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Abstract. A new autonomous 4D nonlinear model with two nonlinearities describing
the dynamics of change of voltage and current in the contact railway electric network is
offered. This model is a connection of two 2D oscillatory circuits for current and voltage
in the contact electric network. In the found system for the defined values of parameters
an existence of limit cycles is proved. By introduction of new variables this system can
be reduced to 5D system only with one quadratic nonlinearity. The constructed model
may be used for the control by voltage stability in a direct current power supply system.
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1. Introduction

The modern stage of functioning of railways is conditioned by the necessity
of providing competitiveness with other types of transport. The decision of this
problem supposes introduction of high-speed passenger transport as well as heavy
freight trains. For this purpose on the railways measures on the increase of speed
of movement are carried out, new electric locomotives of large power are cre-
ated, different ways of strengthening traction power supply are applied (see, for
example, [1]).

The traction power system of the electrified section of the railway (TPS)
is a set of territorially dispersed and operating electric power stations. This
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system can include traction substations, sectionalizing stations, parallel connec-
tion points, contact network devices and power transmission lines between them,
united by a common purpose and intended for processing and transmission of qual-
itative electric energy to electric rolling stock (ERS). The peculiarities of electric
power transmission through the traction network is the change in the position of
ERS and the change in their operating modes, the restrictions imposed by trains
on each other depending on their relative location, as well as the restrictions as-
sociated with the technology of the transportation process as a whole. One of the
main indicators of the quality of transmitted electrical energy to ERS is the level
of voltage on the current collectors of electric locomotives, and the nature of the
factors affecting on this level, which are nonlinear and non-stationary.

Ensuring the stable and reliable operation of any technical system is an im-
portant task that requires its solution. Voltage resilience is the ability of the
power system to maintain stable and acceptable voltage levels on all bus systems
(BS) in both normal and post-emergency and repair modes. The criterion for the
stability of the power system in terms of voltage is that, in the current mode, the
value of reactive power on the same BS should increase at each BS with increasing
voltage. Dynamic voltage stability is associated with the evaluation and support
of the voltage within 1 – 2 seconds immediately after a large disturbance. Static
voltage stability belongs to the form of stability, determined mainly by the static
characteristics of the load and network parameters.

The existent system of traction electric supply of direct current not always
is able to provide the transmission electric power of necessary capacity for speed
trains. In this connection there can be the following limitations: lowering of
voltage in the contact network is below than normal level 2.7 kV for ordinary
motion (below than level 2.9 kV for high speed motion) and heatings of wires
of contact network, that will promote in the loss of their mechanical durability.
Lowering of voltage in the receiver of current diminishes the speed of movement
of trains. Thus, the saving of level of consumable power results in the increase of
current of electric locomotive and loss of electric power in the contact network.

Since the dynamical state of any technical system is described by a system
of differential equations, the study of the problem of the stability of its motion
reduces to the study of the stability of solutions of differential equations. To calcu-
late the static stability of the power system, it is necessary to compile a system of
differential equations of transient processes, linearize these equations, and obtain
the characteristic equation of a system of linearized equations. Together, these
equations constitute a mathematical model of the energy system [2], as a result
of which solutions it is possible to obtain algebraic and other stability criteria for
the system under consideration.

In this connection, there is an urgent need to consider the problem of deter-
mining the stability of TPS as an initially nonlinear problem. At present, an
approach based on the analysis of signals produced by the system is widely used
to study the properties of complex systems, including experimental studies. This
is very important in cases when it is practically impossible to describe the pro-
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cess under study mathematically, but we have at our disposal certain observable
quantities, which allow to build a wanted model [3].

Now there is a great number of methods of diminishment of losses of electric
power in the contact network [2], [3]. In the present paper the diminishment of
losses of electric power and increase of power efficiency of the systems of electric
supply will be attained due to introduction of new dynamic models describing
the behavior of current and voltage in these networks. Due to these models
new methods of calculation of parameters of contact electric networks can be
offered. Such methods allow to apply new organizational measures resulting in
diminishment of losses of electric energy in contact networks.

Let
x0 = x(t0), x1 = x(t1), ..., xn = x(tn) (1.1)

be a finite sequence of numerical values of some scalar dynamical variable x(t)
measured with the constant time step ∆t in the moments ti = t0 +i∆t; xi = x(ti);
i = 0, 1, ..., n. Sequence (1.1) is called a time series [4] – [10].

In future the time series (1.1) will characterize a voltage (or current) in the
contact network measured through the equal intervals of time.

A common practice in chaotic time series analysis has been to reconstruct the
phase space by utilizing the delay-coordinate embedding technique, and then to
compute the dynamical invariant magnitudes such as unstable periodic orbits, a
fractal dimension of the underlying chaotic set, and its Lyapunov spectrum. As
a large body of literature exists on applying of the technique of the time series to
study chaotic attractors [10] – [15], a relatively unexplored issue is its applicability
to dynamical systems of differential equations depending on parameters. Our
focus will be concentrated on the analysis of influence of parameters of found
dynamic system on the behavior of its solutions. These parameters are determined
by the structure of the time series (1.1) and choice of approximating functions in
right sides of the got system of differential equations.

To create a model by measuring the variables characterizing any dynamic
process, it is necessary to solve the following four main problems.

It is known that any dynamic process depends on many variables. Most of
these variables are functions of some small number of independent variables. Iden-
tifying these independent variables leads to the first problem.

Problem 1. Determine the dimension of phase space in which the explored
process takes place.

Usually, a continuous dynamic process is described using a system of differen-
tial equations. It is important to specify the class of those functions that form
the right-hand sides of the differential equations. In applied modeling problems,
the right-hand sides of differential equations are given by polynomials. In this
connection, the second problem arises.

Problem 2. Establish degrees of monomials and their composition that form the
polynomial right-hand sides of the differential equations.
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Problem 3. After the structure of the differential equations describing the dyna-
mic process is established, it is necessary to determine the numerical value of
coefficients of these equations.

Problem 4. Using the specifics of the problem, to establish analytical formulas
of the coefficients of the found system of differential equations as functions of
characteristics of individual elements of the direct current traction power supply
system (it can be capacitors, resistances, inductances, and so on).

We must say that of all these problems, the fourth is the most difficult. Indeed,
for such a complex system as the direct current traction power supply system we
can not specify all electrical elements included in its composition. Therefore, in
this paper we confine ourselves to solving only the first three problems.

Note that in great numbers papers on the problem of minimization of losses
of electric power in contact networks, analytical simulation techniques are used.
In these papers mathematical models are linear or, at the best, linearized. Their
use gives positive results. However, losses of electric power in the contact network
may be diminished only on 20 – 30 percents [1].

Therefore, construction of mathematical models allowing suggest practical
methods to decrease the losses of electric power in the contact network is the
primary purpose of the present paper. These models are constructed on the
basis of the real information taken from the electric system of locomotive. As
experimental information the results of measuring of currents and voltages taken
on the segment of Nyzhne-Dneprovsk Knot – Pyatykhatky of Prydneprovskaya
Railway (Ukraine) are used.

It should be said that we do not know publications in which the direct current
traction power supply system was modeled only by measuring currents and volta-
ges (see [16, 17]). The fact is that a large number of electrical elements forming
such system practically exclude the possibility of constructing a detailed model
through the combination of the equations of its individual elements. (Such model
would represent a set of several hundred different equations.)

Therefore, the main achievements of this work are:
– creation of a new model of direct current traction power supply system,

which describes this system not as a set of interconnected elements, but as a
single dynamic element whose behavior is determined only by changes in voltages
and currents flowing through it;

– development of a universal methodology for modeling of direct current trac-
tion power supply systems suitable for any segments of contact networks located
anywhere in the world.

2. Embedding Method for Chaotic Time Series Analysis

The material of this section is well known (see [4]). The results of section are
placed in the present article only for the convenience of readers.
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Let sequence (1.1) be the time series. In principle, the measured time series
comes from an underlying dynamical system that evolves the state variable in time
according to a set of deterministic rules, which are generally represented by a set
of differential equations, with or without the influence of noise. Mathematically,
any such set of differential equations can be easily converted to a set of first-order,
autonomous equations. The dynamical variables from all the first-order equations
constitute the phase space, and the number of such variables is the dimension of
the phase space, which we denote byM. The phase space dimension can in general
be quite large (in some cases it may be infinite) [10,11,16,18].

However, it often occurs that the asymptotic evolution of the system lives on
a dynamical invariant set of a finite dimension. The assumption here is that the
details of the system equations in the phase space and of the asymptotic invariant
set that determines what can be observed through experimental probes, are un-
known. The task is to estimate, based solely on one or few time series, practically
useful statistical quantities characterizing the invariant set, such as its dimension,
its dynamical skeleton, and its degree of sensitivity on initial conditions. The
delay-coordinate embedding technique established by Takens [9], in particular,
his famous embedding theorem guarantees that a topological equivalence of the
phase space of the intrinsic unknown dynamical system can be reconstructed from
the time series, based on which characteristics of the dynamical invariant set can
be estimated.

Let

ẏ(t) = F(y(t)),y ∈M ⊂ Rp (2.1)

be the autonomous p-dimensional system of ordinary differential equations in the
phase space M.

We will consider that system (2.1) satisfies in the phase space M (an open
region in Rp) to the conditions of the known Cauchy Theorem about existence
and uniqueness of solutions. Then for any initial condition y(0) = y0 ∈ M
it is possible uniquely to define the solution y(t) systems (2.1) on the formula
y(t) = Wt(y0), where Wt is an evolution operator. (A domain G ⊂ M of the
phase space M under action of the evolution operator passes, generally speaking,
in another domain Gt = Wt(G) ⊂M. If Gt = Wt(G) = G, then the domain G
is called an invariant subset of the phase space M with respect to the action of
the evolution operator Wt.)

The compact invariant with respect to the evolution operator set H ⊂ M is
called attracting if there exists an open set U ⊂ M containing H such that for
almost all y ∈ U lim

t→∞
Wt(y) ∈ H. The indecomposable on two compact invariant

subsets attracting set H is called an attractor.

It is known [12] that it is possible to get the attractor satisfactory image of a
small dimension, if instead of the phase vector y(t) to use m-dimensional vectors
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derived from the time series (1.1) on the following formula:

xi =


xi
xi+1
...

xi+m−1

 ; i→ 0, 1l, 2l, ..., il, ..., (2.2)

where l is a positive integer.
Consider the m-dimensional autonomous dynamical system

ẋ(t) = Q(x(t)),x ⊂ Rm, (2.3)

for which the following conditions

x(t0) = x0, x(t1) = x(t0 + τ) = x1, ..., x(ti) = x(t0 + iτ) = xi

are fulfilled. The magnitude xi depends on x0 and τ , but it does not depend on
t0. We will especially emphasize that the map Q : Rm → Rm, determining the
right side of systems (2.3), it is not known. In addition, it is clear that the role
of the number l in (2.2) plays the number τ . The magnitude τ is called a delay
parameter of the time series (1.1).

Introduce the evolution operator Pt : Rm → Rm of system (2.3). For any
vector x ∈ Rm the action of this operator in a coordinate form looks like:

Pt(x) = (P t0(x), P t1(x), ..., P tm−1(x))T .

Let t = τ . Consider the sequence of real numbers

hk = P τ0 (xk), hk+1 = P τ1 (xk), hk+2 = P τ2 (xk), ..., hk+m−1 = P τm−1(xk). (2.4)

Introduce the new vector zk under the formula: zk = (hk, hk+1, ..., hk+m−1)T .
Then there must be an operator ∆ : Rm → Rm depending only on Q and τ such
that z = ∆(x), where x = (xi, xi+1, ..., xi+m−1)T is one of vectors (2.2).

Theorem 2.1. [9] Let d be a dimension of the attractor Σ generated by system
(2.3). Then for almost all τ > 0 and m ≥ 2d+1 the mapping ∆ will be continuous
and one-to-one.

Theorem 2.1 means that if in the space Rm to select the set Hk such that
∀xk ∈ Hk we have ∆(xk) ∈ Hk, then on this set the map ∆ is invertible and ∀k
xk = ∆−1(zk).

By N denote the set of natural numbers.

Theorem 2.2. [19] Let i1, i2, ..., il, ... be an infinite increasing sequence of positive
integers. If system (2.3) is a dissipative then for any compact open subset Φ ⊂ Rm,
any τ > 0, and almost all x ∈ Φ the inclusion (Pτ )il(x) = Pτ (Pτ (...(Pτ (x))...))︸ ︷︷ ︸

il

∈

Φ; l ∈ N takes place.



Mathematical Model of Dynamic Processes in DC Supply System 27

Thus, Theorem 2.2 (which is sometimes called the Poincare recurrence theo-
rem) asserts that in the phase space of the dissipative system any trajectory
beginning from the almost liked point A of this space in some finite time (even
very large) will pass as much as close to A.

Theorems 2.1 and 2.2 allowed to create the necessary research instrument
which is used presently in the theory of the dynamic systems. Indeed, as the time
series (1.1) has only a finite number of terms and, consequently, it is bounded,
there are no justified arguments in order to assert that at the further measure-
ments we will derive very large values of terms of this series. Further, the time
series (1.1) describes the behavior of some phase variable of the explored dynamic
process. If we assume that the number of such phase variables is finite, then it is
possible to consider that there exists the evolution operator, which controls by the
behavior of this dynamic system in some finite-dimensional space. In addition,
most systems describing the dynamics of one or another processes in our world
are dissipative. Thus, the use of Theorems 2.1 and 2.2 for description of dynamics
of the dissipative finite-dimensional systems becomes more than justified.

Eckmann [6] have introduced tools which visualize the recurrence of states
xi in the phase space. Usually, the phase state does not have a dimension (it is
more than two or three) which allows it to be pictured. Higher dimensional phase
spaces can only be visualized by projection into the two or three dimensional
subspaces [10], [12].

Now by x(i) denote the point xi = (xi, xi+1, ..., xi+m−1)T , which is built from
the elements of the time series (1.1) describing the change of some scalar variable
(or some coordinate of the vector variable, if a phase trajectory in m-dimensional
space is considered); i→ 0, 1l, 2l, ..., il. If il+m− 1 > n, then number i must be
replaced by the number k → kl = il− [n/l]l, where [n/l] is an integer part of the
number n/l. We will consider that l = τ .

Introduce in the first quadrant of the cartesian system of coordinates the
graphic square matrix T ∈ R(n+1)×(n+1), which is built on the following algorithm:
if point x(i) is close enough to the point x(j) (the concept of "closeness" will be
defined below) then such points are called recurrence, and in the matrix T a black
point with coordinates (i, j) are put. If point x(i) is not near to the point x(j),
then in the matrix T no marks is done. The matrix T is called a recurrence plot
of time series (1.1) [6], [10].

Let
Rij = Θ(εi − ‖xi − xj‖), xi,xj ∈ Rm; i, j = 0, 1, ..., n,

be a real function accepting only two values: 0 and 1. (Here we have Θ(ξ) = 1, if
ξ ≥ 0 and Θ(ξ) = 0, if ξ < 0: it is the Heaviside function; ‖v‖ =

√
v2

1 + ...+ v2
m

is the Euclidian norm of the vector v ∈ Rm; εi is a radius of ball with a center in
the point xi.)

In the future, it is possible to be restricted to the situation, when ∀i, j εi =
εj = ε. In this case positive number ε is called a recurrence threshold and we
have symmetry of the recurrence plot with respect to the diagonal of the first
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quadrant. Indeed, if point xi is near to the point xj , then the reverse statement
must be right: the point xj is near to the point xi.

In the present paper we want to apply the instruments of the recurrence
analysis for research of periodic trajectories in the dynamic systems described
by nD autonomous systems of differential equations. In order that such research
was correct it is necessary to provide the boundedness of solutions of the explored
systems.

3. Mathematical Statement of Problem and Its Discussion

We will assume that we can measure the voltage and current, and also if
it is possible other dynamic characteristics of contact electric network. We also
suppose that among these characteristics can be derivatives with respect to t from
the voltage and current. (If the derivatives can not be measured, it is assumed
that there exist smooth enough approximations of these derivatives.)

A choice of equations of model of describing the dynamics of one or another
processes is a difficult task. The experiments show that the most logical approach
describing dynamics of electrical engineering models is based on the use of the
known physical laws. In particular there can be the conservation of energy laws.

By U(t) and I(t) denote respectively the voltage and current in contact electric
network. The following laws are most known: the electric energy is accumulated
in a capacitor according to the law EC = kCU

2; the electric energy is accumulated
in an inductor according to the law EL = kLI

2; the electric energy is transformed
into heat energy on a resistor according to the law ER = kRUI. (Here kC , kL,
and kR are constants.) In addition, a speed of change of energy ĖC = 2kCUU̇ ,
ĖL = 2kLIİ or ĖR = kR(U̇I + Uİ), and magnitudes U, U̇ , I, İ also influences on
the dynamics of electric network.

Thus, the vast class of electric networks can be described by quadratic diffe-
rential equations depending on the linear U, U̇ , I, İ, and quadratic U2, UU̇ , I2,
Iİ, UI, U̇I, Uİ terms.

We consider that there is n characteristics (measurements): z1(ti), ..., zn(ti),
i = 1, 2, ..., N . In addition, we also suppose that these measurements are noisy.
Thus, we have multivariate time series

z1(ti) = x1(ti) + θ1(ti), ..., zn(ti) = xn(ti) + θn(ti), (3.1)

which defined for ∀ti ∈ (t1, tN ). Here ∀i = 1, 2, ..., N , we have ti = i∆t and
∆t = (tN − t1)/N . In addition, we suppose that θ1(ti), ..., θn(ti) are Gaussian
(white) noises, unable by definition to produce statistically systematical errors
[9], [13], [14], [16], [18].

Finally, we assume that x1(ti), ..., xn(ti) is a discrete approximation of some
curve x(t) = (x1(t), ..., xn(t))T ∈ Rn [13], [14]. In the turn, it is assumed that
the curve x(t) is a solution of some quadratic differential equations system. The
necessity of such description is dictated by the considerations resulted higher.
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Let (c1, ..., cn)T and A = (aij), B1, ..., Bn ∈ Rn×n be a real vector and real
matrices, and let the matrices B1, ..., Bn be symmetrical.

Principal problem. Construct the quadratic system of differential equations

ẋ1(t) =

n∑
j=1

a1jxj(t) + xT (t)B1x(t) + c1 ≡ f1(x(t)),

. . . . . . . . . . . . . . . . ,

ẋn(t) =

n∑
j=1

anjxj(t) + xT (t)Bnx(t) + cn ≡ fn(x(t))

(3.2)

such that there exists bounded solution x(t) ( lim
t→∞
‖x(t)‖ < ∞) of this system,

which approximates time-variate series (3.1) with given accuracy in the set points
t1, ..., tN at the fixed choice of the vector of initial values x(0) = (x10, ..., xn0)T .

Further, we use the procedure for determining unknown quadratic right sides
of the system of differential equations (3.2), which was suggested in [12] – [15].
This procedure is based on the least squares method and the fact that we know
sufficient precision the components of x(t) and its derivative ẋ(t).

We will use the following designations: x(ti) = (x1(ti), x2(ti), ..., xn(ti))
T =

(x1i, x2i, ..., xni)
T , ẋ(ti) = (ẋ1(ti), ẋ2(ti), ..., ẋn(ti))

T = (ẋ1i, ẋ2i, ..., ẋni)
T , where

ẋki = (xk,i+1 − xki)/∆t; k = 1, ..., n; i = 0, 1, ..., N .
Introduce the matrix of unknown coefficients of system (3.2):

Y =


c1 a11 · · · a1n b

(1)
11 · · · b

(1)
nn 2b

(1)
12 · · · 2b

(1)
n−1,n

...
... · · ·

...
... · · ·

...
... · · ·

...
cn an1 · · · ann b

(n)
11 · · · b

(n)
nn 2b

(n)
12 · · · 2b

(n)
n−1,n

 ∈ Rn×m,

where m = 1 + 2n+ n(n− 1)/2 = (n+ 1)(n+ 2)/2.
Introduce also (N ×m)-matrix

X =

 1 x11 · · · xn1 x2
11 · · · x2

n1 x11x21 · · · xn−1,1xn,1
...

... · · ·
...

... · · ·
...

... · · ·
...

1 x1N · · · xnN x2
1N · · · x2

nN x1Nx2N · · · xn−1,Nxn,N


and (N × n)-matrix

ẊD =

 ẋ11 · · · ẋn1
... · · ·

...
ẋ1N · · · ẋnN

 ,

elements of which are known. Then by the least square method [12,20,21], we have
Y T = (XTX)−1XT ẊD. Further, the following is said in work [13]. In view of the
fact that number N may be chosen arbitrary large, a high precision reconstruction
may be achieved. Thus, we can expect that the solution of reconstructed system
will be near the purified solution x(t).
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However, it should be said that one important circumstance, which can arise
up at a reconstruction, remained outside the attention of the authors of article [14].
The point is that in [14] it is assumed that this interval (t1, tN ) is finite. If the
problem of long-term prediction is considered, it is necessary to assume that
tN →∞. In this case a reconstruction must be fulfilled so that system (3.2) had
the bounded solutions [22]– [24].

Finally, we mark that the presence of all quadratic elements in the right side of
system (3.2) do not always result in that the built model will adequately describe
the explored process. Therefore, the choice of base of quadratic part of system
(3.2) must be argued by the real information about the studied process, by which
it is impossible to neglect.

4. Simulation of Dynamics of Current and Voltage in Contact
Electric Network

We consider the following scheme of placing of traction substations on the
segment Pyatykhatky – Nyzhne-Dneprovsk Knot [1]:

Fig. 4.1. The scheme of placing of traction substations

The length of this segment is 128.2 kM. Distances between the traction substa-
tions (in kM) are indicated on Fig. 4.1.

On Fig.4.1 the following designations are accepted: ts is a traction substation;
tsP is the traction substation of Pyatykhatky; tsN is the traction substation of
Nyzhne-Dneprovsk Knot; tp1, ..., tp12 are posts of parallel connection of contact
suspension ways; sp1, ..., sp5 are sectioning posts.

Measurings of current and voltage will be realized by a measuring labora-
tory which moves on the segment together with a locomotive with a constant
speed. Time of passing of all segment Pyatykhatky – Nyzhne-Dneprovsk Knot is
12470 sec.

On the segment Pyatykhatky – Nyzhne-Dneprovsk Knot the temporal depen-
dences for current and voltage in the contact network were built. In all 12470
measurings with an interval of 1 second were done. The graphs of these depen-
dences are represented on Fig. 4.2:
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(a1) (a2)

Fig. 4.2. The behavior of voltage U(t)(a1), current I(t)(a2), and U − I characteristic of contact
network (experimental data)

A standard procedure for modeling of the direct current traction power supply
system consists of the following steps:

1. Construct a scheme replacing the direct current traction power supply
system of the considered segment (no load; see Fig. 4.3).

2. Introduce in the model obtained at the first step, an element describing a
motion of locomotive (it is a load; see Fig. 4.4).

3. Calculate using the Ohm and Kirchhoff laws, the voltage and current
variations along in all the segment Pyatykhatky – Nyzhne-Dneprovsk Knot.

4. If the measured values of current and voltage significantly differ from
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calculated in the step 3, then the topology of substitution scheme (see Fig. 4.4)
and the characteristics of elements forming this scheme must be changed.

Fig. 4.3. The equivalent electric circuit for substitution of the segment Pyatykhatky – Nyzhne-
Dneprovsk Knot (no load)

On Fig. 4.3 the following designations are accepted: EP , E1, ..., EN are volt-
ages of idling of traction substations; ρP , ρ1, ..., ρN are internal resistances of
traction substations; r1, r2, ..., r8 are resistances between substations.

Fig. 4.4. The equivalent electric circuit for substitution of the segment Pyatykhatky – Nyzhne-
Dneprovsk Knot (with load)

On Fig. 4.4 the following designations are accepted: x is a coordinate of
locating an electric locomotive at a given time (in kM); r12 is the resistance of the
traction network of the section of the first path between tsP and tp1; r15 is the
equivalent resistance of both paths section of the traction network between tp1

and ts1; r13 and r14 are the traction network resistances of the second path section
between tsP and x, and x and tp1, respectively. The values of the resistances r13

and r14 depend on the location of the train.
It is clear that such procedure leads to a very approximate model of the direct

current traction power supply system (see, for example, [17]). Therefore, in this
paper we propose another modeling method based on recurrence analysis.

A preliminary analysis of the obtained data shows that they are nonstationary.
In this connection, the solution of problems of modeling and forecasting of non-
stationary processes is of particular relevance. We point out that nonstationarity
can manifest itself in the appearance of a deterministic or stochastic trend that
varies in time with variance and covariance. There are two main purposes of
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analyzing time series: the determination of the nature time series and prediction
(the prediction of future values of time series by present and past values). Both
these goals require that the series model be identified and, more or less, formally
described [25] – [28].

In order that to successfully fulfill the modeling of processes of represented
on Fig. 4.2 it is necessary to verify the conditions of Theorems 2.1 and 2.2 (see
Fig. 4.5):

(a1) (a2)

Fig. 4.5. The search optimal embedding dimension by means of false nearest neighbours

We take advantage of the least squares method. In accord to the done calcula-
tions an embedding dimension space n must be not less than 4. In future we will
consider that n = 4. It should be noted here that dimension 5 can also be
considered.

Thus, the dynamic system assumes existence of limit cycle of dimension N = 1
( in this case, we have n = 4 > 2 ·N + 1 = 3). Exactly bifurcations of limit cycles
result in an appearance of chaotic dynamics.

On all following Fig. 4.6– 4.12 the voltage U(t) = x(t) and current I(t) = z(t)
is measured in kilovolts (kV) and kiloamperes (kA).

1. The base of quadratic part of system (3.2) consists of two elements {xy, x2}:



ẋ(t) = y(t),
ẏ(t) = 0.0193− 0.0072x(t) + 0.0218y(t)− ε1z(t) + 0.0057u(t)

−0.0039x(t)y(t) + 0.000422x2(t),
ż(t) = u(t),
u̇(t) = 0.0294− 0.0145x(t)− 0.8506y(t)− ε2z(t)− 0.0095u(t)

+0.2380x(t)y(t) + 0.0017x2(t).

(4.1)
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2. The base of quadratic part of system (3.2) consists of two elements {zu, z2}:

ẋ(t) = y(t),
ẏ(t) = ε1 − 0.005634x(t) + 0.017369y(t)− 0.001177z(t) + 0.018429u(t)

−0.0225244z(t)u(t) + 0.00016z2(t),
ż(t) = u(t),
u̇(t) = ε2 − 0.003521x(t)− 0.083527y(t)− 0.002236z(t)− 0.057069u(t)

+0.0985z(t)u(t)− 0.00096z2(t).
(4.2)

3. The base of quadratic part of system (3.2) consists of two elements {xz, xy
+zu}:

ẋ(t) = y(t),
ẏ(t) = 0.0192− 0.0056x(t) + 0.0083y(t)− 0.00044z(t)− 0.0396u(t)

−0.0004x(t)z(t) + 0.0139(x(t)u(t) + z(t)y(t)),
ż(t) = u(t),
u̇(t) = 0.0123− 0.0035x(t)− 0.0336y(t)− 0.0006z(t) + 0.4143u(t)

−0.0006x(t)z(t)− 0.1279(x(t)u(t) + z(t)y(t)).

(4.3)

4. The base of quadratic part of system (3.2) consists of two elements {xz, xy
+zu}:

ẋ(t) = y(t),
ẏ(t) = 0.019297079− 0.0056x(t) + 0.0084y(t)− 0.0004z(t)− 0.0396u(t)

−0.0004x(t)z(t) + 0.0143(x(t)u(t) + z(t)y(t)),
ż(t) = u(t),
u̇(t) = 0.012284− 0.0035x(t)− 0.03362y(t)− 0.0006z(t) + 0.4143u(t)

−0.0005x(t)z(t)− 0.1269(x(t)u(t) + z(t)y(t)).
(4.4)

5. The base of quadratic part of system (3.2) consists of two elements {xy, zu}:

ẋ(t) = y(t),
ẏ(t) = 0.0138− 0.0040x(t)− 0.2526y(t)− 0.0008z(t) + 0.0162u(t)

+0.0791x(t)y(t)− 0.1782z(t)u(t),
ż(t) = u(t),
u̇(t) = 0.0095− 0.0027x(t) + 0.1703y(t)− εz(t)− 0.0486u(t)

−0.0705x(t)y(t) + 0.147z(t)u(t).

(4.5)

6. The base of quadratic part of system (3.2) consists of four elements
{xy, xu, zy, zu}:

ẋ(t) = y(t),
ẏ(t) = 0.0137− 0.0040x(t)− 0.2516y(t)− ε1z(t) + 0.1418u(t)

+0.0776x(t)y(t)− 0.0370x(t)u(t) + 0.0128z(t)y(t)− 0.0286z(t)u(t),
ż(t) = u(t),
u̇(t) = 0.0096− 0.0027x(t) + 1.1072y(t)− ε2z(t) + 0.1237u(t)

−0.3401x(t)y(t)− 0.0496x(t)u(t)− 0.1029y(t)z(t) + 0.112z(t)u(t).
(4.6)
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7. The base of quadratic part of system (3.2) consists of six elements {xy, xz,
xu, x2, y2, z2}:

ẋ(t) = y(t),
ẏ(t) = 0.0422− 0.0206x(t)− 0.2367y(t)− 0.0042z(t) + 0.1494u(t)

+0.0732x(t)y(t) + 0.0010x(t)z(t)− 0.0206x(t)u(t) + 0.0024x2(t)
+0.2794y2(t) + 0.0037z2(t),

ż(t) = u(t),
u̇(t) = 0.0882− 0.049x(t) + 1.0144y(t) + εz(t) + 0.0394u(t)− 0.3144x(t)y(t)

+0.00073x(t)z(t)− 0.0240x(t)u(t) + 0.0068x2(t)− 2.1513y2(t).
(4.7)

The graphs of solutions of the corresponding systems of differential equations
are below represented. (The starting point for integration was always chosen near
an equilibrium point.)

(c1) (c2)

Fig. 4.6. The behavior U(t) − I(t) characteristic (c1) for system (4.1) at ε2 = 0.0019 and
ε1 = 0.0008(quasiperiodic behavior), and the same characteristic (c2) at ε2 = 0.0019 and ε1 =

0.00088(chaotic behavior)

(c1) (c2)

Fig. 4.7. The behavior U(t) − I(t) characteristic (c1) for system (4.2) at ε1 = 0.01934 and
ε2 = 0.01281(quasiperiodic behavior), and the same characteristic (c2) at ε1 = 0.0207 and
ε2 = 0.01363(chaotic behavior)
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(c1) (c2)

Fig. 4.8. The behavior U(t)−I(t) characteristic (c1) for system (4.3) and the same characteristic
(c2) for system (4.4)

(c1) (c2)

Fig. 4.9. The behavior U(t) − I(t) characteristic (c1) for system (4.5) at ε = −0.0019(chaos),
and the same characteristic (c2) at ε = −0.0020

(c1) (c2)

Fig. 4.10. The behavior U(t) − I(t) characteristic (c1) for system (4.6) at ε1 = −0.0008, ε2 =

−0.00185(quasiperiodic behavior), and the same characteristic (c2) at at ε1 = −0.0008, ε2 =

−0.00187(quasiperiodic behavior)
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(c1) (c2)

Fig. 4.11. The behavior U(t)−I(t)(c1) for system (4.6) at ε1 = −0.00086, ε2 = −0.00187(chaos),
and the same characteristic (c2) at at ε1 = −0.00082, ε2 = −0.00186(quasiperiodic behavior)

(c1) (c2)

Fig. 4.12. The behavior U(t) − I(t) characteristic (c1) for system (4.7) at ε = 0.0039(chaos),
and the same characteristic (c2) at ε = 0.0044(quasiperiodic behavior)

It should be noted that all the considered models are chaotic: an arbitrarily
small change in the parameters of the model leads to a radically different behavior
of this model. (Nevertheless, one can always find such parameter values for which
a limit cycle appears in the system. his fact can be used to construct stabilizing
control laws. Another application of the obtained limit cycle can be the search
for limit tori.)

Now there is a question: what from models (4.1)–(4.7) most adequately desc-
ribes the behavior of process of represented on Fig. 4.2? Comparison of trajec-
tories of the real chaotic system and its model does not enable to speak about
their adequacy. Therefore, we decided to define the adequacy beginning from
comparison of U − I characteristics of model and real process. In this connection
we build a parallelogram ABCD in the coordinate system U − I (see Fig. 4.13):
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Fig. 4.13. The framework of U − I characteristic for the direct current power supply system

This parallelogram must possess the following features:
a) taking into account that we deal with the direct current power supply

system bases AB and CD of parallelogram ABCD must be parallels to axis U ;
b) the vertices of parallelogram must be disposed in points: A(Umin, Imax),

B(Umin +δ, Imax), C(Umin, Imin), D(Umax−δ, Imin), where Imin(Imax) is a minimum
(maximum) current with the exception of some random fluctuations; Umin(Umax)
is a minimum (maximum) voltage with the exception of some random fluctuations;
δ is a magnitude of change of voltage at the fixed current.

Definition 4.1. The parallelogram ABCD is called a framework of U−I charac-
teristic for the direct current power supply system.

Let S ∈ R2 be the set of all internal points of the parallelogram ABCD. Now
we are ready to answer on the question about adequacy of model and real process.

By M1, ...,Mk ∈ R2 denote U−I characteristics of models, which it is possible
to build beginning from the real process of represented on Fig. 4.2).

Introduce the Hausdorff distance dH(S,Mi) between the sets S and Mi, i ∈
{1, ..., k} [29].

Definition 4.2. The set S is called adequate to the set Mm, if dH(S,Mm) ≤
dH(S,Mi), i = 1, ..., k; 1 ≤ m ≤ k.
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We notice that exact calculation of the Hausdorff distance dH(S,M) for the
complex sets S and M is practically impossible. Therefore in the present work we
will be limited to rough enough estimations of the magnitude dH(S,M).

Thus, the analysis of models (4.1)–(4.7) shows that only the behavior of model
(4.1) is adequate to the real process of represented on Fig. 4.2.

5. Modeling of Other Contact Networks

All the above equations modeled the experimental data of voltage and current
changes (they are shown in Fig. 4.2) in the contact network. In order to dwell
on specific equations modeling the dynamics, it is necessary to use other data
representing the dynamics of processes in other contact networks. These data,
describing changes in voltage and current on other railway lines, are presented
in Fig. 5.17. (Note that the above data, generally speaking, is non-stationary.
Therefore, for good modeling it is necessary to have such data as much as possible.)

Now we use the methodology of Sections 3 and 4. Then, we get the following
equations and the corresponding behavior of their chaotic solutions (see Fig. 5.14–
Fig. 5.16):

1. The base of quadratic part of system (3.2) consists of two elements {xz, xu+
zy}:

ẋ(t) = y(t),
ẏ(t) = 0.00393− 0.0012x(t) + 0.0059y(t)− 0.00154z(t)− 0.13146u(t)

+0.0005x(t)z(t) + ε1(x(t)u(t) + z(t)y(t)),
ż(t) = u(t),
u̇(t) = 0.01016− 0.0029x(t) + 0.0006y(t) + 0.00228z(t) + 1.14108u(t)

−0.001481x(t)z(t)− ε2(x(t)u(t) + z(t)y(t)).

(5.1)

(a1) (b1)

Fig. 5.14. The behavior of U − I characteristic for ε1 = 0.04339, ε2 = 0.3710 (a1) and ε1 =

0.04335, ε2 = 0.3709(a1)(b1)
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2. The base of quadratic part of system (3.2) consists of two elements {z2, zu}:

ẋ(t) = y(t),
ẏ(t) = 0.00623− 0.00118696x(t) + 0.00957y(t)− 0.00012z(t) + 0.0114u(t)

+ε1z
2(t)− 0.01674z(t)u(t),

ż(t) = u(t),
u̇(t) = 0.001951− 0.00035x(t) + 0.06579y(t)− 0.000878z(t)− 0.0871u(t)

−ε1z2(t) + 0.145988z(t)u(t).
(5.2)

(a1) (b1)

Fig. 5.15. The behavior of U − I characteristic for ε1 = 0.0001, ε2 = 0.0019 (a1) and ε1 =

0.000091, ε2 = 0.0011 (b1)

3. The base of quadratic part of system (3.2) consists of two elements {x2, xy}:

ẋ(t) = y(t),
ẏ(t) = 0.029438− 0.015765x(t) + 0.48059y(t)− 0.000055z(t) + 0.002253u(t)

+0.002082x2(t)− 0.1423665x(t)y(t),
ż(t) = u(t),
u̇(t) = −0.05098 + 0.03155x(t)− 3.3642y(t)− 0.0001783z(t)− 0.006276u(t)

−ε1x2(t) + 0.99914x(t)y(t).
(5.3)

(a1) (b1)

Fig. 5.16. The behavior of U − I characteristic for ε1 = 0.004724(a1) and ε1 = 0.004739(b1)
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(a1) (b1)

(a2) (b2)

(a3) (b3)

Fig. 5.17. The behavior of voltage U(t)(a1,b1), current I(t)(a2,b2), and U − I characteristic
(a3,b3) of different contact networks in Ukraine (experimental data)
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Using the methodology of Sections 3 and 4, as well as Fig. 4.13, we arrive at
the following conclusion: the most adequate description of processes in the contact
network is achieved when pairs of quadratic nonlinearities {x2, xy} or {z2, zu} or
{xz, zy + ux} are used as nonlinear terms in system (3.2).

6. Research of System (4.1)

For verification of conditions Theorem 2.2 we will carry beginning of coordi-
nates of system (4.1) in the point (3.3657, 0,−0.0388, 0). In the total we get such
system

ẋ(t) = y(t),
ẏ(t) = −0.0043x(t) + 0.0086y(t)− 0.00088z(t) + 0.0057u(t)

−0.0039x(t)y(t) + 0.000422x2(t),
ż(t) = u(t),
u̇(t) = −0.0030x(t)− 0.0495y(t)− 0.0019z(t)− 0.0095u(t)

+0.2380x(t)y(t) + 0.0017x2(t)

(6.1)

The condition of dissipativity for system (6.1)

∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
+
∂u̇

∂u
= 0 + 0.0086 + 0− 0.0095 = −0.0009 < 0

(and for system (4.1)) is fulfilled. On Fig. 6.18 possible solutions of system (4.1)
are shown.

Fig. 4.2 and 5.17 show that processes in contact networks are chaotic. It is
known that any chaotic processes begin from bifurcations of limit cycles. There-
fore, we show the existence of such cycles using the example of system (4.1).

Thus, system (4.1) most corresponds to experimental information represented
on Fig. 4.2.

6.1. Existence of limit cycles

Definition 6.1. A real cubic form f(x, y) = a0x
3 +a1x

2y+a2xy
2 +a3y

3 is called
trilinear, if the real factorization

f(x, y) = (b0x+b1y)(c0x+c1y)(d0x+d1y) 6≡ (h0x+h1y)2(r0x+r1y) 6≡ (p0x+p1y)3

takes place.

Consider the following real quadratic system{
ẋ(t) = a11x(t) + a12y(t) + b11x

2(t) + b12x(t)y(t) + b22y
2(t),

ẏ(t) = a21x(t) + a22y(t) + c11x
2(t) + c12x(t)y(t) + c22y

2(t).
(6.2)
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(a1) (a2)

(a3) (a4)

(a5) (a6)

Fig. 6.18. The phase portraits of system (4.1) at the parameters: ε1 = −0.00084, ε2 = −0.0018

(a1); ε1 = −0.00084, ε2 = −0.0017 (a2); ε1 = −0.00086, ε2 = −0.0017 (a3); ε1 = −0.00085,
ε2 = −0.0018 (a4); ε1 = −0.00086, ε2 = −0.0019 (a5); and system (6.1)

Assume that the equilibrium (0, 0)T of system (6.2) be an unstable focus. By
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suitable real linear replacements of variables x and y, we reduce system (6.2) to
the following form:{

ẋ(t) = αx(t) + βy(t) + d11x
2(t) + d12x(t)y(t) + d22y

2(t),
ẏ(t) = −βx(t) + αy(t) + e11x

2(t) + e12x(t)y(t) + e22y
2(t).

(6.3)

Now we construct the following cubic form: g(x, y) ≡ x · (d11x
2 + d12xy +

d22y
2) + y · (e11x

2 + e12xy + e22y
2).

Theorem 6.1. Let for system (6.3) the form g(x, y) be trilinear. Suppose also
that in the same system there are two equilibriums, one of which is an unstable
focus or center (the number α ≥ 0 is small enough, β 6= 0) and the other is a
saddle. Then in this system there exists a stable limit cycle.

Proof. Using system (6.3), we introduce the following continuously differentiable
function V (t) = 0.5(x2(t) + y2(t)). Thus, we have:

V̇ (t) ≡ x(t)ẋ(t) + y(t)ẏ(t) = α · (x2(t) + y2(t)) + g(x, y)

≡ α · (x2(t) + y2(t)) + (q1x(t) + q2y(t))(s11x(t) + s12y(t))(s21x(t) + s22y(t)).

Without loss of generality, we can consider that q1s11s21 > 0. Otherwise, by
replacement x(t) → −x(t) (or y(t) → −y(t)), we obtain implementation of the
condition q1s11s21 > 0. (If q1s11s21 6= 0, then it is always possible.)

In addition, we can also consider that α = 0.
By λ1 = −q2/q1, λ2 = −s12/s11, λ3 = −s22/s21 denote roots of polynomial

(q1λ + q2)(s11λ + s12)(s21λ + s22). Without loss of generality, we can consider
that λ1 < λ2 < λ3.

Rewrite the cubic function H(x, y) ≡ (q1x+ q2y)(s11x+ s12y)(s21x+ s22y) in
the following way:

H(cosφ, sinφ) = (q1 cosφ+ q2 sinφ)(s11 cosφ+ s12 sinφ)(s21 cosφ+ s22 sinφ),

where cosφ = x/
√

2V , sinφ = y/
√

2V . From here it follows that

δmin ≤ H(cosφ, sinφ) ≤ δmax,

where δmin < 0(δmax > 0) is a minimum (maximum) of function H(cosφ, sinφ).
Consider the trigonometric polynomial

H1(cosφ, sinφ, V )

=
α√
2V

+ (q1 cosφ+ q2 sinφ)(s11 cosφ+ s12 sinφ)(s21 cosφ+ s22 sinφ),

where a number V > 0 must be chosen so that the real trigonometric periodic
function H1(cosφ, sinφ, V ) has three real distinct roots on a period. (The number
V must be large enough.)
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By V ∗ denote the minimal value V > 0 at which the periodic function
H1(cosφ, sinφ, V ) has three real roots on the period.

Let λ∗1 < λ∗2 < λ∗3 be three real distinct roots of function H1(cosφ, sinφ, V ∗)
following in succession. It is obviously that λ∗1 < λ1 < λ2 < λ∗2 and λ2 < λ∗2 <
λ∗3 < λ3. In addition it is possible to consider that function H1(cosφ, sinφ, V ∗)
on the interval (λ∗1, λ

∗
2) is positive, and on the interval (λ∗2, λ

∗
3) is negative.

In addition, for function H1(cosφ, sinφ, V ∗) we have

δ∗min ≤ H1(cosφ, sinφ, V ∗) ≤ δ∗max; δmin < δ∗min < 0 < δmax < δ∗max,

where δ∗min < 0(δ∗max > 0) is a minimum (maximum) of the real periodic function
H1(cosφ, sinφ, V ∗).

Further, we have that if λ∗1 < tanφ < λ∗2, then H1(cosφ, sinφ, V ∗) > 0, and if
λ∗2 < tanφ < λ∗3, then H1(cosφ, sinφ, V ∗) < 0.

Thus, if λ∗1 < tanφ < λ∗3, then we have

0.5V (t) · (α+
√

2V (t) · δ∗min) ≤ V̇ (t) ≤ 0.5V (t) · (α+
√

2V (t) · δ∗max).

Since (0, 0)T there is a repellent point, then from here it follows that the maximal
value of function V must be bounded.

To investigate system (6.3), we will use the iterative Euler method:{
xj+1 = xj + (αxj + βyj + d11x

2
j + d12xjyj + d22y

2
j )∆t,

yj+1 = yj + (−βxj + αyj + e11x
2
j + e12xjyj + e22y

2
j )∆t.

(6.4)

where x0 = x(0), y0 = y(0) and ∆t > 0 is a integration step; j = 0, ...,m→∞.
In addition, we construct the iterated procedure

Vj+1 = Vj + Vj · (α+
√

2Vj ·H(cosφj , sinφj))∆t; (6.5)

where V0 = x2
0 + y2

0, cosφj = xj/
√

2Vj , sinφj = xj/
√

2Vj , j = 0, ...,m → ∞.
(Here we did replacement V (t)→ x2(t) + y2(t) .)

Assume that the initial pair values (x0, y0) such that y0/x0 = (cosφ0/ sinφ0)
∈ (λ∗1, λ

∗
2).

Construct the iterative process V0 ≥ V1 ≥ ... ≥ Vm ≥ ..., which is defined
by formulas (6.5). It is obviously that we have a positive monotone decreasing
bonded sequence. It means that for small enough ∆t the iterative process (6.5)
is convergence. Therefore, lim

j→∞
Vj = C(xl, yl) = const. Here (xl, yl) is a solution

of equation α+
√
x2 + y2H(cosφ, sinφ) = 0 (α ≈ 0).

Now we again assume that the initial pair values (x0, y0) such that y0/x0 =
(cosφ0/ sinφ0) ∈ (λ∗2, λ

∗
3).

Construct the iterative process V0 ≤ V1 ≤ ... ≤ Vm ≤ ..., which is defined
by formulas (6.5). Now we already have a positive monotone increasing bonded
sequence. Therefore, we again have lim

j→∞
Vj = C(xl, yl) = const.
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Let S be a bounded set containing the point (0, 0). (It can be a circle of small
enough radius.) Now we will organize the iterative process (6.5) from any point
of the set S. In this case, in acording to LaSall’s Theorem [30] all limit points of
the process (6.5) form a positively invariant set C.

Since system (6.3) has also the saddle equilibrium, then her separatrix is a
restriction for any trajectory of the system of beginning in the small neighbouring
of the point (0, 0)T . It means that sequence (6.4) (it is (x0, y0)T , (x1, y1)T , ...)
must converge to the set C. Thus, this is a stable limit cycle.

Consider the following system:

ẋ(t) = y(t),
ẏ(t) = a10 + a11x(t) + a12y(t) + a13z(t) + a14u(t)

+b12x(t)y(t) + b11x
2(t),

ż(t) = u(t),
u̇(t) = a20 + a21x(t) + a22y(t) + a23z(t) + a24u(t)

+b21x(t)y(t) + b22x
2(t),

(6.6)

In system (6.6) it is possible to select two subsystems:
ẋ(t) = y(t),
ẏ(t) = a10 + a11x(t) + a12y(t) + a13z(t) + a14u(t)

+b12x(t)y(t) + b11x
2(t).

(6.7)

and 
ż(t) = u(t),
u̇(t) = a20 + a21x(t) + a22y(t) + a23z(t) + a24u(t)

+b21x(t)y(t) + b22x
2(t).

(6.8)

At system (6.7) it is possible to look as on the system with external perturba-
tion F (t) ≡ a13z(t) + a14u(t). Therefore, it is importantly to research the proper
behavior of the unperturbed system{

ẋ(t) = y(t),
ẏ(t) = a10 + a11x(t) + a12y(t) + b12x(t)y(t) + b11x

2(t),
(6.9)

where b11b12 6= 0.
Assume that system (6.9) has real equilibriums: (λ1, 0) and (λ2, 0), where λ1,2

are real roots of the equation a10 + a11λ+ b11λ
2 = 0. Introduce the new variable

x1 in system (6.9) under the formula x1 = x− λ1 (or x1 = x− λ2).{
ẋ(t) = y(t),
ẏ(t) = h11x(t) + h12y(t) + b12x(t)y(t) + b11x

2(t).
(6.10)

(For simplicity we have left the former designation of variables x.)

Corollary 6.1. Assume that for the system (6.10) conditions h11 < 0, h12 =
0, b12 < 0, b11 > 0 are fulfilled. Then in system (6.10) there exists the stable limit
cycle.
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Proof. The quadratic form b12xy+b11x
2 it is possible to represent as x(b11x+b12y).

Now we replace the variable y under the formula: y1 = b11x + b12y. In this case
system (6.10) can be represented in the following form:{

ẋ(t) = h11x(t) + h12y(t) + d1x(t)y(t),
ẏ(t) = h21x(t) + h22y(t) + d2x(t)y(t).

(6.11)

For simplicity we have left the former designation of variables y.

Suppose that eigenvalues of matrix H =

(
h11 h12

h21 h22

)
are complex: µ +

iν, µ − iν. (Here µ > 0, ν 6= 0.) By suitable linear replacements of variables
x→ s11x+ s12y, x→ s21x+ s22y, we reduce system (6.11) to such aspect:{

ẋ(t) = µx(t) + νy(t) + q1 · (s11x(t) + s12y(t))(s21x(t) + s22y(t)),
ẏ(t) = −νx(t) + µy(t) + q2 · (s11x(t) + s12y(t))(s21x(t) + s22y(t)).

(6.12)

In addition, by replacement x(t) → −x(t) (or y(t) → −y(t), we must obtain
implementation of the condition q1s11s21 > 0. In this case the conditions of
Theorem 6.1 are fulfilled.

Now we can apply Theorem 6.1 to system (6.12) (and (6.9)). To do this, we
show the sequence of bifurcations leading to the appearance of chaotic dynamics
from the limit cycle (see Fig. 6.19).

Let A,ω be an amplitude and frequency of external perturbation A sin(ωt).
(If A = 0, then the perturbation there doesn’t exist.)

For system (6.7) the perturbed system is
ẋ(t) = y(t),
ẏ(t) = 0.0193− 0.0072x(t) + 0.0218y(t)− 0.0039x(t)y(t)

+0.000422x2(t) +A sin(ωt).
(6.13)

All conditions of Theorem 6.1 for system (6.12) are satisfied. (It can be con-
firmed directly.) Appearance in system (6.13) of a stable limit cycle at the corre-
sponding external perturbations is shown on Fig. 6.19.

Further, on system (6.8) it is also possible to look as on a linear system
with external perturbation G(t) ≡ a21x(t) + a22y(t) + b21x(t)y(t) + b22x

2(t). In
order that the solution of this linear system was bounded it is necessary that the
equilibrium (−a20/a23, 0) unperturbed system was stable and the function G(t)
was bounded [30]. For system{

ż(t) = u(t),
u̇(t) = 0.0294− 0.0019z(t)− 0.0095u(t) +G(t)

(6.14)

both these conditions are fulfilled. The equilibrium (z∗ = −15.4737, u∗ = 0) (at
G(t) ≡ 0) is a stable focus. In system (6.14) the boundedness of function G(t) is
guaranteed by the boundedness of solutions of system (6.13) [23, 24].
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(a1) (a2)

(a3) (a4)

Fig. 6.19. The bifurcations of limit cycle for system (6.13) at A = 0 (a1); A = 0.3, ω = 0.45

(a2); A = 0.3, ω = 0.85 (a3); A = 0.3, ω = 1.45 (a4)

Thus, on system (4.1) it is also possible to look as on a system of two connected
2D circuits of describing oscillations of current and voltage in the contact electric
network.

7. Remarks on Design of Voltage Regulator

At certain values of parameters system (6.6) describes the dynamics of chan-
ges in voltage and current in a contact network. Note that voltage U(t) = x(t)
and current I(t) = z(t) are measured using a mobile laboratory that moves at
constant velocity v along a contact network [31]. Note that in order to study pro-
cesses in the contact network, it is more convenient to employ a dynamic model
in which voltage U(t) = x(t) and current I(t) = z(t) are represented as functions
U(s) = x(s), I(s) = z(s) of distance s from some starting point. Such represen-
tation is very convenient when the stabilization of voltage in contact network is
implemented from some fixed points along the route of the train, for example,
at traction substations or gain points. Furthermore, we shall assume that volt-
age control is executed using the regulator Uinput(s) = f(U(s), U̇(s), I(s), İ(s)),
where f(...) is the real function of its arguments. Thus, the transition from model
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(6.6), where x(t) and z(t) are represented as a function of time t, has been achieved
through the replacement of independent variable t with independent variable s,
according to formula s = vst. In this case, y(t) → vsy(s), u(t) → vsu(s), and
system (6.6) transforms to the following system:

ẋ(s) = y(s),
ẏ(s) = (a10 + a11x(s) + a12vsy(s) + a13z(s) + a14vsu(s)

+b12vsx(s)y(s) + b11x
2(s))/v2

s ,
ż(t) = u(t),
u̇(t) = (a20 + a21x(s) + a22vsy(s) + a23z(s) + a24vsu(s)

+b21vsx(s)y(s) + b22x
2(s))/v2

s ,

(7.1)

where velocity vs = const is measured in m/s and U(s) = x(s), I(s) = z(s) are
some functions of distance. (For simplicity, we kept the former designations for
dependent variables x and z in the newly derived system. The variables x(t) and
z(t) are replaced with variables x(s) and z(s).

Now we will introduce a control law.
Model (7.1) is designed to study the stability of the voltage in the contact

network. This model was obtained by observing the chaotic behavior of voltage
and current. In future, for simplicity we will consider that vs = 1.

Introduce in system (6.6) a new variable v = x2. Then we get the following
system 

ẋ(t) = y(t),
ẏ(t) = a10 + a11x(t) + a12y(t) + a13z(t) + a14u(t)

+b12x(t)y(t) + b11v(t),
ż(t) = u(t),
u̇(t) = a20 + a21x(t) + a22y(t) + a23z(t) + a24u(t)

+b21x(t)y(t) + b22v(t),
v̇(t) = 2x(t)y(t).

(7.2)

Hence it is already possible to establish parameters under which the voltage
in system (7.2) (or (6.6)) can be stabilized [30, 32]. (The corresponding charac-
teristics of real behavior of the voltage and current are given in Fig. 5.17.)

Now we will do an attempt yet to simplify system (7.2) and to do this system
of more suitable for further researches.

We will consider that system (6.6) has an equilibrium P = (x∗, y∗, z∗, u∗).
Then we can transfer the origin of coordinates in the point P . In this case in
system (7.2) we have a10 = a20 = 0. Therefore, we can consider that the condition
a10 = a20 = 0 is satisfied.

Introduce the matrices

A =


0 1 0 0 0
a11 a12 a13 a14 b11

0 0 0 1 0
a21 a22 a23 a24 b22

0 0 0 0 0

 , B =


0
b12

0
b21

2

 .
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Then by the algorithm of indicated in [33], the following result can be got:

Theorem 7.1. [33] If the conditions a10 = a20 = 0 and

det(B,AB,A2B,A3B,A4B) 6= 0

are hold, then by linear replacements of variables (x, y, z, u, v)→ (v1, v2, v3, v4, v5)
system (7.2) can be reduced to the following canonical form:

v̇1(t)
v̇2(t)
v̇3(t)
v̇4(t)
v̇5(t)

 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 −d4 −d3 −d2 −d1

 ·


v1

v2

v3

v4

v5

+



0
0
0
0

(
5∑
i=1

pivi)
5∑
i=1

qivi

 ,

(7.3)
where numbers d1, ..., d4, pi, qi ∈ R; i = 1, ..., 5.

The canonical form (7.3) is generalization of the known Bezout’s states column
model [33]. (The system (7.3) is interesting to those that unlike the system (7.2),
this system has only one nonlinearity.)

The last equation can be generalized in the following way. We will assume that
the model of direct current power supply system is association of several oscillatory
circuits for description of the voltage, current, electromagnetic induction, and so
on. Then model (7.3) may be generalized in the following form:

v̇(t) = Av(t) +B ·

(
n+1∑
i=1

pivi(t)

)(
n+1∑
i=1

qivi(t)

)
. (7.4)

Here,

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 −dn −dn−1 . . . −d1

 ∈ R(n+1)×(n+1), B =


0
0
...
0
1

 ∈ Rn+1,

v = (v1, ..., vn+1)T , d1, ..., dn, pi, qi ∈ R; i = 1, ..., n + 1. This equation can be
useful at the further study of the model of direct current power supply system.

Now we show a simple method of construction of stabilizing linear feedback
for system (6.6).

Consider the following control system:

ẋ(t) = y(t),
ẏ(t) = a10 + a11x(t) + a12y(t) + a13z(t) + a14u(t) + pUF (t)

+b12x(t)y(t) + b11x
2(t),

ż(t) = u(t),
u̇(t) = a20 + a21x(t) + a22y(t) + a23z(t) + a24u(t) + pIF (t)

+b21x(t)y(t) + b22x
2(t),

(7.5)
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where a pair of coefficients (pU , pI) 6= 0 can take any real values and F (t) is a
control.

Introduce the matrices

A =


0 1 0 0
a11 a12 a13 a14

0 0 0 1
a21 a22 a23 a24

 , B =


0
pU
0
pI

 .

Let a10 = a20 = 0 and det(B,AB,A2B,A3B) 6= 0. Then by the algorithm of
indicated in [30], [33], we can reduced system (6.6) to such aspect:

v̇1(t)
v̇2(t)
v̇3(t)
v̇4(t)

 =


0 1 0 0
0 0 1 0
0 0 0 1
−d4 −d3 −d2 −d1

·


v1

v2

v3

v4

+


G1(v1, ..., v4)
G2(v1, ..., v4)
G3(v1, ..., v4)

F (t) +G4(v1, ..., v4)

 ,

(7.6)
where G1(v1, ..., v4), ..., G4(v1, ..., v4) are quadratic forms and d1, ..., d4 ∈ R.

Introduce in system (7.6) a linear feedback by the formula

F (t) = k1v1(t) + k2v2(t) + k3v3(t) + k4v4(t),

where k1, ..., k4 are indeterminate coefficients. Then a linear part of the closed by
the feedback system has a characteristic polynomial h(λ) = λ4 + (k1 − d1)λ3 +
(k2 − d2)λ2 + (k3 − d3)λ+ k4 − d4.

Choose the coefficients (ki − di) of polynomial h(λ); i = 1, ..., 4, so that this
polynomial became the Hurwitz polynomial [34]. In this case the origin of the
closed by feedback system will be stable (see Fig. 7.20):

(a1) (a2)

Fig. 7.20. Plots for voltage (a1) and current (a2) for system (6.6) at b12 = −0.01. (Other values
of parameters the same as in system (4.1))
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Let S be a linear transformation reducing system (7.5) to form (7.4):

(x(t), y(t), z(t), u(t))T = S · (v1(t), v2(t), v3(t), v4(t))T ; detS 6= 0.

Then in order that the origin of system (7.5) (a10 = a20 = 0) would be stable it
is enough to give the control law by the formula

F (t) = (k1, k2, k3, k4) · S−1(x(t), y(t), z(t), u(t))T .

An area of stability of power system is the set of its modes, in which static
stability is provided for a certain composition of the generators and a fixed circuit
of the electric network. A surface bounding a set of stable regimes is called a
boundary of region of static stability [32]. The stability regions are constructed
in the coordinates of the parameters that affect the stability of the regime. The
calculated and experimentally determined areas of stability are used to set the
dispatch restrictions on the regime of the power system (in the form of dispatch
instructions) and to configure automation facilities to prevent possible violations
of static stability. Obviously, reliable and stable operation of the power system
in modes directly adjacent to the boundary of the stability region is impossible.
In these modes, any, even weak disturbances in the power system or spontaneous
minor weighting of the regime will lead to a violation of stability. Changes in the
regime of the power system (active and reactive overflows, voltage and frequency)
are primarily associated with load fluctuations in load nodes: the inclusion and
disconnection of individual electrical installations, start up and shutdown of en-
terprises, changes in their operating mode according to technology conditions, etc.
Part of these changes are regular character, due to daily, weekly, seasonal regimes.
Such changes are described by the corresponding load schedules and predictable
enough.

Thus, the estimate of stability regions is another problem for future research.
The basis for such studies is system (7.3).

The problem of voltage regulation is the topic of future work. For this regula-
tion, external controls can be introduced into system (7.2). Then the system (7.2)
can be taken in one of the following forms: either(

Ü(t)

Ï(t)

)
=

(
a10

a20

)
+

(
a12 a14

a22 a24

)
·
(
U̇(t)

İ(t)

)
+

(
a11 a13

a21 a23

)
·
(
U(t)
I(t)

)

+

(
b11U

2(t) + b12U(t) · U̇(t)

b22U
2(t) + b21U(t) · U̇(t)

)
+

(
u1(t)
u2(t)

)
(7.7)

or(
Ü(t)

Ï(t)

)
=

(
a10

a20

)
+

(
a12 a14

a22 a24

)
·
(
U̇(t)

İ(t)

)
+

(
a11 a13

a21 a23

)
·
(
U(t)
I(t)

)

+

(
b11I

2(t) + b12I(t) · İ(t)

b22I
2(t) + b21I(t) · İ(t)

)
+

(
u1(t)
u2(t)

)
, (7.8)
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where u1(t), u2(t) are external controls.
Note that if system (6.6) is a system without equilibria, then ∀n > 2 by affine

replacements of variables it can be reduced to the following form

v̇(t) = A0 +Av(t) +B ·

(
n+1∑
i=1

pivi(t)

)(
n+1∑
i=1

qivi(t)

)
, (7.9)

where the matrices A and B are the same as in (7.4); A0 = (0, ..., 0, r)T ∈ Rn+1,
r 6= 0, and rp1q1 > 0.

8. Conclusion and Analysis of Results

One of the main problems arising in modeling any dynamic process is the
problem of determination of dimension of phase space in which this process occurs.
In article [35], which is devoted to the study of chaotic processes in the self-exciting
homopolar disc dynamo, for modeling of the dynamics of this system three and
five dimensional systems of differential equations were used.

It should be said that researches fulfilled in [35] are based on the known
models, for which Problems 1 – 4 were already solved (see Section 1). A purpose
of these publications it is the search of hidden attractors and establishment of
their properties.

Note that the problems considered in [35] can be raised and for system (6.6).
However, it is possible only when the results of verifications and tests fully will
confirm adequacy of system (6.6) and the direct current traction power supply
system. This adequacy can be set by the recurrence analysis methods [10].

At the recurrence analysis of recurrence plots an important role play lengths
of diagonal lines (we will emphasize that on recurrence plots the length of line
characterizes a response time of trajectory in some region of phase space) [5], [10],
[13], [18]. We performed such analysis of diagonal lines, but its results were rather
rough.

It should be said that in the general case it is impossible to achieve a good
correspondence between the model and the complex process that this model de-
scribes. Therefore, in this work, the adequacy of the model and the process was
evaluated by the deviations of the current and voltage obtained in the simulation
and experiment (a current-voltage characteristic U − I).

Comparison of the experimental information on Fig. 4.2 and solutions of sys-
tem equations (4.1) shows that there is satisfactory description of dynamics of the
direct current power supply system on the interval 4000 seconds – 10000 seconds.
(However, it is necessary to notice that among all systems of equations (4.1) –
(4.7) only the phase portrait of system (4.1) most adequate to the real phase
portrait on Fig. 4.2. Thus, there is good quality coincidence of the experimental
U − I characteristic with U − I characteristic of system (4.1).)

In order to attain a greater accuracy it is necessary to specify the coefficients of
system (4.1) (or (6.6)). It is possible to do by the use of artificial neural networks.
In the future authors hope to get back to this problem.
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