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PROJECTION-ITERATION REALIZATION
OF A NEWTON-LIKE METHOD FOR SOLVING

NONLINEAR OPERATOR EQUATIONS

Liudmyla L. Hart∗

Abstract. We consider the problem of existence and location of a solution of a nonlinear
operator equation with a Fréchet differentiable operator in a Banach space and present
the convergence results for a projection-iteration method based on a Newton-like method
under the Cauchy’s conditions, which generalize the results for the projection-iteration re-
alization of the Newton-Kantorovich method. The proposed method unlike the traditional
interpretation is based on the idea of whatever approximation of the original equation by
a sequence of approximate operator equations defined on subspaces of the basic space with
the subsequent application of the Newton-like method to their approximate solution. We
prove the convergence theorem, obtain the error estimate and discuss the advantages of
the proposed approach and some of its modifications.
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1. Introduction

The fundamental tool in numerical analysis, operations research, optimization
and control is Newton’s method originally intended to solve algebraic equations.
The basic ideas of the method, the main theoretical results of convergence, the
latest developments in this area, the most up-to-date versions of the method,
as well as its various applications can be found, for instance, in papers [1, 4, 5,
12–18]. Newton’s method has been studied in more detail under the so-called
Kantorovich conditions (the derivative of the equation operator is invertible at
the initial point and satisfies the Lipschitz condition in the considered domain),
under the Vertgeim conditions (the operator derivative is invertible at the initial
point but satisfies only Hölder condition) and under the Mysovskih conditions
(the derivative is invertible at all points in the considered domain and its inverse
operator is bounded).

To solve nonlinear functional equations, other iterative methods as well as
projection (approximation) type methods are also used; a survey of the relevant
literature is contained, for instance, in [8]. In the same source, to solve operator
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equations of the first kind, studies have been performed for methods called the
projection-iteration ones based on the following idea. An equation of the form

Au = f (1.1)

with a nonlinear operator A acting on a Banach space X (f ∈ X is a known
element), is approximated by a sequence of approximate equations

Anun = fn, n = 1, 2, . . . , (1.2)

where An is a nonlinear operator acting on a subspace Xn of the original space
(X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ · · · ⊂ X, X1 6= ∅). To solve approximate equations
(1.2), some iterative method is used, at that for each of these equations only a
few approximations u(k)

n (k = 1, 2,. . . , kn) are found and the last of them u
(kn)
n

is assumed to be equal to the initial approximation u(0)
n+1 in the iterative process

for the next, (n + 1)-th approximate equation. The sequence {u(kn)
n }∞n=1 ⊂ X is

considered as a sequence of approximations to a solution u∗ of equation (1.1). This
approach to finding an approximate solution of the original equation naturally
eliminates the difficulties that arise when solving the same equation using the
conventional projection method and also makes it easier to choose the suitable
initial approximation compared to solving the original equation using the iterative
method.

In this paper, to solve nonlinear operator equation (1.1), the projection-itera-
tion implementation of the Newton-like method [6] is studied under generalized
Cauchy’s conditions, which instead of the inverse operator to the derivative in the
considered domain imply the existence of some linear operator close to it. The
problems of substantiation of the projection-iteration schemes of both the basic
Newton-Kantorovich method under such conditions and some of its modifications
are considered.

2. Preliminaries

Let us consider equation (1.1) Au = f with a nonlinear operator A which
acts on a Banach space X and is Fréchet differentiable on some ball S(u

(0)
N , R) =

{u ∈ X : ‖u − u
(0)
N ‖ ≤ R} of this space. We approximate equation (1.1) by

the sequence of approximate equations (1.2) Anun = fn, n = 1, 2, . . . with
nonlinear operators An, each of which acts on the respective subspace Xn ⊂ X

and is Fréchet differentiable on the set Ωn = Xn∩S(u
(0)
N , R) beginning with some

number n = N ≥ 1; fn = Pnf, Pn is a linear projector which maps X onto
Xn (Pn : X → Xn, Pnun = un for un ∈ Xn).

Assume that for each n ≥ N the following proximity conditions hold:

‖Anun−PnAun‖ ≤ αn, ‖A′n(un)−PnA′(un)‖Xn→Xn ≤ α′n, ∀un ∈ Ωn; (2.1)

‖PnAu−Au‖ ≤ βn, ‖PnA′(u)−A′(u)‖X→X ≤ β′n, ∀u ∈ S(u
(0)
N , R); (2.2)
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‖Pnf − f‖ ≤ γn, ∀f ∈ X, (2.3)

where αn, α′n, βn, β′n, γn → 0 when n → ∞. We will also assume that the
derivative A′n(un) on the set Ωn satisfies the Lipschitz condition

‖A′n(un)−A′n(vn)‖Xn→Xn ≤ L′ ‖un − vn‖, ∀un, vn ∈ Ωn, n ≥ N, (2.4)

where L′ > 0 is a Lipschitz constant.
If there exists a continuous linear operator Γn(un) = [A′n(un)]−1 for all un ∈

Ωn (n ≥ N) then one can apply the Newton-Kantorovich method [14] to each of
equations (1.2) beginning from the number n = N , and construct a sequence of
approximations to the solution u∗ of equation (1.1) by the formulas

u(k+1)
n = u(k)

n − [A′n(u(k)
n )]−1(Anu

(k)
n − fn), k = 0, 1, . . . , kn − 1; (2.5)

u
(0)
n+1 = u(kn)

n , n ≥ N ; u
(0)
N ∈ ΩN ⊂ X.

In paper [3] the theorem is given on the existence of a solution u∗ to equation
(1.1), on the domain of its location, as well as on the convergence of projection-
iteration process (2.5) under the Cauchy-type conditions. The following theorem
is a generalization of the mentioned theorem, when instead of operators

Γ(u) = [A′(u)]−1, u ∈ S(u
(0)
N , R)

and Γn(un) = [A′n(un)]−1, un ∈ Ωn (n ≥ N), it is required the existence only of
an operator D(u), u ∈ S(u

(0)
N , R) in X and an operator Dn(un), un ∈ Ωn in Xn,

which are close to Γ(u) and Γn(un) respectively.

Theorem 2.1. Let the operator A be Fréchet differentiable on some ball S(u
(0)
N ,

R) ⊂ X and let for all n ≥ N the operator An be Fréchet differentiable on the set
Ωn = Xn∩S(u

(0)
N , R), at that let its derivative A′n(un) satisfy on Ωn the Lipschitz

condition (2.4). Assume that the proximity conditions (2.1)–(2.3) hold true and
there exist a linear operator D(u) on X and linear operators Dn(un) on Xn such
that

‖D(u)‖X→X ≤ b, ‖E −D(u)A′(u)‖X→X ≤ δ < 1, ∀u ∈ S(u
(0)
N , R); (2.6)

‖E −Dn(un)A′n(un)‖Xn→Xn ≤ δn < 1, ∀un ∈ Ωn, n ≥ N, (2.7)

where b > 0, δ > 0, δn > 0; E is an identity operator on X. If the initial
approximation u(0)

N ∈ ΩN satisfies the conditions

‖ANu(0)
N − fN )‖ ≤ η(0)

N , h
(0)
N = b2NL

′η
(0)
N < 2, rN = bNη

(0)
N GN ≤ R, (2.8)
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where

bN = b/
(
1− b(α′N + β′N )− δ

)
,

GN = HN +
∞∑

m=N

(h
(0)
N /2)2Sm−1 < 2HN ,

sm =

m∑
i=N

(ki − 1),

HN =
∞∑
m=0

(h
(0)
N /2)2Sm−1,

then equation (1.1) has in the ball S(u
(0)
N , rN ) a solution u∗ to which the based on

Newton’s method process (2.5) converges with the error estimate

‖u(kn)
n − u∗‖ ≤ bNη(0)

N Vn(h
(0)
N /2)2Sn−1, n ≥ N, (2.9)

where

Vn =

∞∑
m=0

(h
(0)
N /2)2Sn (2m−1) +

∞∑
m=n+1

(h
(0)
N /2)2Sm−2Sn < 2HN .

The proof of Theorem 2.1 can be found in [3].

3. Proving the convergence theorem

Let us consider, to solve the operator equation (1.1), a projection-iteration
process, like (2.5) with the replacement of the operator Γn(u

(k)
n ) = [A′n(u

(k)
n )]−1

by an operator Dn(u
(k)
n ) close to it:

u(k+1)
n = u(k)

n −Dn(u(k)
n )(Anu

(k)
n − fn), k = 0, 1, . . . , kn − 1; (3.1)

u
(0)
n+1 = u(kn)

n , n ≥ N ; u
(0)
N ∈ ΩN ⊂ X.

The following theorem establishes the sufficient conditions of feasibility and con-
vergence in the ball S(u

(0)
N , R) of the approximations sequence {u(kn)

n }∞n=N ⊂ X
determined by formulas (3.1) to a solution u∗ of equation (1.1).

Theorem 3.1. Let all the conditions of Theorem 2.1 hold true and let, moreover,
the derivative A′(u) satisfy on S(u

(0)
N , R) the Lipschitz condition

‖A′(u)−A′(v)‖X→X ≤ L ‖u− v‖, ∀u, v ∈ S(u
(0)
N , R); L > 0. (3.2)

Assume that bLδ/(1 − δ) < 1, where b > 0, δ > 0 are defined in (2.6), and that
δn → 0 in condition (2.7) when n → ∞. If the initial approximation u

(0)
N ∈ ΩN

satisfies the first condition (2.8),

h
(0)
N = b2NL

′η
(0)
N +

2bNL
′δN

1− δN
< 2, rN = bNη

(0)
N GN ≤ R, (3.3)
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where

bN = b/(1− bρN ),

ρN = α′N + β′N + L′δN/(1− δN ) + Lδ/(1− δ),

GN = HN +

∞∑
m=N

(h
(0)
N /2)Sm < 2HN ,

sm =
m∑
i=N

(ki − 1),

HN = 1/(1− h(0)
N /2),

then equation (1.1) has in the ball S(u
(0)
N , rN ) ⊂ X a solution u∗ to which the

projection-iteration process of approximations (3.1) converges with the error esti-
mate

‖u(kn)
n − u∗‖ ≤ bNη(0)

N Vn(h
(0)
N /2)Sn , n ≥ N, (3.4)

where Vn = HN +
∞∑

m=n+1
(h

(0)
N /2)Sm−Sn < 2HN .

Proof. First of all, we note that the second condition in (2.6) implies the existence
of bounded inverse operator [D(u)]−1, u ∈ S(u

(0)
N , R); while taking into account

(3.2) the estimate ‖[D(u)]−1‖X→X ≤ L/(1 − δ) holds for all u ∈ S(u
(0)
N , R).

Similarly, from the conditions (2.7) and (2.4) there follows the existence of bound-
ed inverse operators [Dn(un)]−1, un ∈ Ωn with the norm ‖[Dn(un)]−1‖Xn→Xn ≤
L′/(1− δn), n ≥ N . Further, based on the first condition (2.6) and the proximity
conditions (2.1), (2.2) the existence of operators Dn(un) implies their bounded-
ness, beginning with some n = N1 ≥ N . Indeed, since for un ∈ Ωn, zn ∈ Xn

‖[Dn(un)]−1zn − [D(un)]−1zn‖ ≤
(
‖[Dn(un)]−1 −A′n(un)‖Xn→Xn

+ ‖A′n(un)− PnA′(un)‖Xn→Xn + ‖PnA′(un)−A′(un)‖X→X
+ ‖A′(un)− [D(un)]−1‖X→X

)
‖zn‖ ≤ ρn ‖zn‖,

where ρn = L′δn/(1− δn) + α′n + β′n + Lδ/(1− δ), then

‖[Dn(un)]−1zn‖ ≥ ‖[D(un)]−1zn‖ − ‖[Dn(un)]−1zn − [D(un)]−1zn‖
≥ (1− bρn)/b ‖zn‖,

and since under the conditions of the theorem bρn < 1 for n ≥ N1, then for these
numbers n we will have

‖Dn(un)‖Xn→Xn ≤ bn = b/(1− bρn), un ∈ Ωn. (3.5)

Let us prove the feasibility of process (3.1). Note that the possibility of re-
placing equations (1.2) by linearized equations

Anu
(k)
n + [Dn(u(k)

n )]−1(un − u(k)
n ) = fn, k = 0, 1, . . . ; n ≥ N



Projection-iteration realization of a Newton-like method 61

respectively follows from the existence of continuous operators [Dn(un)]−1 close
to A′n(un), un ∈ Ωn for the specified n. We establish (by mathematical induction)
that all subsequent approximations u(0)

n for n > N have the same properties (2.8),
(3.3) and that they belong to the ball S(u

(0)
N , rN ) ⊂ X. Based on the theorem

conditions, it can be shown that for n = N, N + 1, . . . , m

‖Anu(0)
n − fn‖ ≤ η(0)

n , h(0)
n = b2nL

′η(0)
n +

2bnL
′δn

1− δn
< 2. (3.6)

In addition, as it follows from the proof of Theorem 2 of [6], at any fixed n
(N ≤ n ≤ m) the conditions

‖Anu(k)
n − fn‖ ≤ η(k)

n , h(k)
n = b2nL

′η(k)
n +

2bnL
′δn

1− δn
< 2 (3.7)

hold for each number k = 1, 2, . . . , kn. We show the feasibility of (3.6) for
n = m+ 1. Insofar as

‖Am+1u
(0)
m+1−fm+1‖ ≤ ‖Am+1u

(0)
m+1−Amu

(0)
m+1‖+‖Amu

(km)
m −fm‖+‖fm−fm+1‖,

then based on the proximity conditions (2.1)–(2.3) from the relations

‖Am+1u
(0)
m+1 −Amu

(0)
m+1‖ ≤ ‖Am+1u

(0)
m+1 − Pm+1Au

(0)
m+1‖

+ ‖Pm+1Au
(0)
m+1 −Au

(0)
m+1‖+ ‖Au(km)

m − PmAu(km)
m ‖

+ ‖PmAu(km)
m −Amu(km)

m ‖ ≤ αm+1 + βm+1 + βm + αm;

‖fm − fm+1‖ ≤ ‖Pmf − f‖+ ‖f − Pm+1f‖ ≤ γm + γm+1

and from the first of the conditions (3.7) we obtain:

‖Am+1u
(0)
m+1 − fm+1‖ ≤ θm + η(km)

m = η
(0)
m+1, (3.8)

where θm = αm + αm+1 + βm + βm+1 + γm + γm+1, that is, the first of the
conditions (3.6) for n = m + 1 holds true. Let us show the fulfillment of the
second one.

Proof of the Theorem 2 of [6] implies that for any k = 0, 1, . . . , km − 1

‖Amu(k+1)
m − fm‖ = ‖Amu(k+1)

m −Amu(k)
m − [Dm(u(k)

m )]−1(u(k+1)
m − u(k)

m )‖

≤ L′

2
‖u(k+1)

m − u(k)
m ‖2 +

L′δm
1− δm

‖u(k+1)
m − u(k)

m ‖

≤ L′

2
b2mη

(k)2

m +
L′δm

1− δm
bmη

(k)
m =

h
(k)
m

2
η(k)
m = η(k+1)

m , (3.9)

so

η(km)
m =

h
(km−1)
m

2
η(km−1)
m = · · · = 1

2km
h(km−1)
m h(km−2)

m . . . h(0)
m η(0)

m .
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Because in (3.8) θm → 0 whenm→∞ and because by virtue of (3.7) h(km−1)
m < 2,

there exists a number m = N2 ≥ N beginning with which

η
(0)
m+1 ≤

1

2km−1
h(km−2)
m h(km−3)

m . . . h(0)
m η(0)

m . (3.10)

Since, obviously bm+1 ≤ bm, δm+1 ≤ δm, then taking into account (3.10) and (3.7)
we have for all m ≥ N2:

h
(0)
m+1 = b2m+1L

′η
(0)
m+1 +

2bm+1L
′δm+1

1− δm+1

≤ b2mL′
1

2km−1
h(km−2)
m h(km−3)

m . . . h(0)
m η(0)

m +
2bmL

′δm
1− δm

= b2mL
′η(km−1)
m +

2bmL
′δm

1− δm
= h(km−1)

m < 2, (3.11)

that is, the second of the conditions (3.6) for n = m+ 1 also holds true.
Let number N := max{N1, N2} be the initial one in formulas (3.1).
Let’s show that the approximations u(0)

n+1 belong to the ball S(u
(0)
N , rN ) ⊂ X

for all n ≥ N . It’s obvious that

‖u(0)
n+1 − u

(0)
N ‖ ≤

n∑
m=N

‖u(0)
m+1 − u

(0)
m ‖, n ≥ N ;

in turn, for each m = N, N + 1, . . . , n

‖u(0)
m+1 − u

(0)
m ‖ = ‖u(km)

m − u(0)
m ‖ ≤

km−1∑
k=0

‖u(k+1)
m − u(k)

m ‖.

Based on formulas (3.1), (3.5), (3.7), (3.9) for any numbers m = N, N + 1, . . . , n
and k = 0, 1, . . . , km − 1 we obtain:

‖u(k+1)
m − u(k)

m ‖ ≤ ‖Dm(u(k)
m )‖Xm→Xm‖Amu(k)

m − fm‖ ≤ bmη(k)
m

= bm
1

2k
h(k−1)
m h(k−2)

m . . . h(0)
m η(0)

m ,

and because of

h(k+1)
m = b2mL

′η(k+1)
m +

2bmL
′δm

1− δm

= b2mL
′h

(k)
m

2
η(k)
m +

2bmL
′δm

1− δm

< b2mL
′η(k)
m +

2bmL
′δm

1− δm
= h(k)

m < 2, k = 0, 1, . . . , km − 1, (3.12)
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we have

‖u(k+1)
m − u(k)

m ‖ ≤ bm
(
h(0)
m /2

)k
η(0)
m , k = 0, 1, . . . , km − 1.

Let’s evaluate here η(0)
m and h(0)

m (N + 1 ≤ m ≤ n) through η(0)
N and h(0)

N . Apply-
ing (3.12) in formulas (3.10) and (3.11), we obtain the relations

η
(0)
m+1 <

(
h(0)
m /2

)km−1
η(0)
m ;

h
(0)
m+1 ≤ h

(km−1)
m < h(0)

m ≤ h
(km−1−1)
m−1 < h

(0)
m−1 ≤ · · · < h

(0)
N , m ≥ N,

which implies that

η(0)
m <

(
h

(0)
m−1/2

)km−1−1
η

(0)
m−1

<
(
h

(0)
m−1/2

)km−1−1(
h

(0)
m−2/2

)km−2−1
η

(0)
m−2 < . . .

<
(
h

(0)
N /2

)Sm−1η
(0)
N ,

where sm−1 =
m−1∑
i=N

(ki − 1), m = N + 1, N + 2, . . . , n. With this in mind

‖u(k+1)
m − u(k)

m ‖ ≤ bN
(
h

(0)
N /2

)Sm−1+k
η

(0)
N , (3.13)

k = 0, 1, . . . , km − 1; m = N + 1, N + 2, . . . , n;

‖u(k+1)
N − u(k)

N ‖ ≤ bN
(
h

(0)
N /2

)k
η

(0)
N , k = 0, 1, . . . , kN − 1,

so

‖u(0)
n+1 − u

(0)
N ‖ ≤

n∑
m=N

km−1∑
k=0

‖u(k+1)
m − u(k)

m ‖

≤ bNη(0)
N

[
kN−1∑
k=0

(
h

(0)
N /2

)k
+

n∑
m=N+1

km−1∑
k=0

(
h

(0)
N /2

)Sm−1+k

]

= bNη
(0)
N

[
Sn∑
k=0

(
h

(0)
N /2

)k
+

n−1∑
m=N

(
h

(0)
N /2

)Sm]
< bNη

(0)
N GN = rN , n ≥ N,

that is, each u(0)
n+1 where n ≥ N (and also all u(k)

n (k = 1, 2,. . . , kn) by virtue of
the Theorem 2 from [6]) belong to the ball S(u

(0)
N , rN ). Thus, the feasibility of

process (3.1) is proved.
Let’s now show that the sequence {u(kn)

n }∞n=N , which is determined by formulas
(3.1), converges in S(u

(0)
N , rN ). Using (3.13) for any numbers n ≥ N and p ∈ N
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we write:

‖u(kn+p)
n+p − u(kn)

n ‖ ≤
n+p∑

m=n+1

‖u(km)
m − u(km−1)

m−1 ‖ =

n+p∑
m=n+1

‖u(km)
m − u(0)

m ‖

≤
n+p∑

m=n+1

km−1∑
k=0

‖u(k+1)
m − u(k)

m ‖

≤ bNη(0)
N

n+p∑
m=n+1

km−1∑
k=0

(
h

(0)
N /2

)Sm−1+k

= bNη
(0)
N

[
kn+1−1∑
k=0

(
h

(0)
N /2

)Sn+k
+

n+p∑
m=n+2

km−1∑
k=0

(
h

(0)
N /2

)Sm−1+k

]

= bNη
(0)
N

(
h

(0)
N /2

)Sn[ Sn+p−Sn∑
k=0

(
h

(0)
N /2

)k
+

n+p−1∑
m=n+1

(
h

(0)
N /2

)Sm−Sn]
< bNη

(0)
N

(
h

(0)
N /2

)Sn2HN . (3.14)

Since h(0)
N < 2, then ‖u(kn+p)

n+p −u
(kn)
n ‖ → 0 when n→∞, that means the fundamen-

tality of the sequence {u(kn)
n }∞n=N ⊂ S(u

(0)
N , rN ). By virtue of the completeness of

the space X, there exists an element u∗ ∈ S(u
(0)
N , rN ) such that u∗ = lim

n→∞
u

(kn)
n .

Passing to the limit at p→∞ in (3.14) and denoting

Vn = lim
p→∞

[ Sn+p−Sn∑
k=0

(
h

(0)
N /2

)k
+

n+p−1∑
m=n+1

(
h

(0)
N /2

)Sm−Sn]

=
∞∑
k=0

(
h

(0)
N /2

)k
+

∞∑
m=n+1

(
h

(0)
N /2

)Sm−Sn , n ≥ N,

we obtain the error estimate (3.4).
To prove that the limit u∗ of the sequence {u(kn)

n }∞n=N is a solution of equation
(1.1), we consider the residual of method (3.1) on the n-th step (n ≥ N):

‖Au(kn)
n − f‖ ≤ ‖Au(0)

n+1 − Pn+1Au
(0)
n+1‖+ ‖Pn+1Au

(0)
n+1 −An+1u

(0)
n+1‖

+ ‖An+1u
(0)
n+1 − fn+1‖+ ‖fn+1 − f‖ ≤ βn+1 + αn+1 + η

(0)
n+1 + γn+1.

Since, αn+1, βn+1, γn+1, η
(0)
n+1 → 0 when n → ∞, and since the operator A is

continuous due to Fréchet differentiability, then by tending n → ∞ in the last
inequality, we obtain that Au∗ = f . The theorem is proved.

Note that the projection-iteration implementation (3.1) of the Newton-like
method generally converges more slowly than the projection-iteration process (2.5)
based on the classical Newton’s method. An exception is the case, when δ = 0,
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δn = 0 (n ≥ N) in formulas (2.6), (2.7), that leads to the transformation of
method (3.1) into (2.5); in such a situation, the error estimate (3.4) for method
(3.1) (or, equivalently, method (2.5)) is significantly overestimated, and for this
case the more appropriate result is contained in Theorem 2.1.

For equation (1.1) under the Theorem 2.1 conditions, along with the projec-
tion-iteration method (2.5) based on the Newton’s method, one can consider the
approximation process based on the modified Newton’s method:

u(k+1)
n = u(k)

n − [A′n(u(0)
n )]−1(Anu

(k)
n − fn), k = 0, 1, . . . , kn − 1;

u
(0)
n+1 = u(kn)

n , n ≥ N ; u
(0)
N ∈ ΩN ⊂ X,

and under the Theorem 3.1 conditions, along with the projection-iteration method
(3.1), one can consider the approximation process based on the modified Newton-
like method:

u(k+1)
n = u(k)

n −Dn(u(0)
n )(Anu

(k)
n − fn), k = 0, 1, . . . , kn − 1;

u
(0)
n+1 = u(kn)

n , n ≥ N ; u
(0)
N ∈ ΩN ⊂ X.

Such the projection-iteration processes (although they converge more slowly than
the process (2.5) based on the Newton’s method) are less laborious, since for each
n ≥ N they use operators [A′n(u

(0)
n )]−1 or Dn(u

(0)
n ) which correspond only to the

initial point u(0)
n ∈ Ωn, and this obviously leads to a computational overhead

reduction in numerical implementation.
We note, finally, that while solving nonlinear operator equations of the form

(1.1), as follows from the proofs of Theorems 2.1, 3.1 on the convergence of
projection-iteration methods based on the Newton’s method and the Newton-like
one respectively, the convergence of corresponding sequences {u(kn)

n }∞n=N (when
n → ∞) towards an exact solution u∗ in X occurs under an arbitrary choice of
numbers kn. However, to prevent a sharp increase with increasing n of amount
of computations needed to find the next approximation, we have to consider a
problem of the appropriate choice of numbers kn at each n ≥ N . Some recom-
mendations on this issue have been given in [2]. In particular, there has been
considered a way to choose numbers kn so that the element u(kn)

n would be a good
initial approximation for the (n + 1)-th approximate equation of the form (1.2),
that is, that the residual An+1u

(0)
n+1 − fn+1 would have, if possible, a small value.

The idea underlying this way to choose numbers kn also makes it possible to de-
termine the most acceptable number n + p (p ≥ 1) of the approximate equation
following the n-th one in the sequence of equations (1.2). Some other ways to
choose numbers kn in projection-iteration methods of solving nonlinear equations
as well as their application in solving specific problems, can be found in [3,7,9–11].
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