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ABSTRACT 

A new adaptive Differential Evolution (DE) algorithm for finding approximate to the solutions of 

second-order Dirichlet problems is presented. The proposed adaptive algorithm reflected a variation of 

the finite difference scheme in the perspective that each of the derivatives are approximated by forward, 

backward, and central differences’ quotients. The major advantage of the novel adaptive algorithm over 

other numerical methods; it has no limitations on the nature of the problem, type of classification, and 

the number of mesh points. A test cases that include different classes and types of Dirichlet problems to 

demonstrate the efficiency and simplicity of the algorithm are presented. The numerical results obtained 

show strong agreement with exact solutions, and demonstrate reliability and great accuracy of the 

method. 
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1. INTRODUCTION 

Differential evolution (DE) (Storn & Price, 1997)is considered one of the evolutionary 

algorithms that took inspiration from natural systems. The idea behind evolutionary 

algorithms is to generate a set of vectors that can be made to represent candidate solutions. 

These vectors then go through a cycle of evolutionary process. It is through this process that 

new candidate solutions are formed when the existing candidate solutions are combined via 

the following steps: mutation, evaluations, crossover and selection. The sequence and 

construction of these steps differ from one algorithm to the next. 

 



IADIS International Journal on Computer Science and Information Systems 

144 

Storn and Price in 1996 (Storn & Price, 1997) proposed the DE algorithm. The DE 

algorithm is a simple and powerful tools using vector differences for perturbing the vector 

population. It is population-based and a stochastic method of optimization. It is also 

considered to be an effective and efficient global optimizer for the continuous search domain. 

DE can be used to minimize non-differentiable and non-linear objective functions through 

continuous spaces. DE has had successful applications in different fields (Fleetwood, 1999; 

Das et al., 2011; Qin et al., 2009) such as communication (Das et al., 2011), mechanical 

engineering (Das et al., 2011), and pattern recognition (Das et al. 2008; Ilonen et al., 2003). 

The basic concept behind DE is to utilize vector differences to perturb the population of the 

vector during the mutation process (Chakraborty, 2008). 

DE’s most valuable and fundamental characteristics compared to other EAs (like EP, 

ACO, GP, like GA, and PSO) are as follows. First of all, DE is simple to code and implement, 

Moreover, in terms of performance; many studies have shown that the DE performs better 

than other evolutionary algorithms in terms of convergence speed, accuracy, robustness and 

the computational time. Moreover, DE only has a few control parameters: mutation scaling 

factor F, population size (NP), and the probability of crossover Cr. These parameters and their 

effects have also been studied well (Chakraborty 2008; Das et al., 2011). Because DE has a 

low space complexity, it can tackle high dimensional optimization problems more easily. 

In Abou Ela et al. (2011), one can find the two main differences between the genetic 

algorithm and the DE. First of all, the operator for the DE mutation is self-adaptive and thus 

all solutions are given the chance to be chosen when coming up with new solutions. Moreover, 

its greedy selection process allows new solutions to be chosen if they have better fitness 

values than their parents. DE’s general properties were enumerated by Storn and Kenneth in 

Price et al. (2006); Storn & Price (1997): it is capable of handling and solving non-linear,  

non-differentiable, and multi-model cost functions; it is easy to adapt and use; and it has good 

convergence speed. 

DE has several trials for its vector generation strategies and a few of those may be suited 

for solving a certain problem. Additionally, there are three important control parameters that 

are involved in DE, i.e. mutation scaling factor, population size, and crossover rate (Storn  

& Price 1997). These parameters can have a significant influence DE’s performance 

optimization. Thus, successfully solving a certain optimization problem requires one to 

conduct a long trial-and-error search for the most suitable strategy. One also has to tune the 

related parameter values. However, this trial-and-error searching process entails higher 

computational costs. Additionally, as evolution progresses, the DE population may go through 

varying search space regions and certain strategies correlated with specific parameter settings 

may end up showing more efficacy than others. Thus, it is best to adaptively identify a suitable 

strategy and its correlated parameter values at various stages during the evolution/search 

process. 

Generally, the goal of global optimization is to model parameters for the systems as cost 

function while considering the constraints before minimising the function over a continuous 

space.  Thus, the following function can be used to represent the global optimization problem: 
 

   
    

        (1) 

 

In Equation 1, the objective function             and                    
represents the solution’s vector, and every    has bounds based on the lower and upper 

limits         . 
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DE is considered a simple parameter algorithm for optimization. It functions based on a 

simple stage cycle demonstrated in Figure 1. The goal of the DE algorithm is to help a 

population of D–dimensional real parameter vectors                   evolve. These 

vectors are responsible for encoding the candidate solutions, i.e. veering them to the global 

minimum. Once initialization is complete, the initial population for each generation will then 

evolve when the following operators are used: crossover, mutation, and selection. 

2. OPTIMIZATION: INTRODUCTION AND BASIC 

CONCEPTS 

Optimization is not only relevant in mathematics and engineering, but even in our everyday 

lives. Optimization may even be one of life’s most important processes. Our brain performs 

optimization even when we are learning to talk or walk. Observing natural evolution gives us 

the impression of having optimization behind it. Theory development is also considered an 

optimization process. Such observations are interesting and inspiring aspects in developing 

procedures for numerical optimization, especially when dealing with problems that are 

difficult and highly complex. 

In the field of mathematics, optimization is a term that is used to refer to the study of 

problems where one aims to minimize or maximize a real function that can meet the dominant 

constraints.  This is achieved by systematically selecting the values of integer or real variables 

from within a predetermined set. When scientists and engineers propose a new idea, 

optimization can be used to improve that idea. The process includes trying variations for an 

initial concept and then utilizing the information obtained from that to improve that idea. 

Through the years, techniques for optimization have been used in various fields from 

engineering and medicine to operations and economics (Luenberger & Ye, 2008). 

Optimization techniques went through significant changes recently. These changes have 

given us the opportunity to use these optimization techniques for the most complicated 

problems today. The general procedure that is utilized to formulate and address optimization 

problems is summarized in the following steps: 

 Analyzing the process to determine the specific characteristics of interest and process 

variables, i e., listing down all the variables. 

 Identifying the optimization criteria and specifying the objective function based on the 

coefficients and the above variables. 

 Using mathematical expressions to develop a valid process model that can relate the 

process’ input-output variables and their associated coefficients. This also includes the equality 

and inequality constraints. The independent and dependent variables are also identified in order 

to calculate the number of degrees of freedom. 

 Using an appropriate optimization technique so that the problem can be stated 

mathematically. 

 Evaluating how sensitive the result is to changes in the parameter values of the 

problem and its assumptions. 

 Optimization problems could be classified into several classes. Categorisation depends on 

the, the modality of the fitness function, linearity of the fitness function the availability of 

constraints, the number of fitness functions, the linearity of the constraints (discrete or 

continuous), and the amount of decision variables. A general optimization problem is 
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generally seen as a mixture of these classifications. Optimization methods can also be 

categorised into different categories based on the following factors. First of all, some random 

components can be used to test the solution space during algorithm convergence - stochastic or 

deterministic methodologies (Zhou et al., 2013). The second factor is the guarantee of the 

calculated optimal solution - exact or heuristic methods (Nearchou & Omirou, 2006). Third, 

the solution’s locality is considered; based on this classification, the methods can either be 

global or local techniques (Qin et al., 2009).  

Specifically, global techniques like DE algorithm better when working with solution 

spaces that have constrained variables, discontinuities, nonlinear relations, or large amounts of 

dimensions that have several potential local optimums. Global techniques either give an 

optimum or near-optimum solution instead of just giving a local optimum. Thus, they can 

come up with useful solutions when local techniques cannot.  

3. FORMULATION OF THE DIRICHLET PROBLEMS 

The most important aspect of the process is normally problem formulation. Problem 

formulation involves the selection of design parameters, fitness function, constraints, and the 

discipline design’s models. This section first formulates a system of differential equations to 

use as an optimization problem that is based on minimizing the cumulative residual error 

found in every unknown interior node. Afterwards, the minimization problem is converted 

into a maximization problem by presenting a fitness function as unity. 

The Dirichlet problems presented below describe the ordinary differential equations: 

                             (2) 

which is dependent on the boundary conditions 

                    (3) 

where      ,     represent real finite constants, and   signifies the nonlinear 

function of   and   . 

 

X0=α X1 X2 XN-1 XN=β 

DIRICHLET 
BOUNDARY 
CONDITION

APPROXIMATE SOLUTION UNKNOWN 
AT ALL INTERIOR GRID POINTS

 

Figure 1. Mesh Grid Points 
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Using the approximate solutions derived from equations (2) and (3), we can have the 

condition that the mesh grid points (Figure 2) are distributed equally along the       interval. 

This condition is guaranteed when we set        ,          , where   
   

 
. 

Therefore, given the interior grid points,   ,            , the system that needs to be 

approximated is as follows 

                         
                      (4) 

which is subject to the boundary conditions 

                        (5) 

One of the simplest and oldest ways to solve differential equations is through finite 

difference approximations for derivatives.  It involves the approximation of the differential 

operator through the replacement of the equation derivatives using difference quotients. This 

paper will use this technique to numerically approximate the solutions for system of equations 

(4) and (5) using DE. The difference quotients from the approximation formulas are close 

approximations of        and        ,            , using an      -point found at the 

interior mesh points and that have an error of up to          , where           and 

      represents the derivative order. This can be obtained easily using (Li, 2005). It is 

noted that the number   begins at   and increases gradually up to  . 

First, as seen in ( Abu Arqub et al., 2011; Abu Arqub et al., 2015; Abu Arqub & Rashaideh 

2013; Abu Arqub & Rashaideh 2017) the differential equations system is transformed into a 

system of difference equations. To accomplish this, the approximate formulas of        and 

       ,             in Equation (3) are substituted to obtain the system’s discretised 

form. The algebraic equations derived from this will serve as functions of            , 

           ,  ,            , and   ,              . Afterwards, the discretised system 

has to be rewritten in the following form: 

                                                                        
          

The general interior node’s residual is represented by      and defined as 

                                                      

The         of vector residual,      is considered a function of all the interior nodes’ 
residuals. It is stated as follows: 

            
   

   

 

The optimization’s notation also signifies the presence of a merit function that one can 

improve upon and use as a measure of the design’s efficacy. The merit function, fitness 

function, and cost function are used to name the functions being optimised. This function is 

also used to measure the solution’s efficacy. The fitness function,        , that was applied in 

this work can be defined as 

    it     
 

      
 

http://mathworld.wolfram.com/L2−Norm.html
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As a matter of fact, in order to convert the      minimisation problem into a         
maximisation problem, the overall vector residual has to be mapped into a fitness function. 

Consequently, lowering the       value improves the vector fitness. The problem’s optimal 

solution and interior grid points’ values are obtained when         approaches unity and 

      approaches zero. 

4. DESCRIPTION OF THE ADAPTIVE DIFFERENTIAL 

EVOLUTION ALGORITHM 

The DE is considered a highly parallel mathematical algorithm that is capable of converting a 

set (population of individuals) that has an associated fitness value into a new population (next 

generation). It accomplishes this by utilizing operators like mutation, 

recombination/crossover, and selection. This section will present a general review of the DE. 

A detailed DE description is then provided. Later, it will be demonstrated how DE’s efficiency 

and performance is dependent on several factors. This includes the DE operators’ design and 

the system parameters’ settings. 

As an optimization technique, DE is based on the concepts of natural selection 

and genetics. DE was first presented in Storn & Price (1997); Price et al. (2006); Li 

(2005). From then on, DE has been thought of as the most powerful evolutionary 

technique. Compared to any other similar techniques, it is also the most applicable 

stochastic search technique when it comes to optimization problems. This can be 

attributed to their capacity to solve problems that are multi-objective and  

non-differentiable (Robič &  ilipič, 2005).  

The DE theory’s general features have been widely accepted and applied. Thus, it has been 

able to obtain good solutions for different problems types found in various disciplines. The 

DE-based techniques are very versatile since they can handle discrete and/or continuous 

design variables.  However, DE still differs from many optimization techniques because of the 

following reasons: 

 DE moves from the design space’s several points to another set of design 

points. Thus, DE techniques are better at finding the global minima compared to 

schemes that work by moving from one point to another (Fleetwood, 1999).  

 DE only needs function evaluations and does not need any function 

derivatives. Even though derivative-based techniques help achieve faster convergence 

towards the optimum, the derivative is also capable of directing the search process to 

the local optimum (Chakraborty, 2008).  

 DE utilizes probabilistic transition rules. This is an important advantage 

when it comes to serving as a guide for highly exploitative searches. Due to this, DE 

should not be thought of as the random walk approach’s variant (Neri & Tirronen, 

2010).  

 DE is better at solving complex engineering problems compared to other 

techniques because of the large individual population. This provides the DE a more 

diverse search space that lessens the possibility of it converging to a non-global 

solution (Price et al., 2006).  
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 It is easy to parallelize DE as it can be integrated easily into the existing 

evaluation software. Moreover, individual sets can be simultaneously solved using 

parallel processors (Tasoulis et al., 2004).  

The basis of DE is on the triangle of mutation and recombination and selection. 

Performing mutation can be done through mutation operator. Recombination can be done 

using the fitness function that is dependent on the specific problem. Selection is a process of 

choosing the parent vectors without dependence on their fitness. 

Since DE is population-based, it has two major advantages compared to other optimization 

techniques (Storn 2008; Price et al., 2006; Storn & Price 1997; Fleetwood 1999). First, it 

determines DE’s parallel behaviour as realized by a population of search individuals or 

candidate solutions that are simultaneously moving (Das et al., 2011). Implementing DE on 

parallel machines significantly lowers the required CPU time. This is in fact an important 

benefit of its inherent parallel nature. Second, the crossover procedure actively passes the 

information about different regions of solution space to different individuals. This exchange of 

information is what makes DE a robust method and efficient optimization method, especially 

for optimising functions that have several variables and nonlinear functions. However, DE’s 

population-based nature also gives rise to two main drawbacks. First, it occupies more 

memory space. Thus, instead of just utilizing one search vector for the solution,     multiple 

search vectors are utilized. These are used to represent the size of the population. Second, 

when DE is used on sequential machines, it typically suffers from computational burden. As a 

result, the time needed to solve particular problems through DE will be relatively higher. 

Moreover, the solution time is an important point of interest when dealing with real time 

applications. However, if any real-life problem requires off-line solutions, the major concern 

will then deal with solution accuracy instead of the solution time. 

Because DE only utilizes objective function information without having to incorporate 

extremely domain-specific knowledge, one can say that it exhibits approach simplicity on one 

hand and versatility on the other. This signifies that when a DE is developed to solve a certain 

problem, one can modify it easily to address other problem types. This can be simply achieved 

by changing the existing algorithm’s objective function. This is the reason for why DE is 

considered a general-purpose search strategy. 
The randomized behaviours of DE are a primary aspect that provides for search 

efficiencies. DE uses stochastic procedures to examine response surfaces for a particular 

optimization problem. The benefit of this class of behaviour is the capacity to exit from local 

minima absent direction (Nearchou & Omirou, 2006). Nevertheless, when employing DE in 

optimization problems attention should focused on two issues; firstly, to see if the parametric 

set to be optimized is inter-correlated. Secondly, to see if constraints exist on the smoothness 

of the ensuing solution curves. In examples of non-correlated parametric sets or non-smooth 

solutions, regular DE will apply. Conversely, if the parameters are interrelated with one 

another or if smoothing of the solution curve is a must, then the DE is preferred in this 

instance. 

DE relies on the developments of curves in two-dimensional spaces and surfaces in  

three-dimensional spaces. The algorithmic method starts with a collection of stochastically 

generated candidate curves and develops superior solutions by adapting differential evolution 

operators. The new strategy is a comparatively novel category of the optimization method, 

drawing interest among mathematicians and engineers. The DE recommended in this study 

comprises the following phases: 
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1. Initialization: For DE, a population of N D–dimensional real parametric vectors is 

stochastically generated at the start. The parametric vectors are expressed as: 

                                      
wherein G is the generation number and NP denotes number of candidate solutions. Initial 

populations should obtain coverage of the total search spaces to the extent possible by 

utilizing modified normal Gaussian (MNG) functions and modified-tangent hyperbolic (MTH) 

functions within the search spaces constrained by the stipulated minimum/maximum 

parametric bounds                                        and 

                                      . The following expression is utilized to assemble 

the initial parametric values of the     vector: 

                                                           

wherein       denotes an MNG and       denotes MTH functions. 

 

  

Figure 2. Initialization 

Dual smoothing functions that fulfil every boundary condition are selected (Abu Arqub et 

al., 2011), including the modified normal Gaussian function (MNG) 

                
 

 
   

     
   
 

 
 

 
 

and the modified tangent hyperbolic function(MTH) 

                        
   

 
     

 

 
   

 

for every             and           , wherein      denotes  -th interior grid 

point value for the  -th vector,   denotes ramp functions of the  -th interior grid value and is 

described as        
   

 
 ,    denotes the population size, and     are randomised values 

within the range         and    
   

 
  provided    . 

The reason for utilizing these functions is driven by (Abu-arqub et al., 2011; Abu Arqub et 

al., 2015) to construct adaptive DE. As well, the continuity property of DE allows it to readily 

manage smooth solution curve candidates where all interior grid points’ values that will be 

optimised are correlated. 
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Set the parameter N, Gmax, G=0.

Generate initial population within the search space 
using  MNG and  MTH functions respectively. 

Evaluate initial populations using using objective function 

f(Xi,G=0), i=1,2,...N, to select Xbest,G=0

If f(Xbest, G) <ε 

|| G > Gmax

Save Xbest,G 

Mutate to have mutant vector :

falsetrue

falsetrue

Stop

 

Figure 3. An Adaptive Differential Evolution Algorithm 

2. Mutation: With respect to each candidate solution, the so-called target vector       at 

current generation G, a mutant vector      is produced by mutation operator. For each target 

vector       in the current generation, a mutant vector                                      is 

produced via the following mutation strategy “DE/rand-to-best/2/bin”: 

                           –                    –   
 
       

                               , 
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Wherein             are indices randomly selected by random within the range [1, N] from 

present generation.              denotes mutation scaling factor, and the          
represents the candidate solutions in accordance with the values of the fitting function in 
present generation G.  

Values of the mutation scaling factor    are auto-adaptive, beginning with        , and 

increasing by 0.1 in K iterations until        . Values of    are utilized in sequence in the Fs 

series if these verified a certain level of effectiveness in fitness values.  

3. Recombination/Crossover: 

Successive to the mutation phase, crossover operation are implemented in all pairs of the 

target vector      and their respective mutant vector        to produce trial vector         : 

         
                                  

               
     

                              

 

 

wherein j    ,2, … ,D;                denotes random numbers, CR denotes crossover 

rates   [0, 1] and                  denotes the randomly selected indices. 

4. Selection: 

Every solution in the population has the same likelihood of being chosen as a parent. 

Target vector      compares with the trial vector        and the term resulting in the lowest 

fitness function value is included in succeeding generations.  Selections can be formulated as: 

        
                        

             
                          

Mutations, crossovers, and selections progress until the stopping conditions are attained. 

The algorithmic description of adaptive DE is outlined in Figure 3. 

5. NUMERICAL RESULTS 

Optimization problems are performed by utilizing an adaptive DE that is among of the more 

advanced optimization methods due to its evolutionary property; it can address most types of 

objective functions and limits. DE does not possess mathematical necessities for optimization 

problems and is also quite successful in conducting globalised probability searches, providing 

a much versatility. Nevertheless, so as to confirm the computational effectiveness of the 

constructed adaptive DE, certain numerical experimentation is carried out on well-known 

problems. The resulting terms were contrasted with the precise solutions and were determined 

to agree with one another.  

The DE generates populations in succession, which can be implemented as an infinitely 

looping process. Once a user stipulates the fitness values to be attained, these processes can be 

ended the moment at least one item demonstrates a value in excess of the preferred value. 

Users are frequently unaware of precisely how large the fitness values of desirable solutions 

must be. Thus, it would be preferable to end the DE once a user cannot expect further superior 

solutions. With knowledge of conventional algorithmic methods for optimization, a user may 

be enticed to observe convergences and then end the DE once maximum fitness values remain 

relatively continuous over certain populations. Conversely, the ending conditions applied in 

every problem are reliant on each and do vary between cases. Nevertheless, the DE ends when 

any of these criteria are encountered: 
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1. The value of fitness of the best vectors of the populations reaches          . 

2. The maximum absolute value of residual for the best vector of the population is less 

than or equal to          . 

3. A maximum number of      iterations is reached. 

4. Improvement in the fitness value of the best vector in the population over     

iterations is less than         . 

The adaptive DE in this paper are utilized to resolve the provided system of Dirichlet 

problems. Inputs to the proposed algorithm are partitioned into dual portions: the adaptive  

DE-associated parameters and the system-related parameters. Nevertheless, inputs to the 

proposed algorithm are as shown: 

Table 1. The Adaptive DE-Associated Parameters 

Parameter  Description 

           Population size 

      Number of grid points 

            Mutation lower bound scaling factor 

            Mutation upper bound scaling factor 

                          crossover rate 

 
Blended techniques for initialization methods are utilized when one-half of a population is 

produced by the MNGF, with the other one-half produced utilizing the MTHF. A set of 

selected problems of second-order Dirichlet problems are provided as follows, wherein the 

first problem is linear, with the secondary and tertiary problems of non-linear property. 

Problem 1. In the linear system as expressed below: 

                              

constrained by the boundary conditions,  

              

wherein      . The precise solutions are expressed as: 

         

Problem 2. In the non-linear system as expressed below: 

                                              

constrained by the boundary conditions 

              

wherein      . The precise solutions are expressed as: 

          

Problem 3. In the non-linear system as expressed below: 

       
 

 
         

 

      
 

constrained by the boundary conditions, 

                 

             . The precise solutions are expressed as. 

              



IADIS International Journal on Computer Science and Information Systems 

154 

Utilising the adaptive DE algorithmic method, with                        through the 

fitness function        , and the previously noted ending criteria, the numerical outcomes of 

estimating       for Problem 1 are charted in Tables 1. 

Table 2. Numerical Results of      for Problem 1 Utilizing Adaptive DE 

Grid 

Point 
Exact value Approximate value Absolute error 

Absolute 

residual 

  1.00000000 1.00000000000000 0.00000000E+00 0.00000000E+00 

    1.10000000 1.09999999999899 1.01096909E-12 -7.36659622E-11 

    1.20000000 1.19999999999723 2.77111667E-12 1.71406889E-10 

    1.30000000 1.29999999999711 2.89057667E-12 -1.31719080E-10 

    1.40000000 1.39999999999555 4.44666526E-12 2.14861906E-10 

    1.50000000 1.49999999999589 4.11048973E-12 3.74456022E-11 

    1.60000000 1.59999999999629 3.70814490E-12 2.36234365E-10 

    1.70000000 1.69999999999871 1.29052324E-12 -2.30481190E-10 

    1.80000000 1.79999999999868 1.32382993E-12 -1.96280103E-10 

    1.90000000 1.89999999999650 3.49786866E-12 6.21990459E-10 

  2.00000000 2.00000000000000 0.00000000E+00 0.00000000E+00 

 

The numerical outcomes through every grid point of      in Problem 2 are shown in  

Table 2. It is remarkable that the precision of some grid points varies inversely with their 

distance (in grid point number) from the boundaries. Conversely, from each table referred to, 

it is obvious that superior approximations can be attained with the precise solutions. 

Table 3. Numerical Results of      for Problem 2 Utilizing Adaptive DE 

Grid 

point 
 Exact value Approximate value Absolute error Absolute residual 

   1.00000 1.00000000000000 0.00000000E+00 0.00000000E+00 

     1.01000 1.00999999999789 2.11031193E-12 -1.47183155E-10 

     1.04000 1.03999999999555 4.44844162E-12 -2.27947883E-10 

     1.09000 1.08999999999245 7.55062679E-12 8.57407922E-10 

     1.16000 1.15999999999714 2.86348723E-12 -2.32168063E-10 

     1.25000 1.24999999999761 2.38808973E-12 -2.33303155E-10 

     1.36000 1.35999999999607 3.92752497E-12 4.06302547E-10 

     1.49000 1.48999999999820 1.79789517E-12 3.08615355E-10 

     1.64000 1.64000000000109 1.08779652E-12 -1.19458221E-10 

     1.81000 1.81000000000132 1.31739064E-12 -2.25442776E-10 

   2.00000 2.00000000000000 0.00000000E+00 0.00000000E+00 
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The detailed inputs for      in Problem 3 comprise the accurate nodal values, the DE 

nodal values, absolute errors, and the absolute nodal residuals, as shown in Table 3. Clearly, 

the precision attained utilizing adaptive DE is good, given its truncation error is of the order 

     . 

Table 4. Numerical Results of      for Problem 3 Utilizing Adaptive DE 

Grid 

point 

 
Exact value Approximate value Absolute error 

Absolute  

residual 

     0.0000000000 0.0000000000 0.00000000E+00 0.00000000E+00 

     0.1001667500 0.1001990414 3.22913745E-05 1.52596698E-03 

     0.2013360025 0.2013682939 3.22913780E-05 1.74098703E-03 

     0.3045202934 0.3045525848 3.22913821E-05 1.82894495E-03 

     0.4107523258 0.4107846172 3.22913821E-05 1.95256797E-03 

     0.5210953055 0.5211275969 3.22913807E-05 2.11365770E-03 

     0.6366535821 0.6366858735 3.22913807E-05 2.31457105E-03 

     0.7585837018 0.7586159932 3.22913779E-05 2.55825361E-03 

     0.8881059822 0.8881382736 3.22913807E-05 2.84827180E-03 

     1.0265167257 1.0265490171 3.22913551E-05 7.80555033E-06 

   1.1752000000 1.1752000000 0.00000000E+00 0.00000000E+00 

6. STATISTICAL ANALYSIS 

As a result of the randomised property of DE, nine distinct runs were conducted for each 

acquired result in this study, utilizing a dissimilar randomly-generated seed; the outcomes are 

the mean values of the runs. It is implied that every DE run will end in a slightly dissimilar 

result. Nevertheless, the convergence data of the trio of problems is shown in Table 4. The 

table clearly show that problems require     repetitions on average, converging on a fitness 

value of              with a mean absolute nodal residual of value              and a 

mean absolute difference between the precise values and those acquired through the utilization 

of DE valued at             . 

Table 5. Convergence Data of the Three Problems 

Problem  
Average 

iterations 
 

Average 

fitness 
 

Average 

absolute 

error 

 

Average 

absolute 

residual 

1                    2.78E-12  7.22E-11 

2                    3.05E-12  3.87E-10 

3                    3.23E-05  1.88E-03 
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Figure 4. Progress Plots Regarding To Iterations for the Best-Of-Generation Vector for: (A) Problem 1; 

(B) Problem 2; (C) Problem 3 
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Figure 5. Evolution of the Grid Point Value of      at First Grid Point, Middle Grid Point, and Last 

Grid Point for Problem 1 
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Figure 6. Evolution of the Grid Point Value of      at First Grid Point, Middle Grid Point, and Last Grid 

Point for Problem 2 

The developmental progress plotting of the best-fitness individual values of Problems 1, 2, 

and 3 are depicted in Figure 4. The figures clearly demonstrate that, in the initial     of 

repetitions, the best-fitness strategies to unity occurred very fast, after which the strategies to 
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unity occurred at slower rates. It implies that the DE converges to the nearly optimised 

solutions most rapidly in the initial 40  of repetitions.  

The manner by which the internal values for the grid points for Problem 1, problem 2, as 

well as problem 3 are next examined. Figures 5 depicts the computational value of the initial 

grid point   , middle,   , and ninth,    values of the interior grid points of     , whereas 

Figures 6 and 7 demonstrate the computational values of problem 2 and  

problem 3, respectively,  through every repetition. 

 

 

Figure 7. Evolution of the Grid Point Value of      at First Grid Point, Middle Grid Point, and Last Grid 

Point for Problem 3 
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7. CONCLUSION 

In this paper, solving systems of second-order Dirichlet problems using adaptive DE algorithm 

is discussed. To validate the proposed algorithm, test cases are designed and solved using 

adaptive DE algorithm. The results showed that proposed adaptive DE is able to find optimal 

solutions for test cases in a more reasonable accuracy and promising convergence. 

Consequently, such algorithm is expected to fit significantly the mathematical and engineering 

applications. Whilst, the influence of different parameters, including the initialization 

methods, the evolution of grid points values, the probability crossover and adaptive mutation 

parameter, the maximum number of iterations, and the maximum nodal residual is studied. 

The solving procedure reveals that the adaptive DE method is a straightforward, and 

promising tool for solving linear and nonlinear systems of ordinary differential equations. 
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