
JOURNAL OF OPTIMIZATION, DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS (JODEA)
Volume 26, Issue 1, June 2018, pp. 29�44, DOI 10.15421/141803

ISSN (print) 2617�0108
ISSN (on-line) xxxx�xxxx

A CONTRIBUTION TO MAGNETIC RECONNECTION:
A BOLTZMANN CORRECTION TO THE MAGNETIC

INDUCTION EQUATION FOR FARADAY VORTEX TUBES

Vladimir L. Borsch∗

Abstract. The Boltzmann correction to the Maxwell induction law for a moving medium

�lled with vortex tubes of Faraday has been implemented.

Key words: the magnetic induction law, the theory of molecular vortices.

2010 Mathematics Subject Classi�cation: 74A05, 74A25, 74F15, 76B47, 78A25.

Communicated by Prof. O.A. Prykhod'ko

. . . It is true that at one time those who speculated as to the causes of physical phenomena,

were in the habit of accounting for each kind of action at a distance by means of a special æthereal

�uid, whose function and property it was to produce these actions. They �lled all space three and

four times over with æthers of di�erent kinds, the properties of which were invented merely to

`save appearances,' so that more rational enquirers were willing rather to accept not only Newton's

de�nite law of attraction at a distance, but even the dogma of Cotes, that action at a distance is

one of the primary properties of matter, and that no explanation can be more intelligible than this

fact. . .
<. . . >
But in all of these theories the question naturally occurs: � If something is transmitted from

one particle to another at a distance, what is its condition after it has left the one particle and

before it has reached the other?. . . Hence all these theories lead to the conception of a medium in

which the propagation takes place, and if we admit this medium as an hypothesis, I think it ought

to occupy a prominent place in our investigations, and that we ought to endeavour to construct

a mental representation of all the details of its action, and this has been my constant aim in

this treatise. [36]

1. Introduction

Maxwell's equations are foundational to electromagnetic theory. They are the cornerstone of

a myriad of technologies and are basic to the understanding of innumerable e�ects. Yet there are

a few e�ects or phenomena that cannot be explained by the conventional Maxwell theory. [2]

The governing equations of ideal magnetohydrodynamics (IMHD) are resulted
from coupling the Maxwell equations for ideal conductive medium and the Euler
equations for ideal �uid. A constitutive part of the IMHD governing equations is
the (magnetic) induction law

Bt = ∇× (u×B) , (1.1)

where u(x, t) is the �uid velocity, B(x, t) is the magnetic induction, (x, t) is
an inertial Cartesian orthogonal frame of reference, and the lower index t indicates
the partial derivative with respect to t.
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The Alfv�en theorem [14, 16, 21, 37] of IMHD implies that the following two
important properties of the magnetic induction B hold. The �rst property is the
conservation of the magnetic �ux

Ψ [L(t)] =

¨
S(t)

ν ·B δS , (1.2)

where L(t) is an arbitrary closed material (co-moving) contour, S(t) is a surface
bounded by the contour L(t), ν(x, t) is the unit vector normal to S(t), δ is
the (purely) `spatial' di�erential (at time t being constant). The property is proved
directly

Ψ̇ [L(t)] =
d

dt

¨
S(t)

ν ·B δS =

¨
S(t)

ν ·
[
∂B

∂t
−∇× (u×B)

]
δS (1.1)

= 0 , (1.3)

where dot over a symbol here and below indicates the material (`total') derivative
with respect to t.

An other proof follows from the �rst Zorawski criterion [53]. It says that the
necessary and su�cient condition for the �ux of an arbitrary vector �eld a(x, t)
through the material surface S(t) to conserve reads

ȧ− a · ∇u+ (∇ · u)a = 0 , (1.4)

or equivalently

at + u · ∇a− a · ∇u+ (∇ · u)a = 0 . (1.5)

Using the following well known vector identity

∇× (a× b) = b · ∇a− (∇ · a) b− a · ∇b+ (∇ · b)a , (1.6)

where b(x, t) = u(x, t), we obtain the condition (1.5) to be

at −∇× (u× a) + (∇ · a)u = 0 . (1.7)

When a = B, ∇·B = 0 (see the fourth equation of the system (2.1) or the second
equation of the system (2.3)), the condition (1.7) transforms into the induction
law (1.1).

The second property is the magnetic �eld line conservation, that is the magnetic
lines co-move with the �uid, or they are `frozen' into the �uid. The second
Zorawski criterion [53] says that the necessary and su�cient condition for the
vector �eld a(x, t) to be material reads

a×
[
at −∇× (u× a) + (∇ · a)u

]
= 0 . (1.8)

Again, if a = B, the above condition holds due to ∇ ·B = 0 and the induction
law (1.1).
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The both Zorawski criteria are thoroughly discussed in [42,48].

The second property of the magnetic induction is usually used to introduce
the magnetic �eld line velocityw(x, t) and to consider the induction equation (1.1)
in the following formulation

Bt = ∇× (w ×B) . (1.9)

The component w‖ of w in the direction of B is actually not determined because
a one-to-one correspon dence between �eld lines does not require one-to-one
correspondence between the individual points lying on them [41], whereas the com-
ponent of w in the direction normal to B is w⊥=u⊥. However, the usual con-
vention is to assume that w‖ = u‖, that is w = u.

The above two properties of the magnetic inductionB are exactly those known
in ideal hydrodynamics (IHD) for the vorticity

Ω = ∇× u (1.10)

and derived from the Kelvin theorem [25] or the Helmholtz equation [19,25]

Ωt = ∇× (u×Ω) . (1.11)

In IHD phenomena when all the hypotheses of the Kelvin theorem meet then
the property of the conservation of the vorticity lines holds. In contrast to IHD,
in IMHD the magnetic topology may change even when all the hypotheses of
the Alfv�en theorem meet. A well known example of such a change is magnetic
reconnection. The phenomenon occurs in the solar corona, the Earth's magneto-
sphere, and laboratory plasmas. Detailed surveys on the subject are presented
in [17, 22, 41, 43, 51, 52]. We note, just in case, that Barrett [2] set up a list of
electromagnetic phenomena not explained by the Maxwell equations.

Since in most theories of magnetic reconnection the induction law (whether
in ideal or non-ideal cases) plays an important role, our concern is the origin of
the induction law in the IMHD limit, rather then magnetic reconnection itself.

The article is arranged as follows.

In section 2 we consider the Minkowski approach currently adopted as a `stan-
dard' in most of the existing textbooks on MHD for deriving the Maxwell equations
in moving media.

In section 3 we consider the Maxwell approach based on the theory of molecular
vortices and some mechanical analogies to derive the induction law. One should
refer to [46] to learn more about the theory of molecular vortices and to [10, 26,
39] to know out much interesting on the Maxwell way of reasoning. We show
that in contrast to the well known common opinion Maxwell himself derived
the induction law not only for media at rest but for moving ones as well. In
the IMHD limit his induction law is nothing but the induction law (1.1) of
the IMHD. The history of electrodynamics of moving media is fundamentally
surveyed by Darrigol [11�13].
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In section 4 we consider some observations of Boltzmann concerning the Max-
well study on the subject. Boltzmann thoroughly studied the Maxwell legacy
on electromagnetism, namely three articles [29], [30�33], [34], and the two-volume
book [35,36]. He translated the �rst and the second articles in German [4,5] and
supplemented both translations with his own very detailed and insight comments.
He also published in English [6] the list of faults found by him in the �rst article.
We implement some comments of Boltzmann to the second article to derive
the corrected induction law.

In section 5 we consider the induction law corrected by Hornig [20] to preserve
the magnetic line topology and not to preserve the magnetic �ux. The induction
law after Hornig happens to include the induction law after Boltzmann as a parti-
cular case provided some conditions meet.

In section 6 we consider the analogy between the Kelvin and the Alfv�en theo-
rems and their consequences once again. Some of quite recently published results
of other authors, for example, by Tsinober [50], prove that the analogy is imperfect
or even does not hold. We show that the induction law after Boltzmann does not
actually obey the analogy.

In section 7 we list in brief our observations on the subject.

2. The induction law after Minkowski

Because of our incomplete knowledge of the structure of matter, however, we are entitled to

ask ourselves what statements the relativity principle allows us to make concerning (macroscopic)

processes in moving bodies, assuming processes in bodies at rest to be experimentally known. This

question was answered by Minkowski. . . He showed that the equations for moving bodies follow

unambiguously from the relativity principle and from Maxwell's equations for bodies at rest. . . [40]

We shall not use these formulae in the rather complicated form in which they can be found

in Maxwell's treatise, but in the clearer and more condensed form that has been given them by

Heaviside and Hertz. [28]

The �Maxwell's equations� of today are due to Heaviside's �redressing� of Maxwell's work, and

should, more accurately, be known as the �Maxwell �Heaviside equations.� Essentially, Heaviside

took the twenty equations of Maxwell and reduced them to the four now known as �Maxwell's

equations.� [2]

The governing equations of electromagnetism being actually the Hertz �Heavi-
side ones but usually attributed to Maxwell in the proper inertial Cartesian
orthogonal frame of reference (x′, t′), where an undeformable conductive medium
is at rest, read [14,16,21,40]

∇′ ×H ′ = +D′t′ + j
′ ,

∇′ ×E′ = −B′t′ ,

∇′ ·D′ = q ,

∇′ ·B′ = 0 ,

(2.1)

where the following constitutive equations: B′ = µH ′, D′ = εE′, and the Ohm
law j′ = σE′ are used; E and H being the electric and magnetic �elds, D being
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the electric induction (displacement), ε and µ being the electric and magnetic
impermeabilities of the medium, q being the volume density of the free electric
charges, j being the surface density of the electric current, σ being the conductivity
of the medium.

For an undeformable moving medium in an inertial frame of reference (x, t)
moving with the constant velocity v : |v|� c, where c is the speed of light, with
respect to the frame of reference (x′, t′) : t′ = t, x′ = x − tv, the following non-
relativistic transformations of the dependent variables [40]

H ′ = H − v ×D ,

E′ = E + v ×B ,

j′ = j − ρv ,

ρ′ = ρ + ε∇ · (v ×B) ,

are used for the system of equations (2.1) to hold.

In the IMHD limit the above transformations simplify to the following ones{
H ′ = H ,

E′ = E + v ×B = 0 ,
(2.2)

and the remaining part of the system (2.1) reads{
Bt −∇× (v ×B) = 0 ,

∇ ·B = 0 .
(2.3)

Accounting for the vector identity (1.6), where a = v, b = B, the magnetic
induction law (the �rst equation of the system (2.3)) simpli�es as follows

Bt −∇× (v ×B) = Bt + v · ∇B ≡ Ḃ = 0 . (2.4)

The above equation means that if an undeformable conductive medium moves
with constant velocity v the magnetic �eld B remains unaltered.

In case of a deformable medium it is usually assumed that there is a unique
continuously di�erentiable transformation between laboratory (x, t) (or Eulerean)
and material (X, t) (or Lagrangean) frames of reference

x = Φ(X, t) , (2.5)

referred to the law of motion. Actually, the transformation (2.5) is rarely known,
and the solution to the following Cauchy problem{

ẋ(t) = u(x, t) ,

x(0) = X,
(2.6)
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where u is the medium velocity, is implied by the law of motion.
Point-wise application of the transformations (2.2) at v = u leads to the induc-

tion equation for the moving deformable medium as follows

Bt −∇× (u×B) = 0 . (2.7)

These formulae are rigorously valid only for uniformly moving bodies and, because of the additivity

of the �elds, also when several bodies are present which move uniformly with di�erent velocities and

are separated by vacuum regions. The approximation to which. . . are correct will generally be the better,

the smaller the acceleration of the substance. [40]

Hence, obtaining the induction law after Minkowski implies supplementary
assumptions not referred to by most of the textbooks. Sedov [44,45] studied appli-
cability of these assumptions to moving media at large deformations.

3. The induction law after Maxwell

The consideration of the action of magnetism on polarized light leads, as we have seen, to

the conclusion that in a medium under the action of magnetic force something belonging to the same

mathematical class as an angular velocity, whose axis is in the direction of the magnetic force, forms

a part of the phenomenon.

This angular velocity cannot be that of any portion of the medium of sensible dimensions

rotating as a whole. We must therefore conceive the rotation to be that of very small portions of

the medium, each rotating on its own axis. This is the hypothesis of molecular vortices. [36]

We shall suppose at present that all the vortices in any one part of the �eld are revolving

in the same direction about axes nearly parallel, but that in passing from one part of the �eld

to another, the direction of the axes, the velocity of rotation, and the density of the substance of

the vortices are subject to change. [30]

Auch die Gleichungen, welche Maxwell hier f�ur die electromagnetische Wirkung in bewegten

medien aufstellt, hat Hertz anfangs �ubersehen. [5]

To derive the induction law (as a constitutive part of his set of the governing
equations for the electromagnetic phenomena) Maxwell, �rstly, introduced an invis-
cid continuum (or a medium, referred to themicro�uid below) consisting of cylind-
rical vortices rotating as quasi-rigid bodies (prop. I [30], pp. 165 � 167), as shown
in Fig. 1.

Secondly, Maxwell interpreted quantities used in electrodynamics as follows:
µ (magnetic impermeability) being a value depending on the density of the micro-
�uid and the position of the vortices (prop. I [30], pp. 165 � 167, prop. III [30],
pp. 167 � 175), E (the electric �eld induced by free electric charges) being the force
with what intermediate particles treated as free electric charges act on the vorti-
ces (prop. VII [31], pp. 288 � 289), and H (the magnetic �eld, the magnetic
inductionB = µH) being the following vector (prop. I [30], pp. 165 � 167, prop. III
[30], pp. 167 � 175)

H = w τ = rω τ = rω , (3.1)

where r, w, and ω are denoted in Fig. 1, a.
In prop. VIII [31], pp. 289 � 291, Maxwell derived the induction law for the

micro�uid at rest (the second equation of the system (2.1)), i. e. for the case when
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Fig. 1. Micromotion of the element of a vortex tube: before

deformation at instant t (a) and after deformation at instant t′ (b)

magnetic induction changes being in�uenced by the only �eld E. In props. IX
and X he considered the change of magnetic �eld being in�uenced by only small
deformation, treating separately the strain and the rigid rotation between two
instants t and t′= t+ ∆t, ∆t = dt = Dt.

In prop. IX [31], p. 340, Maxwell considered the in�nitesimal `parallelopiped'
(not the in�nitesimal cylinder, as the element of a vortex tube!) with its three
edges being parallel to the axes x1, x2, x3 of a �xed orthogonal frame of reference
(or a Cartesian laboratory frame, see Fig. 2) and equaled to h1, h2, h3. From
the continuity property of the medium (this means that the volume of the parallele-
piped remains unaltered) and the conservation of energy Maxwell concluded that
due to the strain the following relations hold

DstrHκ

Hκ

=
Dstrhκ
hκ

≡ λκ , κ = 1, 2, 3, (3.2)

where D stands for the `deformational' di�erential (one should not confuse the
di�erential D with the di�erential δ in the magnetic �ux de�nition (1.2) and
the magnetic �ux conservation property (1.3), since the di�erential δ is used
only for the spatial integration, as the increment for spatial variables at t being
constant), Hκ are the Cartesian components of the magnetic �eld H, and λκ are
the extensions of the corresponding edges.

In the modern notation the above relations read

DstrH = H · Ŝ∆t , (3.3)

where Ŝ∆t is the symmetric tensor of small deformation, Ŝ being the Euler
stretching tensor [49].

In prop. X [31], pp. 340 � 341, Maxwell considered the rigid rotation of the
`parallelopiped' and derived the following equation (in the modern notation)
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DrotH = H · Ŵ ∆t , (3.4)

where Ŵ ∆t is the skew-symmetric tensor of small rigid rotation, Ŵ being the
Cauchy spin tensor [49].

It is evident that the equations (3.3) and (3.4) are valid for the magnetic
induction B being rewritten as follows

DstrB

Dt
= B · Ŝ, DrotB

Dt
= B · Ŵ ,

DB

Dt
= B ·

(
Ŝ + Ŵ

)
.

In prop. XI [31], pp. 341 � 348, Maxwell collected all the results obtained in
props. VIII, IX, and X for the rates of change of B and equated the substantial
derivative of B to the sum of the rates of change of B due to: 1) the action of
the electric �eld E, given by the second equation of the system (2.1); 2) the strain,
given by the �rst of the above equations; and 3) the rigid rotation, given by the se-
cond of the above equations, to obtain

Ḃ ≡ dB

dt
≡ Bt + u · ∇B = B · ∇u−∇×E , (3.5)

where the unique decomposition ∇u = Ŝ + Ŵ [49] is applied.

Then Maxwell used the micro�uid incompressibility condition ∇ · u = 0 once
again, the condition of 'the absence of free magnetism' ∇ · B = 0 (Maxwell
formulated this condition in terms of magnetic �eld, i. e. as ∇ ·H = 0, µ being
constant), and the vector identity (1.6) to derive from the equation (3.5) the induc-
tion law for the moving micro�uid

Bt = ∇× (B × u)−∇×E . (3.6)

The above equation was not aimed to be principal or �nal in the Maxwell
theory and happened to be hidden in his calculations. Actually, Maxwell tried
to account for the notion of electrotonic state introduced by Faraday [15].

The conception of such a quantity, on the changes of which, and not on its absolute magnitude,

the induction current depends, occurred to Faraday at an early stage of his researches (Exp. Res.,

series I, 60). . . He therefore recognised. . . a 'peculiar electrical condition of matter,' to which he gave

the name of the Electrotonic State. He afterwards found that he could dispense with this idea by means

of considerations founded on the lines of magnetic force (Exp. Res., series II, 242), but even in his latest

researches (Exp. Res., series II, 3269), he says, 'Again and again the idea of an electrotonic state (Exp.

Res., 60, 1114, 1661, 1729, 1733) has been forced upon my mind.' [36]

Central to the Maxwell formulation of electromagnetism was the Faraday concept of the electrotonic

state (from the new Latin tonicus, �of tension or tone�; from the Greek tonos, �a stretching�). [2]

Hence, following the idea of electrotonic state, Maxwell introduced the vector
potential A: B = ∇ ×A, and derived from equation (3.6) the following one for
the electric �eld

E = At + u×B +∇ϕ ,
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where ϕ is a scalar potential.

Subsequently, the A �eld was banished from playing the central role in Maxwell's theory and

relegated to being a mathematical (but not physical) auxiliary. This banishment took place during

the interpretation of Maxwell's theory by the Maxwellians, i. e. chie�y by Heaviside, Fitzgerald, Lodge

and Hertz. The �Maxwell theory� and �Maxwell's equations� we know today are really the interpretation

of Maxwell by these Maxwellians. It was Heaviside who �murdered the A �eld� (Heaviside's description)

and whose work in�uenced the crucial discussion which took place at the 1888 Bath meeting of the British

Association (although Heaviside was not present). [2]

In the IMFD limit the induction law (3.6) of Maxwell reads

Ḃ −B · ∇u ≡ Bt + u · ∇B −B · ∇u ≡ Bt +∇× (u×B) = 0 . (3.7)

4. The induction law after Boltzmann

Boltzmann, being an inquisitive and shrewd researcher of the Maxwell legacy,
noticed (comment 39 to prop. IX [5], p. 114) that Maxwell had derived the induc-
tion equation (3.6) not accounting for the de�nition of the magnetic �eld (3.1)
of his own. And it was Boltzmann who supplemented both the conditions used
by Maxwell, the incompressibility one and the conservation of energy for the medi-
um, with the condition of preserving the cylindrical shape of the vortex tubes
to obtain the following correct constraints for the deformation of any element of
the vortex tubes

1

2

Dω

ω
=

Dw

w
= −Dr

r
=

1

2

Dh

h
. (4.1)

Boltzmann showed that the corresponding Maxwell constraints were as follows

Dω

ω
=

Dw

w
= −Dr

r
=

Dh

h
(4.2)

and did not agree with preserving the cylindrical shape of the vortex tubes.

Unfortunately Boltzmann himself did not implement the constraints (4.1) and
the Maxwell de�nition of the magnetic �eld (3.1) to derive the correct induction
law. Hence, in what follows, we implement the Boltzmann correction.

For this we consider the material vector h = hτ = xN − xM, determining
the position of the vortex tube element MN at instant t (Fig. 2, a). At instant t′

the material vector transforms into h′ = h′τ ′ = xN′ − xM′ (Fig. 2, b), where τ is
the unit vector tangent to the axis of the element: |τ | = |τ ′| = 1.

Using the law of motion of the medium (2.5) we represent the change of h
through the material variables X and the time increment ∆t as follows

h′ − h =
[
Φ(XN, t

′)−Φ(XM, t
′)
]
−
[
Φ(XN, t)−Φ(XM, t)

]
,

and consequently �nd that [49]
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Fig. 2. Macromotion of the element MN of a vortex tube: before

deformation at instant t (a) and after deformation at instant t′ (b)

Dh

Dt
= lim

∆→0

h′ − h
∆t

= h · ∇u , (4.3)

where the material variablesX are assumed to coincide with the laboratory ones x
at instant t (see the formulation of the Cauchy problem (2.6)).

From the above relation for the `deformational' time derivative of the material
vector h we �nd for the squared length of h

h · Dh

Dt
=

1

2

Dh2

Dt
=

1

2

Dh2

Dt
= h

dh

dt
= h ·

(
Ŝ + Ŵ

)
· h = h · Ŝ · h = h2 θ , (4.4)

where the scalar function

θ
(
Ŝ,h

)
= |h|−2 h · Ŝ · h = τ · Ŝ · τ (4.5)

is the normal component of Ŝ in the direction of the axis of the element.

Then, di�erentiating the de�nition of the magnetic �eld (3.1), we obtain

DH

Dt
=

Dw

Dt
τ + w

Dτ

Dt

(4.1)
=

1

2

w

h

Dh

Dt
τ + w

Dτ

Dt
, (4.6)

where the logarithmic `deformational' derivative of the length h of the material
vector h is already known from the equation (4.4) to be

1

h

Dh

Dt
= θ , (4.7)

and the only derivative is needed to be �nd is the following one

Dτ

Dt
=

D

Dt

(
h

h

)
=

1

h2

(
h

Dh

Dt
− Dh

Dt
h

)
(4.3)
= τ · ∇u− θ τ . (4.8)
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Substituting the `deformational' derivatives of lnh (4.7) and τ (4.8) into the
right hand side of the equation (4.6) we �nd for the `deformational' derivative of
the magnetic �eld

DH

Dt
=

1

2
wθ τ + w τ · ∇u− wθ τ = −1

2
θH +H · ∇u .

The same equation is evident to hold for the magnetic induction

DB

Dt
= −1

2
θB +B · ∇u . (4.9)

Combining the `deformational' derivative of B (4.9) with the time derivative
ofB due to the action of the electric �eld (the second equation of the system (2.1))
we obtain the induction law after Boltzmann

Ḃ ≡ dB

dt
= B · ∇u− 1

2
θB −∇×E ,

and in the IMFD limit it reads

Ḃ ≡ dB

dt
= B · ∇u− 1

2
θB .

Representing the total time derivative (material) at the left hand side of
the above equation as the sum of the local and the convective derivatives we obtain
the induction law in more usual formulation

Bt + u · ∇B −B · ∇u+ 1
2 θB ≡ Bt +∇× (B × u) + 1

2 θB = 0 . (4.10)

5. The induction law after Hornig

Besides, some models are based not on a solution of the corresponding MHD equations but

on some geometrical consideration and on ideas about the motion of frozen-in magnetic �eld lines.

This concept of magnetic �eld line motion has often led to some confusion; because of that, some

models based on that concept were accurately criticized by Alfv�en (1976, 1977). We also believe that

physical models cannot be based on the qualitative and to some degree speculative ideas on magnetic

�eld line motion (the more so because in some regions the frozen-in conditions are surely violated);

physical models must be constructed on the basis of meaningful solutions of the problems of magnetic

hydrodynamics (or even better, kinetics). [43]

It is known [17,41] that in non-ideal conductive media (plasmas) the magnetic
�ux conservation and the magnetic �eld line conservation properties are no longer
equivalent, and the �eld line velocity w is not determined uniquely.

Hornig [20] considered this case in a purely geometric way and proved that
the most general form of the induction equation preserving the magnetic �eld
lines (magnetic topology) and not preserving the magnetic �ux is as follows

Bt +∇× (B ×w) = λB , (5.1)
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w being the �eld line velocity, the componentw⊥ of the �eldw not being uniquely
determined, λ being a scalar function of the �elds w and B.

We note that the equation (5.1) at w = u directly follows from the second
Zorawski criterion (1.8) applied to the vector �eld a(x, t) = B(x, t) when accoun-
ting for the second equation of the system (2.3).

Kozlov [24] used even more general form of the condition for the vector
�eld a(x, t) to be material, a(x, t),u(x, t) : Rn+1 → Rn, as follows

at + [a,u] = λa , (5.2)

where [a,u] is the commutator of the vector �elds a(x, t) and u(x, t).
Preserving the magnetic topology means that the corresponding topological

invariants of the �led lines, for example, knottedness, linkage etc., remain unaltered.
Topological invariants of the �eld lines are explained in [1, 37].

6. Magnetohydrodynamic Analogy

The MHD analogy was originated by Batchelor [3] whose reasoning had been
based on the well known fact that the equations for the vorticity in non-ideal �uids
and for the magnetic induction (or for magnetic �eld) in non-ideal conductive
media

Ω̇ = ∇× (u×Ω) + ν∇2Ω ,

Ḃ = ∇× (u×B) + ε∇2B ,

where ν and ε are the kinematic and the magnetic viscosities, are identical in
form.

There is thus a formal analogy between the two solenoidal vectors Ω and H, provided Ω refers to

the motion of non-conducting �uid and H to the motion of conducting liquid.

Many of the results concerning vorticity in classical hydrodynamics can now be interpreted in terms

of magnetic �eld in the electromagnetic hydrodynamic problem. [3]

The MHD analogy �is, in fact, an extension of the popular analogy between
vorticity Ω and material line elements h (proposed by Taylor 1938 [47], and
which goes back to Helmholtz 1858 [19] and Kelvin 1880 [23]), equations for
which in the absence of viscosity are identical in form as well� [19] (see the above
equations (1.11), (4.3)):

Ω̇ = Ωt + u · ∇Ω = Ω · ∇u ,

ḣ = ht + u · ∇h = h · ∇u .

We note that it was surely Maxwell who �rst proposed the IMHD analogy. In
the footnote at the last page of [31] he remarked the following.

Since the �rst part of this paper was written, I have seen in Crelle's Journal for 1859, a paper by

Prof. Helmholtz on Fluid Motion, in which he has pointed out that the lines of �uid motion are arranged

according to the same laws as the lines of magnetic force, the path of an electric current corresponding

to a line of axes of those particles of the �uid which are in a state of rotation. This is an additional
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instance of a physical analogy, the investigation of which may illustrate both electro-magnetism and

hydrodynamics. [30]

Later on he referred to the IMHD analogy, but as an assumption.

It is impossible, in our present state of ignorance as to the nature of the vortices, to assign the form

of the law which connects the displacement of the medium with the variation of the vortices. We shall

therefore assume that the variation of the vortices caused by the displacement of the medium is subject to

the same conditions which Helmholtz, in his great memoir on Vortex-motion [19], has shewn to regulate

the variation of the vortices of a perfect liquid. [36]

Nowadays these analogies are utilized in most of textbooks on HD and MHD,
for example, the analogy between Ω and h is considered to be valid in [27], though
�the above analogies have since been realized to be �awed� [50].

Indeed, at the kinematic level, Ω = ∇×u, whereas B = ∇×A, but the vector
potential A is not present in the induction law for B (for both cases, the ideal and
the non-ideal ones). At the dynamic level the di�erences between Ω andH (orB)
are even more evident. One should address directly to the article of Tsinober [50]
to �nd much more on the subject, including experimental evidence.

The current study explains the absence of the MHD analogy between Ω andH
(or B) and some known �aws of the analogy, since the de�nition of the magnetic
�eld H (3.1) given by Maxwell has nothing in common with the de�nition of
the vorticity Ω of a medium or the angular velocity ω of quasi-rigid rotation of
the vortex tubes of Faraday. And it is the Boltzmann correction to the magnetic
induction law that explicitly accounts for the di�erence betweenH (or B) and Ω.

7. Conclusions

1. The induction law after Minkowski is based on relativistic geometrical
approach involving no physics of deformable media.

2. The induction law after Maxwell is fully based on the evident theory of mo-
lecular vortices but contradicts the de�nition of magnetic �eld by Maxwell.

3. The induction law after Boltzmann �xes faults of the Maxwell approach
but implies the tubular foliation of the space �lled with a deformable medium.

4. The induction law after Hornig involves an undetermined scalar function
and looks as it were a more general case compared to the induction law after
Boltzmann, nevertheless the former does not imply tubular foliation of the space.

8. Acknowledgements

Preliminaries of the current study were presented in [7�9]. The author would
like to express his gratitude for those opportunities to the late Prof. M. S. Ivanov of
Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch
of RAS (Novosibirsk, Russia), to Prof. A. P. Chupakhin and Prof. A.A. Chesnokov
of Lavrientiev Institute of Hydrodynamics, Siberian Branch of RAS (Novosibirsk,
Russia), and to Prof. Yu.D. Chashechkin of Institute for Problems in Mechanics,
RAS (Moscow, Russia).



42 Vladimir L. Borsch

References

1. V. I. Arnold, B.A. Khesin, Topological Methods in Hydrodynamics, Springer,
New York, 1998.

2. T.W. Barrett, Topological Foundations of Electromagnetism, World Scienti�c,
Hackensack, 2008.

3. G.K. Batchelor, On the spontaneous magnetic �eld in a conducting liquid
in turbulent motion, Proc. R. Soc. Lond. A, 201 (1950), 405 � 416.

4. L. Boltzmann, �Uber Faraday's Kraftlinien von Maxwell, Ostwalds Klassiker der
Exacten Wissenschaften, No. 69, W. Engelmann, Leipzig, 1895.

5. L. Boltzmann, �Uber Physikalische Kraftlinien, Ostwalds Klassiker der Exacten
Wissenschaften, No. 102, W. Engelmann, Leipzig, 1898.

6. L. Boltzmann, Some errata in Maxwell's paper `On Faraday's lines of force',
Nature, 57 (1897), 77 � 79.

7. V.L. Borsch, The Faraday induction law after the Boltzmann correction and
the problem of magnetic reconnection, in International Conference on Methods
of Aerophysical Research, ICMAR 2010, Khristianovich Institute of Theoretical and
Applied Mechanics, Siberian Branch of RAS, Novosibirsk, Russia, November 1 � 6,
2010.

8. V.L. Borsch, Derivation of the magnetic induction equation from the hypothesis
of molecular vortices after Boltzmann, in Russian conference �Nonlinear Waves:
Theory and New Applications�, NW 2011, Lavrientiev Institute of Hydrodynamics,
Siberian Branch of RAS, Novosibirsk, Russia, March 2 � 4, 2011.

9. V.L. Borsch, The original Maxwell electromagnetism as a �uent microcontinuum
theory. A fresh look based on Boltzmann comments, in Colloquium EuroMech 531
�Vortices and Waves: Identi�cations and Mutual In�uences�, Lomonosov Moscow
State University, Moscow, Russia, June 21 � 24, 2011.

10. J. Cat, One understanding: Maxwell on the methods of illustration and scienti�c
metaphor, Stud. Hist. Mod. Phys., 32 (2001), 395 � 441.

11. O. Darrigol, The electrodynamics of moving bodies from Faraday to Hertz,
Centaurus, 36 (1993), 245 � 360.

12. O. Darrigol, Electrodynamics from Amp�ere to Einstein, Oxford University Press,
Oxford, 2000.

13. O. Darrigol, Les �Equations de Maxwell: de MacCullagh �a Lorentz, Belin, Paris,
2005.

14. P.A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge University
Press, Cambridge, 2001.

15. M. Faraday, Experimental researches in electricity. First series, Phil. Trans.
R. Soc. Lond., 122 (1832), 126 � 162.

16. J. P. Goedbloed, S. Poedts, Principles of Magnetohydrodynamics with Applica-
tions to Laboratory and Astrophysical Plasmas, Cambridge University Press, Cam-
bridge, 2004.

17. J. P. Goedbloed, R. Keppens, S. Poedts, Advanced Magnetohydrodynamics
with Applications to Laboratory and Astrophysical Plasmas, Cambridge University
Press, Cambridge, 2010.

18. M.E. Gurtin, E. Fried, L. Anand, The Mechanics and Thermodynamics of Con-
tinua, Cambridge University Press, Cambridge, 2009.

19. H. Helmholtz, �Uber Integrale der Hydrodynamischen Gleichungen welche den
Wirbelbewegungen Entsprechen, J. Reine Angew. Math., 55 (1858), 25 � 55.



A Contribution to Magnetic Reconnection: A Boltzmann Correction 43

20. G. Hornig, K. Schindler, Magnetic topology and the problem of its invariant
de�nition, Phys. Plasmas, 3 (1996), 781 � 791.

21. A. Jeffrey, Magnetohydrodynamics, Oliver & Boyd, Edinburgh, 1966.

22. B.B. Kadomtsev, Magnetic �eld line reconnection, Rep. Progr. Phys., 50 (1987),
115 � 143.

23. Lord Kelvin (W. Thomson), Vibration of columnar vortex, Phil. Mag., 10 (1880),
155 � 168.

24. V.V. Kozlov, The frozen-in condition for a direction �eld, small denominators
and chaotization of steady �ows of a viscous �uid, J. Appl. Math. Mech., 63 (1999),
229 � 235.

25. H. Lamb, Hydrodynamics, Cambridge University Press, London, 1975.

26. K. Lambert, The uses of analogy: James Clerk Maxwell's `On Faraday's lines
of force' and early Victorian analogical argument, British J. Hist. Sci., 44 (2011),
61 � 68.

27. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, Pergamon
Press, Oxford, 1984.

28. H.A. Lorentz, The Theory of Electrons and its Applications to the Phenomena
of Light and Radiant Heat, Teubner, Leipzig, 1916.

29. J.C. Maxwell, On Faraday's lines of force, Trans. Camb. Phil. Soc., 10 (1864),
27 � 83. (Part I read 1855, part II read 1856.)

30. J.C. Maxwell, On physical lines of force. Part I. The theory of molecular vortices
applied to magnetic phenomena, Phil. Mag., 21 (1861), 161 � 175.

31. J.C. Maxwell, On physical lines of force. Part II. The theory of molecular vortices
applied to electric currents, Phil. Mag., 21 (1861), 281 � 291, 338 � 348.

32. J.C. Maxwell, On physical lines of force. Part III. The theory of molecular
vortices applied to statical electricity, Phil. Mag., 23 (1862), 12 � 24.

33. J.C. Maxwell, On physical lines of force. Part IV. The theory of molecular
vortices applied to the action of magnetism on polarized light, Phil. Mag., 23 (1862),
85 � 95.

34. Maxwell J. C., A Dynamical Theory of the Electromagnetic Field, Phil. Trans.
R. Soc. Lond., CLV (1865), 459 � 512.

35. J.C. Maxwell, A Treatise on Electricity and Magnetism, Vol. I, Clarendon Press,
Oxford, 1873.

36. J.C. Maxwell, A Treatise on Electricity and Magnetism, Vol. II, Clarendon Press,
Oxford, 1873.

37. H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids,
Cambridge University Press, Cambridge, 1978.

38. K. Moffatt, Vortex Dynamics: The legacy of Helmholtz and Kelvin, in A.V. Bo-
risov et al. (eds.), IUTAM Symposium on Hamiltonian Dynamics, Vortex
Structures, and Turbulence, Steklov Mathematical Institute, RAS, Moscow, August
25 � 30, 2006, Springer, Dordrecht, 2008, 1 � 10.

39. N. J. Nersessian, Maxwell and `The method of physical analogy': model-based
reasoning, generic abstraction, and conceptual change, in D.B. Malament (ed.),
Reading Natural Philosophy: Essays in the History and Philosophy of Science
and Mathematics, Open Court, Chicago, 2002, 129 � 166.

40. W. Pauli, Theory of Relativity, Pergamon Press, London, 1958.

41. E. Priest, T. Forbes, Magnetic Reconnection: MHD Theory and Aplications,
Cambridge University Press, Cambridge, 2000.



44 Vladimir L. Borsch

42. R. Prim, C. Truesdell, A derivation of Zorawski's criterion for permanent
vector-lines, Proc. AMS, 1 (1950), 32 � 34.

43. M. I. Pudovkin, V. S. Semenov, Magnetic �eld reconnection theory and the solar
wind-magnetosphere interaction: A review, Space Sci. Rev., 41 (1985), 1 � 89.

44. L. I. Sedov, On the Ponderomotive Forces of Interaction of Electromagnetic Field
and an Accelerating Material Continuum, taking into Account Finite Deformations,
J. Appl. Math. Mech., 29 (1965), 4 � 17.

45. L. I. Sedov, On the Addition of Motions Relative to Deformable Reference Systems,
J. Appl. Math. Mech., 42 (1978), 181 � 184.

46. D.M. Siegel, Innovation in Maxwell's Electromagnetic Theory: Molecular Vor-
tices, Displacement Current, and Light, Cambridge University Press, Cambridge,
1991.

47. G. I. Taylor, Production and dissipation of vorticity in a turbulent �uid, Proc. R.
Soc. Lond. A, 164 (1938), 15 � 23.

48. C. Truesdell, The kinematics of vorticity, Indiana University Press, Bloomington,
1954.

49. C. Truesdell, R.A. Toupin, The classical �elds theories. Principles of classical
mechanics and �eld theories, in S. Fl�ugge (ed.), Encyclopedia of Physics,
Vol. III / 1, Springer, Berlin, 1960, 226 � 793.

50. A. Tsinober, How analogous is generation of vorticity and passive vectors
(magnetic �elds)?, in S. Molokov et al. (eds),Magnetohydrodynamics: Historical
Evolution and Trends, Springer, Dordrecht, 2007, 223 � 230.

51. M. Yamada, R. Kulsrud, H. Ji, Magnetic Reconnection, Rev. Mod. Phys., 82
(2010), 603 � 664.

52. E.G. Zweibel,M. Yamada, Perspectives on magnetic reconnection, Proc. R. Soc.
Lond. A, 472 (2016), 1 � 30.

53. K. Zorawski, �Uber die Erhaltung der Wirbelbewegung, C. R. Acad. Sci. Cracovie,
1900, 335 � 341.

Received 25.02.2018


