinued.
6 The term API (Application Programming Interface) refers to a group of algorithms
created by the developer of a software to allow other types of software, or a code created
by the user him/herself, to use or modify some hidden functions of the application in
question.

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017984

PyGame (SHINNERS, 2011) has a different proposal. Originally
created for gaming development, its own code is responsible for tasks that
demand higher processing power, such as video and audio processing.
These tasks work in a different way than the written code, in order to
achieve the best performance possible. These characteristics made it a
good tool for visual and auditory experiments.

One of the most widely used toolboxes today is Psychtoolbox
3, or PTB-3, (KLEINER et al., 2007), developed for Matlab and GNU
Octave. The PTB-3’s proposal is to provide functions that create an
interface between Matlab and the hardware. This allows a better control,
accuracy, and precision of visual and auditory stimuli, despite being a
language that is more distant from the hardware (high-level abstraction).
Thanks to these characteristics, I would suggest PTB-3 as a great tool to
begin programming pshychological experiments. The PTB also has an
interface with the graphic API OpenGL. PTB3 also have some functions
written by the hardware manufacturers, such as the EyeLink Toolbox,
provided by the SR Research for the development of tests in their eye-
tracking equipment.

Although Matlab has versions in different platforms, it is quite
likely that some codes need to be slightly modified so as to become
compatible with a new operating system, such as keyboard mapping.
Nonetheless, because it has been widely adopted, PRB-3 is constantly
updated to correct bugs, to increase its functions, and to improve its
performance and compatibility. Furthermore, the toolbox contains
PsychJava that have not yet been launched on the market.

4.2 Experimental software options #3: Web-based experiments

If you have the need to conduct a massive (online) experiment
or a web-based experiment, there is the possibility of using languages
to develop webpages, such as HTML5, CSS, and JavaScript. Another
option is Flash, which, for many technical, strategic, and market, reasons,
has been rejected by the market.

These languages also have their toolboxes, facilitating the task
of drawing up psychophysical tests on the web. One very recent toolbox
is jsPsych (DE LEEUW, 2014), for JavaScript. jsPsych provides some
demo codes that can be reused for other types of tests. Those that already
work with JavaScript, CSS, and HTML5 will most likely find it easy to

985Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

develop experiments with jsPsych. Another tool for online studies also
works on JavaScrip: JATOS (Just Another Tool for Online Studies), from
Lange, Kühn & Filevich (2015).

There are also options in other languages. Developed for C, the
PsyToolKit was created by Gijsbert Stoet for the creation and application
of behavioral experiments. PTK is similar to an interpreted high level
language for experimental purposes. It has a double compiler that
transmutes the code to C during programming, and then the compiler
transforms this into the machine’s language. Since its 1.4 version, it
has been possible to interpret it in the Java virtual machine (JVM).
This toolkit also contains a web interface that allows one to create and
run web-based experiments, in addition to a graphic interface for the
creation and application of online questionnaires (PsyQuest). In its
site, it is possible to find many tutorials and demos of the more popular
experimental paradigms (see Annex).

Although some tests can be easily transferred to web platforms,
I am still a bit skeptical concerning the uniformity of the algorithm
between different hardware. Some visual and auditory stimuli can vary
greatly according to the monitor, speakers, headphones, and hardware
used, in such a way that each participant is stimulated by hardware of
different quality and processing power. Different computers and browsers
can have bugs or present the experiment and collect chronometric data
in a different manner. In addition, we do not have a good control over
the environmental conditions, such as the noise and lighting level of the
room, or over who the participants are in cases in which this information
is relevant to the interpretation of the data.

As regards the reaction times, De Leeuw & Moritz (2015)
conducted a battery of tests, comparing the performance of jsPsych
with that of PsychToolbox 3, and defend the use of JavaScript even for
chronometric tests. By contrast, Reimers & Steward (2014) compared
tests in JavaScript and in Flash. The authors argue that both can be useful
tools for experiments. In recent years, however, Flash has been excluded
from the web environment, which leads me to believe that, even though it
is still useful, it is just a matter of time that the tests written in Flash will
no longer be viable. Even so, Flash generates files that are quite heavy
in relation to other software, which can compromise the performance in
older and modest machines.

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017986

Another interesting option to conduct experiments is mobile
software development, which has become an increasingly used tool.
Experiments for cell phones or tablets can be developed directly in Java
(Android) or Swift (iPad), or in some specific softwares, as we will see in
the following sections. For iPad, there is still the option to develop it in
PsyPad, created and maintained by Andrew Turpin (TURPIN; LAWSON;
MCKENDRICK, 2014).

4.3 Experimental software options #3: Languages for cognitive
experimental design

Toolboxes have facilitated the work of developing cognitive
experiments in many programming languages. However, if the
programmers create their own languages to facilitate their own tasks,
such as R and Matlab, the researchers have also created languages that
facilitate the development of experiments in cognitive sciences.

This is the case of Psychology Experiment Building Language
(PEBL; MUELLER; PIPER, 2014), based on C++, which is free and
is designed specifically for the development of experiments with text,
image, audio, and video stimuli. This language is available for Windows
and MacOS, and its use consists of the creation and edition of the demo
text files that contain the necessary codes so that the parser – of the
programming language – presents the stimuli and collects behavioral
data (see Annex). Another free option is DMDX (FORSTER; FORSTER,
2003), which is commonly used for visual experiments.

Other softwares of this type were developed for commercial
purposes and are, therefore, paid. One of the most used proprietary
software in recent decades is Presentation, created by Neurobehavioral
Systems. Presentation contains two proprietary languages: Scenario
Description Language (SDL) and Program Control Language (PCL),
based on C and Basic, both of which are used to draw up the visual
stimuli, trials, and stimulation routine. Currently, Presentation counts
on a module that allows for programming in Python.

987Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

4.4. Experimental software options #4: Graphic User Interface (GUI)

Despite the resources introduced by programming languages and
toolboxes, all of this still involves programming, which, for some, is still
considered a task for specialists. Beginners and professionals who are
more experienced in cognitive sciences, who had no formal education
in programming logic, show great resistance to the need to code their
experiments. For them, some types of GUI software were developed,
making the development process more visual, thus diminishing the
need for programming skills, as well as diminishing the learning curve
necessary to create the first tests.

One of the most famous types of GUI software is Psyscope
(COHEN et al., 1993), which is widely used by psycholinguists. Psyscope
contains a graphic interface, with drag-and-drop objects, which allow one
to view and organize experiments in a visual logic of a tree diagram. The
lines indicate the relations between functions, lists, and other objects, each
with a realm of internal options that give us freedom for the configuration
and personalization of our tests.

The current version of Psyscope support Tobii eye-tracking
devices. Although it runs natively on Intel processors,7 Psyscope is still
exclusive to MacOS, which represents a disadvantage, especially as
regards equipment prices. Nevertheless, one advantage is the fact that it
is free and that it is possible to learn the system in only a few days. A new
version, still in the beta phase, contains an interpreted code editor. This
change should allow for the identification of errors through the code, in
a much more simplified manner. To the researchers who wish to test the
new version, one need to contact Luca Bonatti, one of the developers
responsible for the forum (see Annex).

For Windows, the software that is the most like Psyscope is
E-Prime, a proprietary software. E-Prime also contains a drag-and-drop
interface in which it is possible to organize and view the experiment;
however, its logic simulates a timeline, in which lists and functions
succeed one another. Its 3.0 version was launched in December 2016 with

7 One of the main reason for the incompatibility between the Mac and PC software
was the use of different processors. Today, Apple computers also use Intel processors,
which, for example, allow Windows to be installed on a Mac, as well as the so-called
Hackintoshes, which consist of the installation of MacOS in PCs. For this reason, today,
Psyscope could be ported to Windows.

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017988

the feature of running experiments on tablets. Due to the recent launching,
the commentaries about E-Prime in this paper refer to version 2.

Another similar software is Paradigm,8 which contains a similar
logic and support Python scripting. It has the advantage of allowing the
creation of experiments that can be saved in DropBox to be presented
by an iPad version. Both E-Prime and Paradigm rely on support from
manufacturers. The prices, however, are a great disadvantage.

Other software have been developed by the engineers of
equipment manufacturers, in such a way as to guarantee an efficient
software-hardware communication. This is the case of eye-trackers.
To cite only the main manufacturers, the Tobii equipment can be used
through the Tobii Studio, a software with a timeline logic that allows
us to organize our visual stimuli. The SMI eye trackers have an entire
suite to design, apply, and analyze the data. EyeLink eyetrackers have
the Experiment Builder and a toolbox for Matlab (PTB-3) and Python.

The main advantage of GUI software is the learning curve.
Generally, a beginner is able to learn it in just a few days. However,
one disadvantage is the fact that they are highly focused on their main
goals: building and running an experiment. Hence, though they do create
many types of highly powerful and advanced algorithms, they usually
do not allow us to go beyond the functions that have been pre-set by
their developers.9

Some other kinds of software have been appearing on the market,
offering a graphic interface that facilitates the visualization of the
sequence of algorithms mixed with the potential of a high-level language.
Fortunately, the two options that I know of are free and multiplatform:

8 In the beginning of 2016, Paradigm’s sales were stopped due to the death of its only
developer, Bruno Tagliaferri. The company was bought by Josh Pritchard at the end
of the same year, resuming its sales and support.
9 Excluding Psyscope, technically, E-Prime and Paradigm can be expanded through
InLine. This tool allows one to insert coding from a specific language within the
code generated by the GUI. InLine commands are the way we can access some of the
software’s hidden functions, aimed to extending the possibilities offered by the GUI.
In this manner, the InLine language is not used to create a completely new code with
functions that have not, in some way, been inserted by the software developers. When
a language is inserted within other software for this purpose, they are known as Script
Languages, which create scripts, which is different from the code that the software
creates at the end of the development process and which contains these scripts.

989Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

PsychoPy and Open Sesame, both based on Python language and
scripting, respectively.

PsychoPy10 (PEIRCE, 2007, 2009) contains a graphic interface
that allows one to draft and view the organization of a large part of its
experiment. Broadly speaking, it contains two timeline windows, one
of the experiment and another of each screen. This software runs on a
pyglet backend, interfacing between Python and OpenGL API.

These characteristics brought PsychoPy users the dream of
running it on RaspberryPi, a minicomputer developed by the RaspberryPi
Foundation in the United Kingdom (Figure 3). These computers are
extremely cheap. Its most powerful version (v. 3, Model B) costing less
than 40 dollars and, its simplest version, (v. Zero) less than 20 dollars.
Due to its price, these computers have become more popular in all types
of projects that involve technology. However, due to the incompatibility
between pyglet and the hardware, PsychoPy was incompatible with
RaspberryPi. This panorama may soon change. Fortunately, last year,
the first OpenGL experimental drivers for the platform were launched,
making it possible for PsychoPy to be used in these small computers.
According to tests performed by Mark Scase and published in the
PsychoPy forum11 in February 2016, the application of experiments is
still unfeasible. But it is still possible to code experiments on RaspberryPi
and apply them in another computer.

10 PsychoPy is usually classified as a toolbox. I do not disagree; however, the fact that
it contains a GUI makes it have more interested people within its non-specialist public
than that of traditional toolboxes, and for this reason, I preferred to categorize it among
the GUI software in this paper.
11 “PsychoPy on RaspberryPi”: https://groups.google.com/forum/ - !topic/psychopy-
users/1mPwJqDVy1c

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017990

FIGURE 3 – A RaspberryPi 3 Model B, in a protective case (copyrighted photo)

Despite the fact that it is easy to learn and use the Builder View,12
it still seems simpler to configure some variable within the Coder View.
Moreover, some functions may just not be available in the GUI. For
example, it does not contain a table editor in its interface, such as E-Prime
and Psyscope, even though these editors are quite limited. In this sense,
it is necessary to create our tables in an external software, such as Excel.
This is generally a standard procedure for some programmers and simple
for beginners, incurring no added difficulty. Still, among the users of GUI
software, it is usually pointed out as one of its weak points.

12 Excellent PsychoPy tutorial in Portuguese, reported by Prof. Mahayana Godoy
(UFRN): <www.youtube.com/watch?v=W8cpnARvtNw>.

991Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

FIGURE 4 – Capture of the PsychoPy graphic interface

Note: In addition to the GUI interface, it also contains a Python programming console.

Open Sesame (MATHÔT et al., 2012), though it has a more
complete interface than PsychoPy, still requires some hardware-software
knowledge to be correctly used (or an attentive reading of their manuals
and tutorials). For instance, we should be careful when inserting stimulus
duration, since it depends on the screen refreshing rate - as we will discuss
in the next section – or the choice of the backend, according to the type
of experiment and of hardware we have [pyglet, pygame, xpyriment,
or droid]. If pyglet is not necessary, Open Sesame can become a good
tool to be used in RaspberryPi. This software can also be considered a
free option to E-Prime, given that its interface bears some similarity to
proprietary software.

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017992

FIGURE 5 – Capture of the Open Sesame graphic interface screen

5. How the software and hardware can influence perception

The previous section brought a realm of alternatives for the
development of experiments. On the other hand, our attention should not
merely be limited to the software. Much in the same way as Chomsky
proposes the difference between competence and performance, separating
what we know from what we in fact do in language, we can also transpose
the dichotomy to the software-hardware interface. The software allows
us to send a command so that the machine will perform a given task, but
is the hardware capable of performing it?

5.1 Mental Chronometry and visual stimulation: the case of apparent
movement

After efforts from Helmholtz in Physiological Psychology and
from its revival by Donders and Cattell in Experimental Psychology,
Mental Chronometry is recognized as a tool for the analysis and
measurement of cognitive processes. Psycholinguistics commonly uses
chronometric protocols in visual and auditory modalities, such as in
lexical decision task, priming, self-paced reading, perceptions tests,
among others. Many tests, however, depend on temporal accuracy on
a millisecond scale, and to achieve this, it is necessary to have a notion
how our equipment works, such as computer screens.

993Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

Before entering into the details of how computer screens
work, we need to understand two visual illusions that were of utmost
importance in the history of their development. The first is the Phi
Phenomenon (WERTHEIMER, 1912), which occurs when we make
many lamps available, one beside another, and turn them on and off
successively. This action blocks the mind from perceiving the turning
off and on of the lamps, creating the illusion that the light moves from
one lamp to another.

The second is the Beta Movement illusion, described by Kenkel
(1913). If we present a sequence of slightly similar images – such as a
doll in different positions – at a specific speed, our mind don’t perceive
them as static images, but as a moving scene. These two phenomena are
grouped in a kind of illusion known as Apparent Movement.

These illusions are responsible for our capability of watching
the series of frames known as movies and cartoons and of playing
videogames. Two questions were posed for the techniques of presenting
images with apparent movement: (i) create materials with a larger
number of images to result in a better experience or (ii) create materials
that maintain the acceptable experience in the least expensive manner
possible?

In silent films, the images were presented in a sequence of frames
registered in celluloid films at 14 to 26 frames per second (fps), which
was enough to give the illusion of movement. By contrast, this movement
was normally considered to be irregular, giving the sensation of skipping.
In this sense, it can be said that the threshold to the beta movement is
approximately 15fps. Then, movies started to be created and presented at
a higher rate, from 18 to 23 fps. Later, this rate was raised to a constant
of 24 fps, given that this is the minimum rate for videos to be properly
synchronized with sound (READ; MEYER, 2000).

5.2 Why use CRT screen?

Television was invented in the 1950s, and the movies were
brought into the household. These devices were enormous and heavy
due to the technology of the day. There are elements that emit radiation
through the absorption of energy. This is the case of phosphorous, which
is used both in fluorescent objects, which emit visible radiation while
absorbing radiation from other sources, as well as in phosphorescent

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017994

objects, which continue to emit visible radiation for some time after
the absorption. TV screens are phosphorescent and absorb the electrons
emitted by a large Cathode Ray Tube (CRT), responsible for the size and
weight of these devices.

The older computer screens follow the same technology. In CRT
screens, each frame is constructed pixel per pixel in sequential form,
beginning at the first point in the upper left corner to the last in the
lower right corner of the screen, all in a matter of milliseconds. At this
moment, the computer receives a signal from the screen, indicating that
the current frame is over and the next frame begins to be constructed.
This signal is called the retrace signal (COHEN; PROVOST, 1994). So
as to prevent us from perceiving the change of the frames, the screen
blinks for 1.5 milliseconds, while the rays that illuminate each pixel
of the screen return to the upper left corner to begin the set-up of the
next frame (PEIRCE, 2009). The frequency at which a screen is able
to change from one frame to another has become known as the refresh
rate. This term, in part, substituted the fps in the descriptions found in
the manuals.

In TV devices, the refresh rate was defined according to the local
electricity. In the US, it works at 60Hz, whereas the energy supply in
Europe works at 50Hz. The refresh rate indicates how fast a device will
be able to update the frame every second. Thus, the TV devices in Europe
present a new frame every 20ms (1/50), while in the US, the televisions
worked faster and were able to present a new frame at every 16.7ms
(1/60). The computer screens, following the technology of televisions,
generally work at 60Hz.

Though they consume a large amount of energy, CRT screens
present an excellent response (in approximately milliseconds, µs), as
well as an excellent angle of vision, which allows people in different
positions to have a very similar psychophysical experience of the image.
For this reason, many important centers of cognitive sciences resist
recent technology and insist on presenting visual stimuli exclusively in
CRT screens.

995Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

5.3 Are modern screens a good option?

The technology of screens has evolved, based on the
monochromatic screens used in clocks and some older laptops. We
usually call this technology Liquid Crystal Display (LCD) or Thin Film
Transistor (TFT).

Liquid crystal is a transparent substance but, upon receiving
electric current, shows its structure and becomes opaque, blocking the
passage of light. In TFT-LCD screens, the liquid crystal is spread between
two transparent and polarized filters in opposite directions (HOOGBOOM
et al., 2007). To form the image, the transistor emits an electric current
capable of alternating the LCD configuration, making the molecules turn
up to 90o vertically. For this reason, this technology is called Twisted
Nematic (LCD-TN), due to the twisted arrangement of the liquid crystal
molecules that are positioned perpendicularly to the screen (Figure 6).
The crystal molecule movement guides the rays of light in the formation
of light and colors, according to the image to be exhibited.

Some of the LCD-TN advantages are (i) the size of the screen,
(ii) its response time (few milliseconds), and (iii) its low price today. By
contrast, its viewing angle is quite restricted due to the angulation of the
liquid crystal molecules. This results in a low fidelity of colors, brightness,
and contrast of the image. LCD-TN monitors are not recommended for
visual stimulation, because it is difficult to ensure that two participants
will have the same psychophysical experience. In LCD-TN, brightness,
colors, and contrast can be drastically altered, simply by making a subtle
movement sideways.

When searching for solutions, the LCD-IPS (In-Plane Switching)
technology was developed. This new method is able to make the
liquid crystal molecules turn horizontally rather than vertically, in turn
positioning themselves parallel to the screen. This change diminishes
the distortion of the image, increases its viewing angle, and produces a
great fidelity of color. Its weakness, however, is its response time, which
is much slower than that of TN screens. Initially, this became one of
the weakest points of the technology, creating the Ghosting effect. This
problem has not been solved yet, but today, due to a lack of options, it
is still the LCD screen most commonly used for experiments (Figure 6).

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017996

FIGURE 6 – Operational models of the LCD-TN and LCD-IPS monitors

Note: Adapted from Sharp manuals.

With the scarcity of CRT screens on the market, some studies
discuss the potential of Organic Light-Emitting Diode (OLED) and
Plasma Display screens to substitute them (ITO et al., 2013; RICHLAN
et al., 2013). As regards OLED, these screens are constructed with
two or three layers of carbon materials that emit light when exposed
to an electromagnetic field (Figure 7). The first layer is responsible for
conducting the electricity, while the final layer is responsible for emitting
light. This light is produced by three filters, responsible for the RGB
color system and the brightness of the light is proportional to the force
of the magnetic field.

FIGURE 7 – Operational model of an OLED monitor

Note: Based on the Visionox model.

997Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

OLED screens contain a higher fidelity of gamma and colors, in
addition to having a better brightness and an excellent field of vision,
turning around 170-180 degrees, which avoids the common distortions
of LCD screens. In addition, they present a better response time, placing
it ahead of its competitors in terms of usability for visual experiments.
Its great disadvantage is its price. Since it is a new technology, it is still
quite expensive on the market. Cooper et al. (2013) have already pointed
out OLED as excellent substitutes for the CRT screens.

5.4 Some questions concerning screen technology, the design and
application of psycholinguistic tests

Currently, the majority of computer screens work at 60Hz (16.7ms/
frame), although it is possible to find faster ones working with a refresh
rate of up to 200Hz (5ms/frame), especially for gaming. Nevertheless,
the experience of video also depends on the capacity of the hardware
to process each image within this refresh rate, through a reasonable
processor, a good and video card, as well as a reasonable free RAM. It
is also important that the background tasks, such as antiviruses, software
updates, and notifications, be turned off when running experiments. This
will avoid unnecessary consumption of computer resources that can make
the tasks run slower than usual, altering both the perception as well as
the measurements.

If we wish to achieve a millisecond accuracy, it is of utmost
importance that we have a notion of the competence and performance
of the machine. To give an example of why, I will base my arguments on
the experimental protocol of covert priming, in which the experimenter
presents the prime word for only a few milliseconds in such a way that
the word can be read, but it remains unconscious.

Consider an experiment of masked covert priming conducted
by Garcia (2013), in which the experimenter wants to present the prime
word for 38ms covered by a mask (a sequence of *), which is presented
for 50ms before and after the prime word. Now consider that this test
is applied in one of the most common screens, working at 60Hz (such
as the MacBook White used in the study). Upon using a software with
a graphic interface, such as Psyscope (used by the author) or Open
Sesame, an experimenter will indicate the duration of the presentation
of the stimulus in the corresponding field: 38ms. However, this simply

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017998

means that, at 38ms, the computer will send the command for the screen
to refresh the image. In practice, the stimulus will only be truly changed
in the next refreshing time, that is, in a multiple of 16.7ms (1s / 60Hz).
In this scenario, we can see that the last refreshing before the command
would have been around 33.4ms, the time of two frames. Hence, the
next refreshing will be at 33.4ms + 16.7 = 50.1ms. That means that both
the prime word (38ms) and its mask (50ms) would in fact be presented
during the same time.

Initially, this is not necessarily an enormous problem for the
majority of experiments, when we work with relatively long durations,
such as 300 or 400ms. Nonetheless, it is important to beware of this
problem, since, in the case of the covert priming and of other tests whose
stimulus are presented for few frames, the refresh rate of the screen can
represent the difference between the participant having a conscious
perception or not. In addition, the researcher will present his/her methods,
describing a 38ms prime word, which is not true. If the hardware and
software configurations are not explicitly described in the methods, no
one can identify the error.

The problem may be even greater. While many user manuals
specify that their screens work at 60Hz, in its detailed technical
specifications, it is not rare to find that some of them in fact work within
a range of 60-75Hz. It is unclear, however, the moments in which the
screen works within a specific band, if the refreshing has a variable
timing, depending on the type of image, or if it has a configuration panel
that allow us to control the refresh rate within this band. Many studies on
methods of visual stimulus presentation have developed work on these
questions. The majority agree that (i) when working with LCD screens,
it is necessary to conduct precision tests and that (ii) relying only on the
refreshing rate is not a reliable method (PLANT; TURNER, 2009; ELZE,
2010a, b; BAUER, 2015).

Concerning the frame rating control, programmers are aware of
these questions, since knowing the screen refresh rate is essential for
the code to work. This can be observed in the matlab/psychtoolbox code
developed by Sampaio & van Wassenhove (2013), used and published
by Sampaio (2015), and illustrated in Figure 8. In this code, there is a
calculation referent to the number of frames presented by the hardware
(variable “dur_f”) in order, finally, to adapt the indicated time (variable
“dur”) and report the number of frames presented. This type of calculation

999Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 2017

is usually called adaptive synchronizer. For GUI users, however, these
details may never be noticed.

FIGURE 8 – Capture of the screen with part of the code written in Matlab by Sampaio
& van Wassenhove (2013), using functions from PTB 3

PsychoPy also has an adaptive synchronizer using a function
to test the refreshing rate of the screen and to calculate the duration of
each frame, as illustrated in figure 9. Nevertheless, it is important to be
aware since, in some cases, it is unable to identify the refresh rate and
it will use the standard 60Hz. E-Prime 2 contains a diagnostic tool that
also performs this synchronization and gives us information about the
hardware’s capacity (SCHNEIDER et al., 2002). The developers of Open
Sesame, in tutorial videos,13 call attention to this point by recommending
the use of multiples of the fps rate decreased by 5ms, to avoid delays.
By contrast, Paradigm and other types of software are able to report the
number of frames and/or, their duration. However, it is unclear if they
have a synchronizer.

FIGURE 9 –PsychoPy native adaptive synchronizer

13 www.youtube.com/ceebassmusic

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 20171000

Psyscope also does not make it clear if it has a synchronizer,
but Cohen & Provost (1994, p. 446) indicate the existence of another
control method, the retrace synching. Normally, the computer sends a
new frame to the monitor according to the refreshing rate. The monitor,
therefore, waits until the frame is over to refresh the image, as we saw
above. With the retrace synching, PsyScope waits for the retrace signal
to send the next frame, which guarantees that the indicated time in the
results is the exact time of the onset of the stimulus. The exact duration
of each frame and, consequently, of the stimulus, can be calculated with
the information of the retrace synching.

All of these questions show us that, to develop psychophysical
and psycholinguistic experiments, it is not enough to have knowledge
of a specific software. It is also necessary to have a notion of what steps
the hardware should follow and how accurately it is capable of executing
these steps, in such a way that it becomes possible for us to think about
how to overcome future problems or deviations in the precision and
accuracy of the acquired data. GUI software are quite useful, as they
simplify the task of developing an experiment. On the other hand, they
allow us to run experiments without the need to understand what, in
fact, is being done with the variables that we defined. This can lead us
to believe that a visual or temporal variable is duly controlled when,
actually, it is not.

After this discussion about tests running in a controlled machine,
I wonder about the precision and accuracy of the data acquired by web-
tools running in different settings.

6. Final Considerations

Upon completing this study, I believe I have achieved two
main goals. The first of these is the discussion and presentation of the
diverse types and options of software that can be used for experiments in
cognitive sciences in general, which includes psycholinguistics. There is
a large realm of software in different platforms and with different levels
of learning curves that could be circulated more widely in Brazil, in turn
increasing the contact of students with experimental design. The second
objective is the discussion on problems of method that can be easily
overcome if we have the knowledge of what happens in the machine
when we run our test.

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 20171001

6.1 But which software should I use?

One of the main questions that can be made after this discussion
is: “Which software should I use?” I believe that my contribution in
this paper was that of presenting a wide range of options and their main
characteristics, in such a way that you have some basis before choosing
one of them. In a more practical manner, though previously DMDX,
Presentation and Psyscope were some of the most widely used; today I
can see that the most popular software among programmers are C and
its toolboxes, PyGame (Python), and Psychtoolbox 3 (Matlab). Among
non-programmers, E-Prime and PsychoPy appear, to me, to be the most
popular in American and European laboratories. In Brazil, E-Prime has
become quite popular in recent years among non-programmers, followed
by Paradigm, due to its more accessible price. Among the open source
options, I see few articles using PsychoPy and DMDX.

For those who are beginning their academic career, I believe it
is quite reasonable to recommend PsychoPy. This recommendation is
based on five factors: (i) it is an extremely simple software with a clean
graphic interface, which contains only what is necessary; (ii) it offers the
possibility of continuing to use the same software after learning Python,
in its coder view; (iii) it has an adaptive synchronizer, offering a greater
reliability regarding the acquired data; (iv) it is quite popular abroad, and
it is possible to exchange experiences and codes with many researchers
worldwide; and (v) it is free. It is important to note that this indication is
merely a personal opinion of a software that I consider to be extremely
practical and reliable for the great majority of cases.

Particularly, I have had great success in using PsychoPy in
undergraduate psycholinguistics classes. This experience has helped
students lose their fear of developing experiments due to their lack of
knowledge in programming, to be able to apply and analyze their own
tests in only a few classes, and, consequently, to have a more hands-on
experience with what is in fact psycholinguistic experimentation, thus
increasing their interest in the field. Moreover, the Psycholinguistics
Laboratories in Brazil generally pay more than one thousand dollars for
each license, which, with only a little more information, can be easily
substituted by free software solutions. Though free, all of these types of
software have discussion groups that work as collective support between
users and responsible developers.

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 20171002

In addition to PsychoPy, the options in JavaScript appear to be
excellent options for web-based experiments. Although I am still not
comfortable conducting chronometric experiments in these platforms,
the comparisons performed by De Leeuw & Moritz (2015) seem to be
consistent. Nevertheless, I wonder if it is possible and how to avoid
chronometric imprecision regardless of the processing differences of
participant’s computers. For this reason, though I recommend them, I do
suggest being careful with these platforms if you are working with subtle
differences in the physical stimulation, such as difference in images, in
light, or color intensity, or with presentation times, such as in covert
priming experiments.

6.2 Being aware of software and hardware configurations

My second goal was to show that it is necessary to have a
comprehension of the software-hardware interface so that we can be
sure that we correctly control the psycholinguistic stimulation. Only
telling the computer what we want it to do does not necessarily mean it
is capable of executing it. Without prior knowledge of the hardware’s
capability or without the use of accurate external measurements, it is
impossible to perceive that the machine is not controlling the times as
we had indicated.

Still in this scope, these questions show the importance of offering
a detailed description of the software (such as its version), the code (to
be shared), and the hardware used in the design and application of the
tests. Many types of software may not have been tested in some versions
of an operating system, especially those that have been recently released.
For this reason, we are unable to update the operating systems of the
laboratory computers before we are aware of its full compatibility with
the software.

Some types of software present problems with some pieces of
hardware, such as the video card, but we rarely pay attention to the
warnings from the developers regarding these questions. Moreover, many
times we describe that our stimuli are presented for a specific duration
that is clearly impossible to be presented by an ordinary computer/screen.
Since we do not have the obligation of knowing all of the incompatibility
issues of our hardware and software, I cannot say it is wrong. For this
reason, it is mandatory to present our methods and computers in such

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 20171003

a way that someone who has more knowledge on methods can easily
identify inconsistencies between what has been described and what the
computer can do. Being aware of these details prevents some of the
main factors that lead to problems in the replication of results, a theme
that has been in constant debate, such as in the survey of Open Science
Collaboration (2015), published in Science, which later led to the article
of “A manifesto for reproducible science” (MUNAFÒ et al., 2017),
published in Nature.

I would like to reiterate that the detailed and careful description
of the main information of our hardware, software, and the development
of the stimuli, as well as sharing the codes, are essential factors for the
viability of the experimental method, whose efficacy and validity is
founded exactly upon the systematic reproduction of these methods and
of their results reported by different researchers throughout the world.

I believe that this paper will, in some way, encourage researchers
to be more aware and to take greater descriptive care when reporting
their tests and results.

Acknowledgements

I would like to thank Virginie van Wassenhove, Douglas Bemis,
Jansen Oliveira, Daniela Cid de Garcia, and Julia Cataldo Lopes for
their discussions about programming languages, experimentation,
and methods, as well as Renata Passetti who, only a few days before
sending this article, inspired me to review the software for web-based
experiments, making this study more inclusive. I would like to thank
Leticia Kolberg and the students from the Psycholinguistics course in
2016/2, in the classes on methods, which helped me to raise some of
the examples used throughout the text. Thanks also go to the reviewers
of this article who, with their suggestions on its re-structuring, made, as
much as possible, this work a bit more accessible. This review has been
developed with the financial support of FAEPEX 519.292 project and
FAPESP 2016/13.920-9 grant.

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 20171004

References

BAUER, B. A Timely Reminder About Stimulus Display Times and Other
Presentation Parameters on CRTs and Newer Technologies. Canadian
Journal of Experimental Psychology, Société Canadienne de Psychologie,
v. 69, n. 3, p. 264-273, 2015. Doi: https://doi.org/10.1037/cep0000043
BEZANSON, J.; EDELMAN, A.; KARPINSKI, S.; SHAH, V.B. Julia: a
fresh approach to numerical computing. ArXiv, 2014. Available at: <arxiv.
org/abs/1411.1607>. Access: Nov. 28, 2016.
BRAINARD, D. H. The psychophysics toolbox. Spatial Vision, Brill
Online, n. 10, p. 433-436, 1997.
COHEN, J.; MACWHINNEY, B.; FLATT, M.; PROVOST, J. PsyScope:
An interactive graphic system for designing and controlling experiments
in the psychology laboratory using Macintosh computers. Behavior
Research Methods, Instruments & Computers, Springer Link, v. 25, n. 2,
p. 257-271, 1993.
COHEN, J.; PROVOST, J. PsyScope: User Manual 1.0, Carnegie Mellon
University, 1994. Available at: <psy.cns.sissa.it/psy_cmu_edu/PsyMan.
pdf>. Access: Nov. 28, 2016.
COOPER, E. A.; JIANG, H.; VILDAVSKI, V.; FARRELL, J. E.;
NORCIA, A. M. Assessment of OLED displays for vision research.
Journal of Vision, Association for Research in Vision and Ophthalmology,
v.13, n. 16, p. 1-12, 2013.
DE LEEUW, J. R. jsPsych: A JavaScript library for creating behavioral
experiments in a web browser. Behavior Research Methods, Springer,
v. 47, n.1, 1-12, 2014. Doi: https://doi.org/10.3758/s13428-014-0458-y
DE LEEUW, J. R.; MOTZ, B. A. Psychophysics in a Web browser?
Comparing response times collected with JavaScript and Psychophysics
Toolbox in a visual search task. Behavior Research Methods, Springer,
v. 48, n.1, p.1-12, 2015. Doi: https://doi.org/10.3758/s13428-015-0567-2
ELZE, T. Misspecifications of Stimulus Presentation Durations in
Experimental Psychology: A Systematic Review of the Psychophysics
Literature. PLoS ONE, São Francisco, Califórnia, v. 5, n. 9, 2010a.

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 20171005

ELZE, T. Achieving precise display timing in visual neuroscience
experiments. Journal of Neuroscience Methods, Elsevier, n. 191, p. 171-
179, 2010b.
FORSTER, K. I.; FORSTER, J. C. DMDX: A Windows display program
with millisecond accuracy. Behavioral Research Methods, Springer,
n. 35, p. 116-124, 2003.
GARAIZAR, P.; VADILLO, M.A.; LÓPEZ-DE-IPIÑA, D.; MATUTE, H.
Measuring Software Timing Errors in the Presentation of Visual Stimuli
in Cognitive Neuroscience Experiments. PLoS ONE, São Francisco,
Califórnia, v. 9, n. 1, 2014.
GARCIA, D.C. Elementos estruturais no acesso lexical: o reconhecimento
de palavras multimorfêmicas no português brasileiro. 2009. 108 f. Thesis
(Masters in Linguistics) – Faculdade de Letras, Universidade Federal do
Rio de Janeiro, 2009.
HOOGBOOM, J.; ELEMANS, J. A.W.; ROWAN, A. E.; RASING, T. H.
M.; NOLTE, R. J. M. The development of self-assembled liquid crystal
display alignment layers. Philosofical Transactions of The Royal Society
A, The Royal Society Publishing, n. 365, p. 1553-1576, 2007.
ITO, H.; OGAWA, M.; SUNAGA, S. Evaluation of an organic light-
emitting diode display for precise visual stimulation. Journal of Vision,
Association for Research in Vision and Ophthalmology, v. 13, n. 7,
p. 1-21, 2013.
KENKEL, F. Untersuchungen über den Zusammenhang zwischen
Erscheinungs-grobe und Erscheinungsbewegung bei einigen sogenannten
optischen Tauschungen. 2. Zeitschrifi fur Psychologie, Göttingen, v. 67,
p. 358-449, 1913.
KLEINER, M.; BRAINARD, D.; PELLI, D. What’s new in
Psychtoolbox-3? Perception, v. 36, n. 14, p. 1-26, 2007.
KRAUSE, F.; LINDERMANN, O. Expyriment: A Python library for
cognitive and neuroscientific experiments. Behavior Research Methods,
Springer, v. 46, n. 2, p. 416-428, 2014. Doi: https://doi.org/10.3758/
s13428-013-0390-6

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 20171006

LANGE, K; KÜHN, S.; FILEVICH, E. Just Another Tool for Online
Studies (JATOS): An easy solution for setup and management of web
servers supporting online studies. Plos One, São Francisco, Califórnia,
v. 7, n. 10, 2015.
MATHÔT, S.; SCHREIJ, D.; THEEUWES, J. OpenSesame: An open-
source, graphical experiment builder for the social sciences. Behavioral
Research Methods, Springer, v. 44, n. 2, p. 314-324, 2012. Doi: https://
doi.org/10.3758/s13428-011-0168-7
MEDINA J. M.; WONG, W.; DÍAZ, J. A.; COLONIUS, H. Advances
in Modern Mental Chronometry. Frontiers in Human Neuroscience,
Frontiers, v. 9. 256, p. 5-7, 2015.
MOORE, G. E. Cramming more components onto integrated circuits.
Eletronics, v. 38, n. 8, p. 114-117, 1965.
MUELLER, S.T.; PIPER, B.J. The Psychology Experiment Building
Language (PEBL) and PEBL Test Battery. Journal of Neuroscience
Methods, Elsevier, n. 222, p. 250-259, 2014.
MUNAFÒ, M. R.; NOSEK, B. A.; BISHOP, D. V. M.; BUTTON,
K. S.; CHAMBERS, C. D.; DU SERT, N. P.; SIMONSOHN, U.;
WAGENMAKERS, E. J.; WARE, J. J.; IOANNIDIS, J. P. A. A manifesto
for reproducible science. Nature Human Behaviour, Springer Nature,
n.1, 2017.
OPEN Science Collaboration. Estimating the reproducibility
of psychological science. Science, American Association for the
Advancement of Science, v. 349, n. 6251, 2015.
PEIRCE, J. W. PsychoPy - Psychophysics software in Python. Journal of
Neuroscience Methods, Elsevier, v. 162, n. 1-2, p. 8-13, 2007. Doi: https://
doi.org/10.1016/j.jneumeth.2006.11.017
PEIRCE, J.W. Generating stimuli for neuroscience using PsychoPy,
Frontiers in Neuroinformatics, Frontiers, v. 2, 10, 2009.
PLANT, R. R.; HAMMOND, N.; TURNER, G. Self-validating
presentation and response timing in cognitive paradigms: How and why?
Behavior Research Methods, Instruments, & Computers, Springer Link,
n. 36, p. 291-303, 2004.

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 20171007

PLANT, R. R.; TURNER, G. Millisecond precision psychological
research in a world of commodity computers: New hardware, new
problems? Behavior Research Methods, Springer, v. 41, n. 3, p. 598-614,
2009. Doi: https://doi.org/10.3758/BRM.41.3.598
READ, P.; MEYER, M. P. Restoration of motion picture film. Oxford:
Butterworth-Heinemann, 2000. (Series in Conservation and Museology)
REIMERS, S.; STEWARD, N. Presentation and response timing accuracy
in Adobe Flash and HTML5/JavaScript Web Experiments, Behavior
Research Methods, Springer, v. 47, n. 1, p. 309-327, 2014.
RICHLAN, F.; GAGL, B.; SCHUSTER, S.; HAWELKA, S.;
HUMENBERGER, J.; HUTZLER, F. A new high-speed visual stimulation
method for gaze-contingent eye movement and brain activity studies.
Frontiers in Systems Neuroscience, Frontiers, v. 7, n. 24, 2013.
SAMPAIO, T. O. M.; VAN WASSENHOVE, V. Self-paced Reading
tests for GNU Octave/Matlab [software computacional], 2013.
Access: March 30, 2017. Available at: <http://www.thiagomotta.net/
uploads/7/0/5/2/7052840/spr_tests_-_octave-matlab_13.zip>. Access:
Mar. 30, 2017.
SAMPAIO, T. O. M. Coerção aspectual: uma abordagem linguística
da percepção do tempo. 2015. 398f. Dissertation (PhD in Linguistics)
– Faculdade de Letras, Universidade Federal do Rio de Janeiro, 2015.
SCHNEIDER, W.; ESCHMAN, A.; ZUCCOLOTTO, A. E-Prime user’s
guide. Pittsburgh, PA: Psychology Software Tools, 2002. Available at:
<step.psy.cmu.edu/materials/manuals/users.pdf>. Access: Nov. 28, 2016.
SHINNERS, P. PyGame - Python Game Development [computer
software], 2011.
STOET, G. PsyToolkit - A software package for programming
psychological experiments using Linux. Behavior Research Methods,
Springer, v. 42, n. 4, p. 1096-1104, 2010. Doi: https://doi.org/10.3758/
BRM.42.4.1096
STRAW, A. D. Vision Egg: An Open-Source Library for Realtime Visual
Stimulus Generation. Frontiers in Neuroinformatics, Frontiers, v. 2,
n. 4, 2008.

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 20171008

TURPIN, A.; LAWSON, D.J.; MCKENDRICK, A.M. PsyPad: a platform
for visual psychophysics on the iPad. Journal of Vision – Methods, The
Association for Research in Vision and Ophthalmology, v.14, n.16, 2014.
WATSON, A. B. Handbook of Perception and Human Performance. New
York: Wiley, 1986.
WERTHEIMER, M. Experimentelle Studien über das Sehen von
Bewegung. Zeitschrift für Psychologie, Göttingen, v. 61, n. 1, 161-265,
1912.

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 20171009

APPENDIX

Source of computer software cited in the text

a) Open source Multiplatform software:

 C: www.open-std.org/jtc1/sc22/wg14
 ExPyriment: www.expyriment.org
 JATOS: www.jatos.org
 Java: www.java.com
 JsPsych: http://www.jspsych.org
 Julia: julialang.org
 Open Sesame: osdoc.cogsci.nl
 Octave: www.gnu.org/software/octave
 PEBL: pebl.sourceforge.net
 PsyToolKit: www.psytoolkit.org
 PsychJava: psychjava.com*
 PsychoPy: psychopy.org
 Psychtoolbox 3 (p/ Matlab e Octave): psychtoolbox.org
 PsyPad: www.psypad.net.au
 PyGame: pygame.org
 Python: www.python.org
 R-Project: www.r-project.org
 Scilab: www.scilab.org
 VisionEgg: visionegg.org

* The PsychJava website has been off-line for some time now. I was
unable to discover the reasons why this site is offline. As it has already
been incorporated in other types of software, I believe that the project
has been discontinued.

Revista de Estudos da Linguagem, Belo Horizonte, v.25, n.3, p. 971-1010, 20171010

b) Multiplatform Proprietary software:

 Matlab: www.mathworks.com
 SuperLab: www.cedrus.com/superlab

c) Open Source for MacOs X:

 Psyscope: psy.ck.sissa.it

d) Proprietary software for Windows:

 E-Prime: www.pstnet.com/eprime.cfm
 Paradigm: paradigmexperiments.com
 Presentation: www.neurobs.com

e) RaspberryPi: www.raspberrypi.org

