
IADIS International Journal on Computer Science and Information Systems

Vol. 12, No. 1, pp. 143-161

ISSN: 1646-3692

143

AN ADAPTIVE DIFFERENTIAL EVOLUTION

ALGORITHM FOR SOLVING SECOND-ORDER

DIRICHLET PROBLEMS

Hasan Rashaideh
Department of Computer Science, Prince Abdullah Ben Ghazi Faculty of Information Technology

Al-Balqa Applied University (BAU), Salt 19117, Jordan

ABSTRACT

A new adaptive Differential Evolution (DE) algorithm for finding approximate to the solutions of

second-order Dirichlet problems is presented. The proposed adaptive algorithm reflected a variation of

the finite difference scheme in the perspective that each of the derivatives are approximated by forward,

backward, and central differences’ quotients. The major advantage of the novel adaptive algorithm over

other numerical methods; it has no limitations on the nature of the problem, type of classification, and

the number of mesh points. A test cases that include different classes and types of Dirichlet problems to

demonstrate the efficiency and simplicity of the algorithm are presented. The numerical results obtained

show strong agreement with exact solutions, and demonstrate reliability and great accuracy of the

method.

KEYWORDS

Algorithm, Artificial Intelligence, Numerical Optimization, Differential Evolution, Dirichlet Problems

1. INTRODUCTION

Differential evolution (DE) (Storn & Price, 1997)is considered one of the evolutionary

algorithms that took inspiration from natural systems. The idea behind evolutionary

algorithms is to generate a set of vectors that can be made to represent candidate solutions.

These vectors then go through a cycle of evolutionary process. It is through this process that

new candidate solutions are formed when the existing candidate solutions are combined via

the following steps: mutation, evaluations, crossover and selection. The sequence and

construction of these steps differ from one algorithm to the next.

IADIS International Journal on Computer Science and Information Systems

144

Storn and Price in 1996 (Storn & Price, 1997) proposed the DE algorithm. The DE

algorithm is a simple and powerful tools using vector differences for perturbing the vector

population. It is population-based and a stochastic method of optimization. It is also

considered to be an effective and efficient global optimizer for the continuous search domain.

DE can be used to minimize non-differentiable and non-linear objective functions through

continuous spaces. DE has had successful applications in different fields (Fleetwood, 1999;

Das et al., 2011; Qin et al., 2009) such as communication (Das et al., 2011), mechanical

engineering (Das et al., 2011), and pattern recognition (Das et al. 2008; Ilonen et al., 2003).

The basic concept behind DE is to utilize vector differences to perturb the population of the

vector during the mutation process (Chakraborty, 2008).

DE’s most valuable and fundamental characteristics compared to other EAs (like EP,

ACO, GP, like GA, and PSO) are as follows. First of all, DE is simple to code and implement,

Moreover, in terms of performance; many studies have shown that the DE performs better

than other evolutionary algorithms in terms of convergence speed, accuracy, robustness and

the computational time. Moreover, DE only has a few control parameters: mutation scaling

factor F, population size (NP), and the probability of crossover Cr. These parameters and their

effects have also been studied well (Chakraborty 2008; Das et al., 2011). Because DE has a

low space complexity, it can tackle high dimensional optimization problems more easily.

In Abou Ela et al. (2011), one can find the two main differences between the genetic

algorithm and the DE. First of all, the operator for the DE mutation is self-adaptive and thus

all solutions are given the chance to be chosen when coming up with new solutions. Moreover,

its greedy selection process allows new solutions to be chosen if they have better fitness

values than their parents. DE’s general properties were enumerated by Storn and Kenneth in

Price et al. (2006); Storn & Price (1997): it is capable of handling and solving non-linear,

non-differentiable, and multi-model cost functions; it is easy to adapt and use; and it has good

convergence speed.

DE has several trials for its vector generation strategies and a few of those may be suited

for solving a certain problem. Additionally, there are three important control parameters that

are involved in DE, i.e. mutation scaling factor, population size, and crossover rate (Storn

& Price 1997). These parameters can have a significant influence DE’s performance

optimization. Thus, successfully solving a certain optimization problem requires one to

conduct a long trial-and-error search for the most suitable strategy. One also has to tune the

related parameter values. However, this trial-and-error searching process entails higher

computational costs. Additionally, as evolution progresses, the DE population may go through

varying search space regions and certain strategies correlated with specific parameter settings

may end up showing more efficacy than others. Thus, it is best to adaptively identify a suitable

strategy and its correlated parameter values at various stages during the evolution/search

process.

Generally, the goal of global optimization is to model parameters for the systems as cost

function while considering the constraints before minimising the function over a continuous

space. Thus, the following function can be used to represent the global optimization problem:

 (1)

In Equation 1, the objective function and
represents the solution’s vector, and every has bounds based on the lower and upper

limits .

AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR SOLVING SECOND-ORDER

DIRICHLET PROBLEMS

145

DE is considered a simple parameter algorithm for optimization. It functions based on a

simple stage cycle demonstrated in Figure 1. The goal of the DE algorithm is to help a

population of D–dimensional real parameter vectors evolve. These

vectors are responsible for encoding the candidate solutions, i.e. veering them to the global

minimum. Once initialization is complete, the initial population for each generation will then

evolve when the following operators are used: crossover, mutation, and selection.

2. OPTIMIZATION: INTRODUCTION AND BASIC

CONCEPTS

Optimization is not only relevant in mathematics and engineering, but even in our everyday

lives. Optimization may even be one of life’s most important processes. Our brain performs

optimization even when we are learning to talk or walk. Observing natural evolution gives us

the impression of having optimization behind it. Theory development is also considered an

optimization process. Such observations are interesting and inspiring aspects in developing

procedures for numerical optimization, especially when dealing with problems that are

difficult and highly complex.

In the field of mathematics, optimization is a term that is used to refer to the study of

problems where one aims to minimize or maximize a real function that can meet the dominant

constraints. This is achieved by systematically selecting the values of integer or real variables

from within a predetermined set. When scientists and engineers propose a new idea,

optimization can be used to improve that idea. The process includes trying variations for an

initial concept and then utilizing the information obtained from that to improve that idea.

Through the years, techniques for optimization have been used in various fields from

engineering and medicine to operations and economics (Luenberger & Ye, 2008).

Optimization techniques went through significant changes recently. These changes have

given us the opportunity to use these optimization techniques for the most complicated

problems today. The general procedure that is utilized to formulate and address optimization

problems is summarized in the following steps:

 Analyzing the process to determine the specific characteristics of interest and process

variables, i e., listing down all the variables.

 Identifying the optimization criteria and specifying the objective function based on the

coefficients and the above variables.

 Using mathematical expressions to develop a valid process model that can relate the

process’ input-output variables and their associated coefficients. This also includes the equality

and inequality constraints. The independent and dependent variables are also identified in order

to calculate the number of degrees of freedom.

 Using an appropriate optimization technique so that the problem can be stated

mathematically.

 Evaluating how sensitive the result is to changes in the parameter values of the

problem and its assumptions.

 Optimization problems could be classified into several classes. Categorisation depends on

the, the modality of the fitness function, linearity of the fitness function the availability of

constraints, the number of fitness functions, the linearity of the constraints (discrete or

continuous), and the amount of decision variables. A general optimization problem is

IADIS International Journal on Computer Science and Information Systems

146

generally seen as a mixture of these classifications. Optimization methods can also be

categorised into different categories based on the following factors. First of all, some random

components can be used to test the solution space during algorithm convergence - stochastic or

deterministic methodologies (Zhou et al., 2013). The second factor is the guarantee of the

calculated optimal solution - exact or heuristic methods (Nearchou & Omirou, 2006). Third,

the solution’s locality is considered; based on this classification, the methods can either be

global or local techniques (Qin et al., 2009).

Specifically, global techniques like DE algorithm better when working with solution

spaces that have constrained variables, discontinuities, nonlinear relations, or large amounts of

dimensions that have several potential local optimums. Global techniques either give an

optimum or near-optimum solution instead of just giving a local optimum. Thus, they can

come up with useful solutions when local techniques cannot.

3. FORMULATION OF THE DIRICHLET PROBLEMS

The most important aspect of the process is normally problem formulation. Problem

formulation involves the selection of design parameters, fitness function, constraints, and the

discipline design’s models. This section first formulates a system of differential equations to

use as an optimization problem that is based on minimizing the cumulative residual error

found in every unknown interior node. Afterwards, the minimization problem is converted

into a maximization problem by presenting a fitness function as unity.

The Dirichlet problems presented below describe the ordinary differential equations:

 (2)

which is dependent on the boundary conditions

 (3)

where , represent real finite constants, and signifies the nonlinear

function of and .

X0=α X1 X2 XN-1 XN=β

DIRICHLET
BOUNDARY
CONDITION

APPROXIMATE SOLUTION UNKNOWN
AT ALL INTERIOR GRID POINTS

Figure 1. Mesh Grid Points

AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR SOLVING SECOND-ORDER

DIRICHLET PROBLEMS

147

Using the approximate solutions derived from equations (2) and (3), we can have the

condition that the mesh grid points (Figure 2) are distributed equally along the interval.

This condition is guaranteed when we set , , where

.

Therefore, given the interior grid points, , , the system that needs to be

approximated is as follows

 (4)

which is subject to the boundary conditions

 (5)

One of the simplest and oldest ways to solve differential equations is through finite

difference approximations for derivatives. It involves the approximation of the differential

operator through the replacement of the equation derivatives using difference quotients. This

paper will use this technique to numerically approximate the solutions for system of equations

(4) and (5) using DE. The difference quotients from the approximation formulas are close

approximations of and , , using an -point found at the

interior mesh points and that have an error of up to , where and

 represents the derivative order. This can be obtained easily using (Li, 2005). It is

noted that the number begins at and increases gradually up to .

First, as seen in (Abu Arqub et al., 2011; Abu Arqub et al., 2015; Abu Arqub & Rashaideh

2013; Abu Arqub & Rashaideh 2017) the differential equations system is transformed into a

system of difference equations. To accomplish this, the approximate formulas of and

 , in Equation (3) are substituted to obtain the system’s discretised

form. The algebraic equations derived from this will serve as functions of ,

 , , , and , . Afterwards, the discretised system

has to be rewritten in the following form:

The general interior node’s residual is represented by and defined as

The of vector residual, is considered a function of all the interior nodes’
residuals. It is stated as follows:

The optimization’s notation also signifies the presence of a merit function that one can

improve upon and use as a measure of the design’s efficacy. The merit function, fitness

function, and cost function are used to name the functions being optimised. This function is

also used to measure the solution’s efficacy. The fitness function, , that was applied in

this work can be defined as

 it

http://mathworld.wolfram.com/L2−Norm.html

IADIS International Journal on Computer Science and Information Systems

148

As a matter of fact, in order to convert the minimisation problem into a
maximisation problem, the overall vector residual has to be mapped into a fitness function.

Consequently, lowering the value improves the vector fitness. The problem’s optimal

solution and interior grid points’ values are obtained when approaches unity and

 approaches zero.

4. DESCRIPTION OF THE ADAPTIVE DIFFERENTIAL

EVOLUTION ALGORITHM

The DE is considered a highly parallel mathematical algorithm that is capable of converting a

set (population of individuals) that has an associated fitness value into a new population (next

generation). It accomplishes this by utilizing operators like mutation,

recombination/crossover, and selection. This section will present a general review of the DE.

A detailed DE description is then provided. Later, it will be demonstrated how DE’s efficiency

and performance is dependent on several factors. This includes the DE operators’ design and

the system parameters’ settings.

As an optimization technique, DE is based on the concepts of natural selection

and genetics. DE was first presented in Storn & Price (1997); Price et al. (2006); Li

(2005). From then on, DE has been thought of as the most powerful evolutionary

technique. Compared to any other similar techniques, it is also the most applicable

stochastic search technique when it comes to optimization problems. This can be

attributed to their capacity to solve problems that are multi-objective and

non-differentiable (Robič & ilipič, 2005).

The DE theory’s general features have been widely accepted and applied. Thus, it has been

able to obtain good solutions for different problems types found in various disciplines. The

DE-based techniques are very versatile since they can handle discrete and/or continuous

design variables. However, DE still differs from many optimization techniques because of the

following reasons:

 DE moves from the design space’s several points to another set of design

points. Thus, DE techniques are better at finding the global minima compared to

schemes that work by moving from one point to another (Fleetwood, 1999).

 DE only needs function evaluations and does not need any function

derivatives. Even though derivative-based techniques help achieve faster convergence

towards the optimum, the derivative is also capable of directing the search process to

the local optimum (Chakraborty, 2008).

 DE utilizes probabilistic transition rules. This is an important advantage

when it comes to serving as a guide for highly exploitative searches. Due to this, DE

should not be thought of as the random walk approach’s variant (Neri & Tirronen,

2010).

 DE is better at solving complex engineering problems compared to other

techniques because of the large individual population. This provides the DE a more

diverse search space that lessens the possibility of it converging to a non-global

solution (Price et al., 2006).

AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR SOLVING SECOND-ORDER

DIRICHLET PROBLEMS

149

 It is easy to parallelize DE as it can be integrated easily into the existing

evaluation software. Moreover, individual sets can be simultaneously solved using

parallel processors (Tasoulis et al., 2004).

The basis of DE is on the triangle of mutation and recombination and selection.

Performing mutation can be done through mutation operator. Recombination can be done

using the fitness function that is dependent on the specific problem. Selection is a process of

choosing the parent vectors without dependence on their fitness.

Since DE is population-based, it has two major advantages compared to other optimization

techniques (Storn 2008; Price et al., 2006; Storn & Price 1997; Fleetwood 1999). First, it

determines DE’s parallel behaviour as realized by a population of search individuals or

candidate solutions that are simultaneously moving (Das et al., 2011). Implementing DE on

parallel machines significantly lowers the required CPU time. This is in fact an important

benefit of its inherent parallel nature. Second, the crossover procedure actively passes the

information about different regions of solution space to different individuals. This exchange of

information is what makes DE a robust method and efficient optimization method, especially

for optimising functions that have several variables and nonlinear functions. However, DE’s

population-based nature also gives rise to two main drawbacks. First, it occupies more

memory space. Thus, instead of just utilizing one search vector for the solution, multiple

search vectors are utilized. These are used to represent the size of the population. Second,

when DE is used on sequential machines, it typically suffers from computational burden. As a

result, the time needed to solve particular problems through DE will be relatively higher.

Moreover, the solution time is an important point of interest when dealing with real time

applications. However, if any real-life problem requires off-line solutions, the major concern

will then deal with solution accuracy instead of the solution time.

Because DE only utilizes objective function information without having to incorporate

extremely domain-specific knowledge, one can say that it exhibits approach simplicity on one

hand and versatility on the other. This signifies that when a DE is developed to solve a certain

problem, one can modify it easily to address other problem types. This can be simply achieved

by changing the existing algorithm’s objective function. This is the reason for why DE is

considered a general-purpose search strategy.
The randomized behaviours of DE are a primary aspect that provides for search

efficiencies. DE uses stochastic procedures to examine response surfaces for a particular

optimization problem. The benefit of this class of behaviour is the capacity to exit from local

minima absent direction (Nearchou & Omirou, 2006). Nevertheless, when employing DE in

optimization problems attention should focused on two issues; firstly, to see if the parametric

set to be optimized is inter-correlated. Secondly, to see if constraints exist on the smoothness

of the ensuing solution curves. In examples of non-correlated parametric sets or non-smooth

solutions, regular DE will apply. Conversely, if the parameters are interrelated with one

another or if smoothing of the solution curve is a must, then the DE is preferred in this

instance.

DE relies on the developments of curves in two-dimensional spaces and surfaces in

three-dimensional spaces. The algorithmic method starts with a collection of stochastically

generated candidate curves and develops superior solutions by adapting differential evolution

operators. The new strategy is a comparatively novel category of the optimization method,

drawing interest among mathematicians and engineers. The DE recommended in this study

comprises the following phases:

IADIS International Journal on Computer Science and Information Systems

150

1. Initialization: For DE, a population of N D–dimensional real parametric vectors is

stochastically generated at the start. The parametric vectors are expressed as:

wherein G is the generation number and NP denotes number of candidate solutions. Initial

populations should obtain coverage of the total search spaces to the extent possible by

utilizing modified normal Gaussian (MNG) functions and modified-tangent hyperbolic (MTH)

functions within the search spaces constrained by the stipulated minimum/maximum

parametric bounds and

 . The following expression is utilized to assemble

the initial parametric values of the vector:

wherein denotes an MNG and denotes MTH functions.

Figure 2. Initialization

Dual smoothing functions that fulfil every boundary condition are selected (Abu Arqub et

al., 2011), including the modified normal Gaussian function (MNG)

and the modified tangent hyperbolic function(MTH)

for every and , wherein denotes -th interior grid

point value for the -th vector, denotes ramp functions of the -th interior grid value and is

described as

 , denotes the population size, and are randomised values

within the range and

 provided .

The reason for utilizing these functions is driven by (Abu-arqub et al., 2011; Abu Arqub et

al., 2015) to construct adaptive DE. As well, the continuity property of DE allows it to readily

manage smooth solution curve candidates where all interior grid points’ values that will be

optimised are correlated.

AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR SOLVING SECOND-ORDER

DIRICHLET PROBLEMS

151

Set the parameter N, Gmax, G=0.

Generate initial population within the search space
using MNG and MTH functions respectively.

Evaluate initial populations using using objective function

f(Xi,G=0), i=1,2,...N, to select Xbest,G=0

If f(Xbest, G) <ε

|| G > Gmax

Save Xbest,G

Mutate to have mutant vector :

falsetrue

falsetrue

Stop

Figure 3. An Adaptive Differential Evolution Algorithm

2. Mutation: With respect to each candidate solution, the so-called target vector at

current generation G, a mutant vector is produced by mutation operator. For each target

vector in the current generation, a mutant vector is

produced via the following mutation strategy “DE/rand-to-best/2/bin”:

 – –

 ,

IADIS International Journal on Computer Science and Information Systems

152

Wherein are indices randomly selected by random within the range [1, N] from

present generation. denotes mutation scaling factor, and the
represents the candidate solutions in accordance with the values of the fitting function in
present generation G.

Values of the mutation scaling factor are auto-adaptive, beginning with , and

increasing by 0.1 in K iterations until . Values of are utilized in sequence in the Fs

series if these verified a certain level of effectiveness in fitness values.

3. Recombination/Crossover:

Successive to the mutation phase, crossover operation are implemented in all pairs of the

target vector and their respective mutant vector to produce trial vector :

wherein j ,2, … ,D; denotes random numbers, CR denotes crossover

rates [0, 1] and denotes the randomly selected indices.

4. Selection:

Every solution in the population has the same likelihood of being chosen as a parent.

Target vector compares with the trial vector and the term resulting in the lowest

fitness function value is included in succeeding generations. Selections can be formulated as:

Mutations, crossovers, and selections progress until the stopping conditions are attained.

The algorithmic description of adaptive DE is outlined in Figure 3.

5. NUMERICAL RESULTS

Optimization problems are performed by utilizing an adaptive DE that is among of the more

advanced optimization methods due to its evolutionary property; it can address most types of

objective functions and limits. DE does not possess mathematical necessities for optimization

problems and is also quite successful in conducting globalised probability searches, providing

a much versatility. Nevertheless, so as to confirm the computational effectiveness of the

constructed adaptive DE, certain numerical experimentation is carried out on well-known

problems. The resulting terms were contrasted with the precise solutions and were determined

to agree with one another.

The DE generates populations in succession, which can be implemented as an infinitely

looping process. Once a user stipulates the fitness values to be attained, these processes can be

ended the moment at least one item demonstrates a value in excess of the preferred value.

Users are frequently unaware of precisely how large the fitness values of desirable solutions

must be. Thus, it would be preferable to end the DE once a user cannot expect further superior

solutions. With knowledge of conventional algorithmic methods for optimization, a user may

be enticed to observe convergences and then end the DE once maximum fitness values remain

relatively continuous over certain populations. Conversely, the ending conditions applied in

every problem are reliant on each and do vary between cases. Nevertheless, the DE ends when

any of these criteria are encountered:

AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR SOLVING SECOND-ORDER

DIRICHLET PROBLEMS

153

1. The value of fitness of the best vectors of the populations reaches .

2. The maximum absolute value of residual for the best vector of the population is less

than or equal to .

3. A maximum number of iterations is reached.

4. Improvement in the fitness value of the best vector in the population over

iterations is less than .

The adaptive DE in this paper are utilized to resolve the provided system of Dirichlet

problems. Inputs to the proposed algorithm are partitioned into dual portions: the adaptive

DE-associated parameters and the system-related parameters. Nevertheless, inputs to the

proposed algorithm are as shown:

Table 1. The Adaptive DE-Associated Parameters

Parameter Description

 Population size

 Number of grid points

 Mutation lower bound scaling factor

 Mutation upper bound scaling factor

 crossover rate

Blended techniques for initialization methods are utilized when one-half of a population is

produced by the MNGF, with the other one-half produced utilizing the MTHF. A set of

selected problems of second-order Dirichlet problems are provided as follows, wherein the

first problem is linear, with the secondary and tertiary problems of non-linear property.

Problem 1. In the linear system as expressed below:

constrained by the boundary conditions,

wherein . The precise solutions are expressed as:

Problem 2. In the non-linear system as expressed below:

constrained by the boundary conditions

wherein . The precise solutions are expressed as:

Problem 3. In the non-linear system as expressed below:

constrained by the boundary conditions,

 . The precise solutions are expressed as.

IADIS International Journal on Computer Science and Information Systems

154

Utilising the adaptive DE algorithmic method, with through the

fitness function , and the previously noted ending criteria, the numerical outcomes of

estimating for Problem 1 are charted in Tables 1.

Table 2. Numerical Results of for Problem 1 Utilizing Adaptive DE

Grid

Point
Exact value Approximate value Absolute error

Absolute

residual

 1.00000000 1.00000000000000 0.00000000E+00 0.00000000E+00

 1.10000000 1.09999999999899 1.01096909E-12 -7.36659622E-11

 1.20000000 1.19999999999723 2.77111667E-12 1.71406889E-10

 1.30000000 1.29999999999711 2.89057667E-12 -1.31719080E-10

 1.40000000 1.39999999999555 4.44666526E-12 2.14861906E-10

 1.50000000 1.49999999999589 4.11048973E-12 3.74456022E-11

 1.60000000 1.59999999999629 3.70814490E-12 2.36234365E-10

 1.70000000 1.69999999999871 1.29052324E-12 -2.30481190E-10

 1.80000000 1.79999999999868 1.32382993E-12 -1.96280103E-10

 1.90000000 1.89999999999650 3.49786866E-12 6.21990459E-10

 2.00000000 2.00000000000000 0.00000000E+00 0.00000000E+00

The numerical outcomes through every grid point of in Problem 2 are shown in

Table 2. It is remarkable that the precision of some grid points varies inversely with their

distance (in grid point number) from the boundaries. Conversely, from each table referred to,

it is obvious that superior approximations can be attained with the precise solutions.

Table 3. Numerical Results of for Problem 2 Utilizing Adaptive DE

Grid

point
 Exact value Approximate value Absolute error Absolute residual

 1.00000 1.00000000000000 0.00000000E+00 0.00000000E+00

 1.01000 1.00999999999789 2.11031193E-12 -1.47183155E-10

 1.04000 1.03999999999555 4.44844162E-12 -2.27947883E-10

 1.09000 1.08999999999245 7.55062679E-12 8.57407922E-10

 1.16000 1.15999999999714 2.86348723E-12 -2.32168063E-10

 1.25000 1.24999999999761 2.38808973E-12 -2.33303155E-10

 1.36000 1.35999999999607 3.92752497E-12 4.06302547E-10

 1.49000 1.48999999999820 1.79789517E-12 3.08615355E-10

 1.64000 1.64000000000109 1.08779652E-12 -1.19458221E-10

 1.81000 1.81000000000132 1.31739064E-12 -2.25442776E-10

 2.00000 2.00000000000000 0.00000000E+00 0.00000000E+00

AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR SOLVING SECOND-ORDER

DIRICHLET PROBLEMS

155

The detailed inputs for in Problem 3 comprise the accurate nodal values, the DE

nodal values, absolute errors, and the absolute nodal residuals, as shown in Table 3. Clearly,

the precision attained utilizing adaptive DE is good, given its truncation error is of the order

 .

Table 4. Numerical Results of for Problem 3 Utilizing Adaptive DE

Grid

point

Exact value Approximate value Absolute error

Absolute

residual

 0.0000000000 0.0000000000 0.00000000E+00 0.00000000E+00

 0.1001667500 0.1001990414 3.22913745E-05 1.52596698E-03

 0.2013360025 0.2013682939 3.22913780E-05 1.74098703E-03

 0.3045202934 0.3045525848 3.22913821E-05 1.82894495E-03

 0.4107523258 0.4107846172 3.22913821E-05 1.95256797E-03

 0.5210953055 0.5211275969 3.22913807E-05 2.11365770E-03

 0.6366535821 0.6366858735 3.22913807E-05 2.31457105E-03

 0.7585837018 0.7586159932 3.22913779E-05 2.55825361E-03

 0.8881059822 0.8881382736 3.22913807E-05 2.84827180E-03

 1.0265167257 1.0265490171 3.22913551E-05 7.80555033E-06

 1.1752000000 1.1752000000 0.00000000E+00 0.00000000E+00

6. STATISTICAL ANALYSIS

As a result of the randomised property of DE, nine distinct runs were conducted for each

acquired result in this study, utilizing a dissimilar randomly-generated seed; the outcomes are

the mean values of the runs. It is implied that every DE run will end in a slightly dissimilar

result. Nevertheless, the convergence data of the trio of problems is shown in Table 4. The

table clearly show that problems require repetitions on average, converging on a fitness

value of with a mean absolute nodal residual of value and a

mean absolute difference between the precise values and those acquired through the utilization

of DE valued at .

Table 5. Convergence Data of the Three Problems

Problem
Average

iterations

Average

fitness

Average

absolute

error

Average

absolute

residual

1 2.78E-12 7.22E-11

2 3.05E-12 3.87E-10

3 3.23E-05 1.88E-03

IADIS International Journal on Computer Science and Information Systems

156

Figure 4. Progress Plots Regarding To Iterations for the Best-Of-Generation Vector for: (A) Problem 1;

(B) Problem 2; (C) Problem 3

0

0,2

0,4

0,6

0,8

1

0 100 200 300 400 500

a) Fitness of Problem 1

0

0,2

0,4

0,6

0,8

1

0 100 200 300 400 500

b) Fitness of Problem 2

AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR SOLVING SECOND-ORDER

DIRICHLET PROBLEMS

157

Figure 5. Evolution of the Grid Point Value of at First Grid Point, Middle Grid Point, and Last

Grid Point for Problem 1

IADIS International Journal on Computer Science and Information Systems

158

Figure 6. Evolution of the Grid Point Value of at First Grid Point, Middle Grid Point, and Last Grid

Point for Problem 2

The developmental progress plotting of the best-fitness individual values of Problems 1, 2,

and 3 are depicted in Figure 4. The figures clearly demonstrate that, in the initial of

repetitions, the best-fitness strategies to unity occurred very fast, after which the strategies to

0,96

0,98

1

1,02

1,04

1,06

1,08

1,1

1,12

-50 50 150 250 350 450 550

value at grid point 1

AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR SOLVING SECOND-ORDER

DIRICHLET PROBLEMS

159

unity occurred at slower rates. It implies that the DE converges to the nearly optimised

solutions most rapidly in the initial 40 of repetitions.

The manner by which the internal values for the grid points for Problem 1, problem 2, as

well as problem 3 are next examined. Figures 5 depicts the computational value of the initial

grid point , middle, , and ninth, values of the interior grid points of , whereas

Figures 6 and 7 demonstrate the computational values of problem 2 and

problem 3, respectively, through every repetition.

Figure 7. Evolution of the Grid Point Value of at First Grid Point, Middle Grid Point, and Last Grid

Point for Problem 3

IADIS International Journal on Computer Science and Information Systems

160

7. CONCLUSION

In this paper, solving systems of second-order Dirichlet problems using adaptive DE algorithm

is discussed. To validate the proposed algorithm, test cases are designed and solved using

adaptive DE algorithm. The results showed that proposed adaptive DE is able to find optimal

solutions for test cases in a more reasonable accuracy and promising convergence.

Consequently, such algorithm is expected to fit significantly the mathematical and engineering

applications. Whilst, the influence of different parameters, including the initialization

methods, the evolution of grid points values, the probability crossover and adaptive mutation

parameter, the maximum number of iterations, and the maximum nodal residual is studied.

The solving procedure reveals that the adaptive DE method is a straightforward, and

promising tool for solving linear and nonlinear systems of ordinary differential equations.

ACKNOWLEDGMENT

The author would like to thank Omar Abu Arqub, Habes Alkhraisat, and Shadi Aljawarneh for

their valuable comments and suggestions. The author gratefully acknowledges financial

support of the Al-Balqa Applied University

REFERENCES

Abou El Ela, A. A., Abido, M. A., & Spea, S. R. (2011). Differential evolution algorithm for optimal

reactive power dispatch. Electric Power Systems Research, 81(2), 458–464.

http://doi.org/10.1016/j.epsr.2010.10.005

Abu Arqub, O., Abo-hammour, Z., & Rashaideh, H. (2011). Application of Continuous Genetic

Algorithm for Second-Order Sigular Boundary Value Problems. In ICIT 2011 The 5th
International Conference on Information Technology. Zarqa.

Abu Arqub, O., & Rashaideh, H. (2013). Solution of LANE-EMDEN Equation by Resedual Power

Series Method. In ICIT 2013 The 6th International Conference on Information Technology
(pp. 2–7). Amman.

Abu Arqub, O., & Rashaideh, H. (2017). The RKHS method for numerical treatment for

integrodifferential algebraic systems of temporal two-point BVPs. Neural Computing and

Applications, 1–12. http://doi.org/10.1007/s00521-017-2845-7

Abu Arqub, O., Rashaideh, H., & Aljawarneh, S. (2015). Numerical Simulation for Fuzzy Fredholm

Integral Equations Using Reproducing Kernel Algorithm. The 7th International Conference on
Information Technology, 2015, 497–501. http://doi.org/10.15849/icit.2015.0090

Chakraborty, U. K. (2008). Advances in Differential Evolution. Springer. http://doi.org/10.1007/978-3-
540-68830-3

Das, S., Abraham, A., & Konar, A. (2008). Automatic Clustering Using an Improved Differential

Evolution Algorithm. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and

Humans, 38(1), 218–237. http://doi.org/10.1109/TSMCA.2007.909595

Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE

Transactions on Evolutionary Computation, 15(1), 4–31.
http://doi.org/10.1109/TEVC.2010.2059031

AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR SOLVING SECOND-ORDER

DIRICHLET PROBLEMS

161

Fleetwood, K. (1999). An Introduction to Differential Evolution. New Ideas in Optimization, 79–108.
http://doi.org/10.1038/155531c0

Ilonen, J., Kamarainen, J.-K., & Lampinen, J. (2003). Differential Evolution Training Algorithm for

Feed-Forward Neural Networks. Neural Processing Letters, 17(1), 93–105.
http://doi.org/10.1023/A:1022995128597

Li, J. (2005). General explicit difference formulas for numerical differentiation. Journal of
Computational and Applied Mathematics, 183(1), 29–52.

Luenberger, D. G., & Ye, Y. (2008). Linear and nonlinear programming. Springer.

Nearchou, A. C., & Omirou, S. L. (2006). Differential evolution for sequencing and scheduling
optimization. Journal of Heuristics, 12(6), 395–411. http://doi.org/10.1007/10732-006-3750-x

Neri, F., & Tirronen, V. (2010). Recent advances in differential evolution: a survey and experimental

analysis. Artificial Intelligence Review, 33(1–2), 61–106.

Price, K., Storn, R. M., & Lampinen, J. A. (2006). Differential evolution: a practical approach to global

optimization. Springer Science & Business Media. http://doi.org/10.1007/3-540-31306-0

Qin, A. K., Huang, V. L., & Suganthan, P. N. (2009). Differential evolution algorithm with strategy

adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation,
13(2), 398–417. http://doi.org/10.1109/TEVC.2008.927706

Robič, T., & ilipič, B. (2005). DEMO: Differential Evolution for Multiobjective Optimization
(pp. 520–533). Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-540-31880-4_36

Storn, R. (2008). Differential Evolution Research – Trends and Open Questions. In U. K. Chakraborty

(Ed.), Advances in Differential Evolution (pp. 1–31). Springer.

http://doi.org/10.1007/978-3-540-68830-3_1

Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for Global

Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359.
http://doi.org/10.1023/A:1008202821328

Tasoulis, D. K., Pavlidis, N. G., Plagianakos, V. P., & Vrahatis, M. N. (2004). Parallel differential

evolution. In Evolutionary Computation, 2004. CEC2004. Congress on (Vol. 2, pp. 2023–2029).
http://doi.org/10.1109/CEC.2004.1331145

Zhou, J., Love, P. E. D., Wang, X., Teo, K. L., & Irani, Z. (2013). A review of methods and algorithms

for optimizing construction scheduling. Journal of the Operational Research Society, 64(8),
1091–1105. http://doi.org/10.1057/jors.2012.174

