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ON EXISTENCE OF BOUNDED FEASIBLE SOLUTIONS
TO NEUMANN BOUNDARY CONTROL PROBLEM FOR
p-LAPLACE EQUATION WITH EXPONENTIAL TYPE

OF NONLINEARITY

Peter I. Kogut∗, Rosanna Manzo†, MykolaV. Poliakov‡

Abstract. We study an optimal control problem for mixed Dirichlet-Neumann boundary

value problem for the strongly non-linear elliptic equation with p-Laplace operator and

L1-nonlinearity in its right-hand side. A distribution u acting on a part of boundary of

open domain is taken as a boundary control. The optimal control problem is to minimize

the discrepancy between a given distribution yd ∈ L2(Ω) and the current system state. We

deal with such case of nonlinearity when we cannot expect to have a solution of the state

equation for any admissible control. After de�ning a suitable functional class in which we

look for solutions and assuming that this problem admits at least one feasible solution,

we prove the existence of optimal pairs. We derive also conditions when the set of feasible

solutions has a nonempty intersection with the space of bounded distributions L∞(Ω).

Key words: existence result, optimal control, p-Laplace operator, elliptic equation,

bounded solutions.
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1. Introduction

Let Ω be a bounded open subset of RN (N ≥ 1). We assume that its boundary
∂Ω is of the class C1. So, the unit outward normal ν = ν(x) is well-de�ned for
HN−1-a.a. x ∈ ∂Ω, where a.a. means here with respect to the (N−1)-dimensional
Hausdor� measure HN−1. We also assume that the boundary ∂Ω consists of two
disjoint parts ∂Ω = ΓD ∪ ΓN , where the sets ΓD and ΓN have positive (N − 1)-
dimensional measures. Let F : R→ [0,+∞) be a mapping such that F ∈ C1

loc(R),
F is a non-decreasing positive function, and there exists a constant CF > 0
satisfying

F ′(z) ≥ CFF (z), ∀ z ∈ R and

∣∣∣∣ˆ 0

−∞
zF ′(z) dz

∣∣∣∣ < +∞. (1.1)

Further we de�ne the function f ∈ Cloc(R) as follows: f(z) = F ′(z).
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Let p, r, and q be real numbers such that p ≥ 2, q ≥ pN
pN−N+p , and r ≥ p′,

where p′ = p
p−1 is the conjugate exponent to p.

We are concerned with the following optimal control problem for a nonlinear
elliptic equation with p-Laplace operator:

Minimize J(u, y) =
1

2

ˆ
Ω
|y − yd|2 dx+

1

p′

ˆ
ΓN

|u|p′ dx+
α

r

ˆ
Ω
|f(y)|r dx, (1.2)

subject to constraints

−div
(
|∇y|p−2∇y

)
= f(y) + g in Ω, (1.3)

y = 0 on ΓD, |∇y|p−2∂νy = u on ΓN , (1.4)

u ∈ Aad ⊂ Lp
′
(ΓN ), y ∈W 1,p

0 (Ω; ΓD), (1.5)

where α > 0 is a given weight which is assumed to be small enough, Aad is a closed
convex subset of Lp

′
(ΓN ), g ∈ Lq(Ω) and yd ∈ L2(Ω) are given distributions.

Let C∞0 (RN ; ΓD) =
{
ϕ ∈ C∞0 (RN ) : ϕ = 0 on ΓD

}
. In what follows we asso-

ciate with the optimal control problem (1.2)�(1.5) the Banach space W 1,p
0 (Ω; ΓD)

which we de�ne as the closure of C∞0 (RN ; ΓD) with respect to the norm

‖y‖
W 1,p

0 (Ω)
=

(ˆ
Ω
|∇y|p dx

)1/p

.

So, we can suppose that each element of the space W 1,p
0 (Ω; ΓD) has zero trace at

the ΓD-part of boundary ∂Ω. Let W−1,p′(Ω; ΓD) :=
(
W 1,p

0 (Ω; ΓD)
)∗

be the dual

space to W 1,p(Ω; ΓD).

De�nition 1.1. We say that (u, y) ∈ Lp′(ΓN )×W 1,p
0 (Ω; ΓD) is a feasible solution

to the problem (1.2)�(1.5) if

• u is an admissible control, i.e. u ∈ Aad;

• J(u, y) < +∞;

• the function y = y(u) is a weak solution to the boundary value problem
(BVP) (1.3)�(1.4) for a given control u, i.e. y ∈W 1,p

0 (Ω; ΓD) and the integral
identity

ˆ
Ω
|∇y|p−2 (∇y,∇ϕ) dx =

ˆ
Ω
f(y)ϕdx+

ˆ
ΓN

uϕdHN−1 +

ˆ
Ω
gϕ dx (1.6)

holds for every test function ϕ ∈ C∞0 (RN ; ΓD).

We denote by Ξ the set of all feasible solutions to the problem (1.2)�(1.5).

Equations like (1.3) appear in a number of applications. In particular, it
has been applied for the description of a ball of isothermal gas in gravitational
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equilibrium, proposed by lord Kelvin [7] in the study of stellar structures [7]. It
has been also actively investigated in connection with combustion theory (see,
for instance, [9, 12, 14]). However, it is well known that the indicated BVP is
ill-posed, in general. It means that there is no reason to assert the existence of
weak solutions to (1.3)�(1.4) for given g ∈ Lq(Ω) and u ∈ Lp′(ΓN ), or to suppose
that such solution, even if it exists, is unique (see, for instance, I.M. Gelfand [12],
H. Brezis and J.L. V�azquez [3], M.G. Crandall and P.H. Rabinowitz [13], F. Mignot
and J.P. Puel [22], T. Gallou�et, F. Mignot and J.P. Puel [11], H. Fujita [10],
R.G. Pinsky [24], R. Ferreira, A. De Pablo, J.L. Vazquez [8]). In view of this it
is worth to emphasize the following result (see [2]): there exists a �nite positive
number λ∗, called the extremal value, such that the boundary value problem

−∆y = λey + v in Ω, y = 0 on ∂Ω (1.7)

has at least a classical positive solution y ∈ C2(Ω) provided 0 < λ < λ∗ and v = 0,
while no solution exists, even in the weak sense, for λ > λ∗. In the case λ = λ∗

and v = 0, this problem admits the existence of the so-called singular solutions
u ∈ H1

0 (Ω) that do not belong to L∞(Ω). Thus, in the context of the optimal
control problem that we deal with in this paper, there is no reason to suppose
that a weak solution to (1.3)�(1.4) for given u ∈ Lp′(ΓN ), and g ∈ Lq(Ω), even
if it exists, is unique and bounded. Moreover, to the best knowledge of authors,
the existence and uniqueness of the weak solutions to the original BVP is an
open question for nowadays. In view of this, we adopt the so-called non-triviality
assumption:

Hypothesis A. For given f ∈ Cloc(R), g ∈ Lq(Ω), yd ∈ L2(Ω), and Aad, the
set of feasible solutions Ξ is nonempty.

Before proceeding further, it is worth to note here that some optimal control
problems, related with the Dirichlet problem (1.7), was �rst discussed in detail
by Casas, Kavian, and Puel [5]. The questions of existence and uniqueness of
optimal solutions were treated and optimality systems have been derived and
analyzed in [5]. At the same time, analogous results for the case of nonlinear
elliptic equations (1.3) with mixed boundary conditions (1.4) remain arguably
open. Some related questions in this �eld can be found in the recent papers [15,16]
(see also [6, 18, 19]).

We also emphasize that the corresponding strongly nonlinear di�erential ope-
rator −div(|∇y|p−2∇y)− f(y) is not monotone and, in principle, has degeneracy
as∇y tends to zero. Moreover, when the term |∇y|p−2 is regarded as the coe�cient
of the Laplace operator, we have also the case of unbounded coe�cients. Because
of this and speci�c properties of the function f(y), there are serious hurdles to
deduce an a priori estimate for the weak solutions of BVP (1.3)�(1.4) even in the
standard Sobolev space W 1,p

0 (Ω). On the other hand, the existence of bounded
feasible solutions to the problem (1.2)�(1.5) is a crucial characteristic for the
wide spectrum of investigations related with this problem: di�erentiability of the
state y(u) with respect to the boundary control u, deriving and substantiation
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of optimality conditions, and many others (see, for instance, [4]). In view of this,
our main concern in this paper is to discuss the existence of bounded feasible
solutions to the optimal control problem (1.2)�(1.5). In particular, we are focused
on the following question: Let (u, y) be a feasible solution to the problem (1.2)�
(1.5). Which conditions should be imposed on p, r, q, Ω, ΓN , u ∈ Lp

′
(ΓN ), and

g ∈ Lq(Ω) in order to guarantee the inclusions y ∈ L∞(Ω) and/or y ∈ L∞(∂Ω)?
As was shown in the recent paper of the �rst author [17], the existence of at
least one feasible pair (u, y) with the extra property y ∈ W 1,p

0 (Ω; ΓD) ∩ L∞(Ω)
plays a crucial role for the substantiation of attainability of optimal pairs to the
problem (1.2)�(1.5) by optimal solutions of some �ctitious optimization problem
for quasi-linear elliptic equations with coercive and monotone operators.

The plan of the paper is as follows. In Section 2 we give some preliminaries
concerning the original problem (1.2)�(1.5). In particular, we give the formal
statement of the boundary value problem and establish the necessary background
to its study. We also study in this section some auxiliary properties of the feasible
solutions to the Dirichlet-Neumann boundary value problem (1.3)�(1.4). In par-
ticular, we show that an a priori estimate for the weak solutions in W 1,p

0 (Ω)
can be derived if only such solutions are feasible to the original optimal control
problem. The key result of this section is Proposition 2.2, which gives the grounds
to suppose that the set of feasible solutions with Lp

′
(Ω)-bounded nonlinearity

f(y) is weakly closed in W 1,p
0 (Ω). The existence of optimal boundary controls is

discussed in Theorem 2.2. We give the proof of our main results in Section 3 and
they can be stated as follows.

Theorem 1.1. Let p, q, r be exponents such that

1 ≤ p < N, q > max

{
N

p
;

p

p− 1

}
and r > max

{
N

p
;

p

p− 1

}
. (1.8)

Let (u, y) be a feasible solution to the problem (1.2)�(1.5) and let u ∈ Lt(ΓN ) for

some

t > max

{
N − 1

p− 1
;

p

p− 1

}
. (1.9)

Then

y ∈W 1,p
0 (Ω; ΓD) ∩ L∞(Ω) and γ0(y) ∈W 1/p′,p(ΓN ) ∩ L∞(ΓN ),

where γ0 : W 1,p(Ω; ΓD)→W 1/p′,p(ΓN ) stands for the trace operator.

Theorem 1.2. Let p, q, r be exponents such that

p > N, q ≥ p

p− 1
and r ≥ p

p− 1
. (1.10)

Let (u, y) be a feasible solution to the problem (1.2)�(1.5). Then

y ∈W 1,p
0 (Ω; ΓD) ∩ L∞(Ω).
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2. On Consistency of Optimal Control Problem (1.2)�(1.5)

As we mentioned before, it is unknown whether the original BVP admits at
least one weak solution for any admissible control u ∈ Aad ⊂ Lp

′
(ΓN ) and a

given distribution g ∈ Lq(Ω). Hence, it is not an easy matter to touch directly on
the set of feasible solutions Ξ to the original optimal control problem because its
structure and the main topological properties are unknown in general. To lighten
this problem, we make use of the following observation. Let (u, y) ∈ Lp′(ΓN ) ×
W 1,p

0 (Ω; ΓD) be an arbitrary feasible solution to the problem (1.2)�(1.5) in the
sense of De�nition 1.1. Then f(y) ∈ Lp

′
(Ω) and, therefore, the form [y, ϕ]f :=´

Ω f(y)ϕdx is continuous onto the set

Y =
{
y ∈W 1,p

0 (Ω; ΓD) | (u, y) ∈ Ξ
}
. (2.1)

Indeed, in this case, for each ϕ ∈ C∞0 (RN ; ΓD), we have∣∣∣∣ˆ
Ω
f(y)ϕdx

∣∣∣∣ ≤ (ˆ
Ω
|f(y)|p′ dx

)1/p′ (ˆ
Ω
|∇ϕ|p dx

)1/p

≤ |Ω|
1
p′−

1
r

(ˆ
Ω
|f(y)|r dx

)1/r (ˆ
Ω
|∇ϕ|p dx

)1/p

≤ |Ω|
1
p′−

1
r

( r
α
J(u, y)

)1/r
‖ϕ‖

W 1,p
0 (Ω;ΓD)

. (2.2)

Thus, it is easy to show by continuity that the integral identity (1.6) remains valid
for all ϕ ∈W 1,p(Ω; ΓD). Hence, if (u, y) ∈ Ξ then

ˆ
Ω
|∇y|p−2(∇y,∇ϕ) dx =

ˆ
Ω
f(y)ϕdx+

ˆ
ΓN

γ0(ϕ)u dHN−1

+ 〈g, ϕ〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD) (2.3)

holds true for all ϕ ∈W 1,p(Ω; ΓD), where

〈·, ·〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD) : W−1,p′(Ω; ΓD)×W 1,p(Ω; ΓD)→ R

denotes the duality pairing between W−1,p′(Ω; ΓD) and W 1,p(Ω; ΓD), and

γ0 : W 1,p(Ω; ΓD)→W 1/p′,p(ΓN )

stands for the trace operator (see [21, Theorem 8.3]), i.e.

γ0(ϕ) = ϕ|ΓD , ∀ϕ ∈W 1,p(Ω; ΓD) ∩ C(Ω).

We note that the duality pairing 〈g, ϕ〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD) is well de�ned

for each ϕ ∈ W 1,p(Ω; ΓD) provided g ∈ Lq(Ω) with q ≥ pN
pN−N+p . Indeed, by

Sobolev embedding theorem, the space W 1,p(Ω; ΓD) is continuously embedded in
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Lp
∗
(Ω) with p∗ = pN

N−p . Hence, by duality arguments,
(
Lp
∗
(Ω)
)∗

is continuously

embedded in W−1,p′(Ω; ΓD). So, if we de�ne

p∗ = (p∗)′ =
pN

pN −N + p
, (2.4)

then we have Lq(Ω) ⊂ Lp∗(Ω) ⊂W−1,p′(Ω; ΓD), ∀ q ≥ pN
pN−N+p . Hence,∣∣∣ 〈g, ϕ〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD)

∣∣∣ ≤ ‖g‖W−1,p′ (Ω;ΓD)‖ϕ‖W 1,p(Ω;ΓD)

≤ Cem‖g‖Lq(Ω)‖ϕ‖W 1,p(Ω;ΓD), ∀ϕ ∈W 1,p(Ω; ΓD). (2.5)

We also note that, in view of the compactness of the injection W 1/p′,p(ΓN ) ↪→
Lp(ΓN ) and continuity of the trace operator γ0 : W 1,p(Ω; ΓD)→W 1/p′,p(ΓN ),

‖γ0(ϕ)‖Lp(ΓN ) ≤ Cγ0‖ϕ‖W 1,p(Ω;ΓD), ∀ϕ ∈W 1,p(Ω; ΓD), (2.6)

we have ∣∣∣∣ˆ
ΓN

uγ0(ϕ) dHN−1

∣∣∣∣ ≤ ‖u‖Lp′ (ΓN )‖ϕ‖Lp(ΓN )

≤ Cγ0‖u‖Lp′ (ΓN )‖ϕ‖W 1,p
0 (Ω;ΓD)

< +∞. (2.7)

Taking into account these observations, we immediately arrive at the following
conclusion.

Lemma 2.1. Let (u, y) ∈ Lp′(ΓN )×W 1,p
0 (Ω; ΓD) be an arbitrary feasible solution

to the problem (1.2)�(1.5) in the sense of De�nition 1.1. Then this pair is related

by the energy equality

ˆ
Ω
|∇y|p dx =

ˆ
Ω
y f(y) dx+

ˆ
Ω
γ0(y)u dHN−1

+ 〈g, y〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD) . (2.8)

It is worth to emphasize that energy equality (2.8) makes sense if only the pair
(u, y) is feasible and it is unknown whether we can guarantee the ful�lment of this
relation for an arbitrary weak solution (u, y(u)) to BVP (1.3)�(1.4). Nevertheless,
taking into account the inequalities (2.2), (2.5), and (2.7), we can deduce from
(2.8) the following result.

Theorem 2.1. For �xed p ≥ 2, r ≥ p′, and q ≥ pN
pN−N+p , let u ∈ L

p′(ΓN ) and

g ∈ Lq(Ω) be given distributions. Let y = y(u) ∈ W 1,p
0 (Ω; ΓD) be a weak solution

to BVP (1.3)�(1.4) such that (u, y) is a feasible pair to optimal control problem
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(1.2)�(1.5). Then∣∣∣∣ˆ
Ω
y f(y) dx

∣∣∣∣ ≤
(

3p
′−1 (p+ 1)

p− 1

[
|Ω|1−

p′
r

( r
α

) p′
r

+ Cp
′
γ0
p ′

]
+ 2p

′−1Cp
′
γ0

)

×max {1, J(u, y)}+

(
(p+ 1)

p
3p
′−1 +

1

p′
2p
′−1

)
Cp
′
em‖g‖

p′

Lq(Ω),

(2.9)

‖y‖p
W 1,p

0 (Ω;ΓD)
≤ 3p

′−1

[
|Ω|1−

p′
r

( r
α

) p′
r

+ Cp
′
γ0
p ′

]
max {1, J(u, y)}

+ 3p
′−1Cp

′
em‖g‖

p′

Lq(Ω). (2.10)

Proof. Let (u, y) be a given feasible solution. Then relation (2.8) and inequalities
(2.2), (2.5), and (2.7), immediately lead to the following estimate

‖y‖p−1

W 1,p
0 (Ω;ΓD)

≤ ‖f(y)‖Lp′ (Ω) + Cγ0‖u‖Lp′ (ΓN ) + Cem‖g‖Lq(Ω), (2.11)

where ‖f(y)‖Lp′ (Ω) ≤ |Ω|
1
p′−

1
r
(
r
α J(u, y)

)1/r
< +∞ by the feasibility property of

the pair (u, y). Since p−1 = p/p′ and ‖u‖p
′

Lp′ (ΓN )
≤ p′J(u, y), the a priori estimate

(2.10) is a direct consequence of (2.11).

In order to establish the estimate (2.9), we make use of the energy equality
(2.8) and the standard form of Young's inequality. As a result, we obtain∣∣∣∣ˆ

Ω
y f(y) dx

∣∣∣∣ ≤ ‖y‖pW 1,p
0 (Ω;ΓD)

+
(
Cγ0‖u‖Lp′ (ΓN ) + Cem‖g‖Lq(Ω)

)
‖y‖

W 1,p
0 (Ω;ΓD)

≤
(

1 +
1

p

)
‖y‖p

W 1,p
0 (Ω;ΓD)

+
1

p′

(
Cγ0‖u‖Lp′ (ΓN ) + Cem‖g‖Lq(Ω)

)p′
≤ p+ 1

p
‖y‖p

W 1,p
0 (Ω;ΓD)

+ 2p
′−1

[
Cp
′
γ0
J(u, y) +

Cp
′
em

p′
‖g‖p

′

Lq(Ω)

]

≤ (p+ 1)3p
′−1

p

[
|Ω|1−

p′
r

( r
α

) p′
r

+ Cp
′
γ0
p ′

]
max {1, J(u, y)}

+
(p+ 1)3p

′−1

p
Cp
′
em‖g‖

p′

Lq(Ω) + 2p
′−1

[
Cp
′
γ0
J(u, y) +

Cp
′
em

p′
‖g‖p

′

Lq(Ω)

]
.

After simpli�cation, we arrive at the expected estimate (2.9).

The following Propositions re�ect some interesting properties of feasible so-
lutions. In particular, Proposition 2.1 can be interpreted as some speci�cation
of the well-known Boccardo�Murat Theorem (see L. Boccardo and F. Murat [1,
Theorem 2.1]).
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Proposition 2.1. Assume that q ≥ p′ = p/(p− 1). Let

{(uk, gk, yk)}k∈N ⊂ L
p′(ΓN )× Lq(Ω)×W 1,p

0 (Ω; ΓD)

be a sequence such that

f(yk) ∈ Lp
′
(Ω) for all k ∈ N, (2.12)

uk ⇀ u weakly in Lp
′
(ΓN ), (2.13)

gk ⇀ g weakly in Lq(Ω), (2.14)

yk → y weakly in W 1,p
0 (Ω; ΓD) and a.e. in Ω, (2.15)

f(yk)→ f(y) strongly in L1(Ω), (2.16)

−div
(
|∇yk|p−2∇yk

)
= f(yk) + gk in

(
C∞0 (RN ; ΓD)

)∗
, ∀ k ∈ N, (2.17)

γ0(yk) = 0 and |γ1(yk)|p−2γ1(yk) = uk, ∀ k ∈ N, (2.18)

where γ1(y) = ∂y
∂ν

∣∣∣
ΓN

for all y ∈ C1(Ω) ∩W 1,p
0 (Ω; ΓD). Then

∇yk → ∇y strongly in Lr(Ω)N for any 1 ≤ r < p. (2.19)

Proof. As follows from (2.17)�(2.18), the functions yk are the weak solutions to the
boundary value problem (1.3)�(1.4) for the corresponding controls uk ∈ Lp

′
(ΓN ).

For every ε > 0, let Tε : R→ R be the truncation operator de�ned by

Tε(s) = max
{

min
{
s, ε−1

}
,−ε−1

}
. (2.20)

Since Tε−1 (yk − y) ∈W 1,p
0 (Ω; ΓD), it follows from (2.12) that

ϕ = Tε−1 (yk − y) ∈W 1,p
0 (Ω; ΓD)

can be used as the test function in integral identity (2.3). Hence, for every k ∈ N,
we have the relation
ˆ

Ω

(
|∇yk|p−2∇yk − |∇y|p−2∇y,∇Tε−1 (yk − y)

)
dx =

ˆ
Ω
f(yk)Tε−1 (yk − y) dx

+

ˆ
ΓN

ukγ0(Tε−1 (yk − y)) dHN−1 + 〈gk, Tε−1 (yk − y)〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD)

−
ˆ

Ω

(
|∇y|p−2∇y,∇Tε−1 (yk − y)

)
dx = J1 + J2 + J3 − J4. (2.21)

Taking into account the fact that p′ > pN
pN−N+p and q ≥ p′, we can deduce

compactness of the embedding Lq(Ω) ↪→ W−1,p′(Ω; ΓD). Then (2.14) and (2.15)
imply that

gk → g strongly in W−1,p′(Ω; ΓD),

Tε−1 (yk − y)→ 0 weakly in W 1,p
0 (Ω; ΓD) and strongly in Lp(Ω).
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Thus, J3 − J4 tends to zero as k → ∞. As for the term J2, we see that, by
Sobolev embedding theorem, the injection W 1/p′,p(ΓN ) ↪→ Lr(ΓN ) is compact
for all 1 ≤ r < pN−1

N−p . Hence, by duality arguments, (Lr(ΓN ))∗ is compactly

embedded in
(
W 1/p′,p(ΓN )

)∗
. So, if we de�ne

r∗ =

(
N − 1

N − p
p

)′
=
N − 1

N
p′

then we have p′ > r∗ and, therefore, the injection L
p′(ΓN ) ↪→

(
W 1/p′,p(ΓN )

)∗
is

compact as well. Thus, due to (2.13)�(2.15), we have

uk → u strongly in
(
W 1/p′,p(ΓN )

)∗
and

γ0(yk) ⇀ γ0(y) weakly in W 1/p′,p(ΓN ).

As a result, we obtain

J2 =

ˆ
ΓN

ukγ0(Tε−1 (yk − y)) dHN−1 → 0 as k →∞.

It remains to note that condition (2.16) leads to the inequality

J1 ≤ C‖Tε−1 (yk − y) ‖L∞(Ω), ∀ k ∈ N.

Hence, mollifying Tε (yk − y) and the poinwise convergence yk(x) → y(x) a.e. in
Ω imply that

|J1| ≤ C‖Tε−1 (yk − y) ‖L∞(Ω) ≤ C1ε, ∀ k ∈ N. (2.22)

Combining all issues given above, we can �nally deduce that, for a �xed ε > 0,

lim sup
k→∞

ˆ
Ω

(
|∇yk|p−2∇yk − |∇y|p−2∇y,∇Tε−1 (yk − y)

)
dx ≤ C1ε. (2.23)

Let us de�ne now the following functions

dk(x) =
(
|∇yk|p−2∇yk − |∇y|p−2∇y,∇yk −∇y

)
, k ∈ N

and �x θ with 0 < θ < 1. In view of the initial assumptions, it is clear that
{dk}k∈N is a bounded sequence in L1(Ω) and(

|∇yk|p−2∇yk − |∇y|p−2∇y,∇yk −∇y
)
≥ 22−p|∇yk −∇y|p (2.24)

by the strict monotonicity property of the p-Laplace operator. Splitting the set Ω
into

Skε = {x ∈ Ω : |yk(x)− y(x)| ≤ ε} , Gkε = {x ∈ Ω : |yk(x)− y(x)| > ε}
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and using H�older inequality, we get

ˆ
Ω
dθk dx =

ˆ
Skε

dθk dx+

ˆ
Gkε

dθk dx

≤

(ˆ
Skε

dk dx

)θ
|Skε |1−θ +

(ˆ
Gkε

dk dx

)θ
|Gkε |1−θ

≤
(ˆ

Ω

(
|∇yk|p−2∇yk − |∇y|p−2∇y,∇Tε−1 (yk − y)

)
dx

)θ
|Skε |1−θ

+

(ˆ
Ω
dk dx

)θ
|Gkε |1−θ. (2.25)

Since, for a �xed ε, |Gkε | tends to zero as k → ∞, it follows from (2.23), (2.24),
and (2.25) that

lim sup
k→∞

ˆ
Ω

(|∇yk −∇y|p)θ dx ≤ 2θ(p−2) lim sup
k→∞

ˆ
Ω
dθk dx ≤ 2θ(p−2) (C1ε)

θ |Ω|1−θ.

Letting ε tend to 0 and θ tend to 1 this implies that |∇yk −∇y|p tends strongly
to 0 in L1(Ω) and thus, there exists a subsequence {kn}n∈N such that

∇ykn(x)→ ∇y(x) a.e. in Ω as kn →∞. (2.26)

Since {∇ykn}n∈N is a bounded sequence in Lp(Ω)N , it follows from Vitali's theorem
that

∇ykn → ∇y strongly in Lr(Ω)N for any 1 ≤ r < p. (2.27)

It remains to note that, in fact, we have the convergence in (2.27) for the whole
sequence {∇yk}k∈N because the limit ∇y in (2.27) is independent of the subse-
quence {kn}n∈N.

Proposition 2.2. Assume that q ≥ p′ and r ≥ p′. Let {(uk, yk)}k∈N ⊂ Ξ be a
sequence of feasible solutions such that

sup
k∈N

J(uk, yk) < +∞, (2.28)

(uk, yk) ⇀ (u, y) weakly in Lp
′
(ΓN )×W 1,p

0 (Ω; ΓD) as k →∞. (2.29)

Then (u, y) ∈ Ξ and

f(yk)→ f(y) strongly in L1(Ω) and weakly in Lr(Ω) as k →∞. (2.30)

Proof. By the Sobolev Embedding Theorem, the injection W 1,p
0 (Ω; ΓD) ↪→ Lp(Ω)

is compact. Hence, the weak convergence yk ⇀ y in W 1,p
0 (Ω; ΓD) implies the

strong convergence in Lp(Ω). Therefore, up to a subsequence, we can suppose that
yk(x) → y(x) for almost every point x ∈ Ω. As a result, we have the pointwise
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convergence: f(yk) → f(y) almost everywhere in Ω. Let us show that this fact
implies the strong convergence (2.30).

With that in mind we recall that a sequence {fk}k∈N is called equi-integrable
on Ω if for any δ > 0, there is a τ = τ(δ) such that

´
S |fk| dx < δ for every

measurable subset S ⊂ Ω of Lebesgue measure |S| < τ . Let us show that the
sequence {f(yk)}k∈N is equi-integrable on Ω. To do so, we take m > 0 such that

m > 2Lδ−1, (2.31)

where

L :=

(
3p
′−1 (p+ 1)

p− 1

[
|Ω|1−

p′
r

( r
α

) p′
r

+ Cp
′
γ0
p ′

]
+ 2p

′−1Cp
′
γ0

)

×max

{
1, sup
k∈N

J(uk, yk)

}
+

(
(p+ 1)

p
3p
′−1 +

1

p′
2p
′−1

)
Cp
′
em‖g‖

p′

Lq(Ω).

We also set τ = δ/(2f(m)). Then for every measurable set S ⊂ Ω with |S| < τ ,
we haveˆ

S
f(yk) dx =

ˆ
{x∈S : yk(x)>m}

f(yk) dx+

ˆ
{x∈S : yk(x)≤m}

f(yk) dx

≤ 1

m

ˆ
{x∈S : yk(x)>m}

ykf(yk) dx+

ˆ
{x∈S : yk(x)≤m}

f(m) dx

by (2.9)

≤ L

m
+ f(m)|S|

by (2.31)

≤ δ

2
+
δ

2
.

As a result, the assertion (2.30) is a direct consequence of Lebesgue's Convergence
Theorem.

Let us show now that the limit pair (u, y) is a feasible pair to optimal control
problem (1.2)�(1.5). Indeed, in view of the initial assumptions and property (2.30),
the limit passage in the right-hand side of the equality

ˆ
Ω
|∇yk|p−2 (∇yk,∇ϕ) dx =

ˆ
Ω
f(yk)ϕdx+

ˆ
ΓN

ukϕdHN−1

+

ˆ
Ω
gϕ dx, ∀ϕ ∈ C∞0 (RN ; ΓD) (2.32)

becomes trivial. Taking into account Proposition 2.1, we have, up to a subsequence,
the pointwise convergence (2.26). Since the sequence

{
|∇yk|p−2∇yk

}
k∈N is bounded

in Lp
′
(Ω)N , it follows from (2.26) that

|∇ykn |p−2∇ykn → |∇y|p−2∇y almost everywhere in Ω,

|∇ykn |p−2∇ykn ⇀ |∇y|p−2∇y weakly in Lp
′
(Ω)N .

This allows us to pass to the limit as kn →∞ in the left hand side of the equality
(2.32). Thus, y is a weak solution to BVP (1.3)�(1.4) for the given u ∈ Lp′(ΓN ).
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Since the set Aad is convex and closed in Lp
′
(ΓN ), it follows that this set is

sequentially weakly closed in Lp
′
(ΓN ) by the Mazur theorem. Therefore, the weak

convergence (2.29) implies that u ∈ Aad.

It remains to prove that the limit pair (u, y) satis�es the condition J(u, y) <
+∞. With that in mind we take into account the lower semi-continuity of the norm
in Lp

′
(ΓN )×L2(Ω) with respect to the weak convergence in Lp

′
(ΓN )×W 1,p

0 (Ω; ΓD)
and property (2.30). This yields

lim
k→∞

ˆ
Ω
|yk − yd|2 dx

by (2.29)
=

ˆ
Ω
|y − yd|2 dx, (2.33)

lim inf
k→∞

ˆ
Ω
|uk|p

′
dHN−1

by (2.29)

≥
ˆ

Ω
|u|p′ dHN−1. (2.34)

In view of condition (2.28), we have

sup
k∈N
‖f(yk)‖Lr(Ω) < +∞.

Utilizing this fact together with the pointwise convergence

f(yk)→ f(y) a.e. in Ω

that is a consequence of the property (2.30), we get f(yk) ⇀ f(y) in Lr(Ω). Hence,

lim inf
k→∞

ˆ
Ω
|f(yk)|r dx ≥

ˆ
Ω
|f(y)|r dx. (2.35)

As a result, we deduce from (2.33), (2.34), and (2.35) that

J(u, y) ≤ lim inf
k→∞

J(uk, yk) < sup
k∈N

J(uk, yk) < +∞.

Thus, (u, y) is a feasible solution to the problem (1.2)�(1.5) in the sense of
De�nition 1.1. The proof is complete.

Now it is easy to show that, in contrast to the BVP (1.3)�(1.4), the corresponding
optimal control problem (1.2)�(1.5) is well-posed and consistent.

Theorem 2.2. Let p ≥ 2, r ≥ p′, and q ≥ p′ be given exponents. Assume that for

a given distribution g ∈ Lq(Ω) Hypothesis A is ful�lled. Then, for any yd ∈ L2(Ω),
optimal control problem (1.2)�(1.5) has at least one solution.

Proof. Since J(u, y) ≥ 0 for all (u, y) ∈ Ξ, it follows that there exists a non-
negative value µ ≥ 0 such that µ = inf(u,y)∈Ξ J(u, y). Let {(uk, yk)}k∈N be a
minimizing sequence to the problem (1.2)�(1.5), i.e.

(uk, yk) ∈ Ξ ∀ k ∈ N and lim
k→∞

J(uk, yk) = µ.
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So, we can suppose that

J(uk, yk) ≤ µ+ 1 for all k ∈ N. (2.36)

Then taking into account the implicit form of the cost functional (1.2), Theorem 2.1,
and the fact that q ≥ p′ > pN

pN−N+p , we deduce the following estimates

sup
k∈N
‖yk‖pW 1,p

0 (Ω;ΓD)
≤ 3p

′−1

[
|Ω|1−

p′
r

( r
α

) p′
r

+ Cp
′
γ0
p ′

]
max

{
1, sup
k∈N

J(uk, yk)

}
+ 3p

′−1Cp
′
em‖g‖

p′

Lq(Ω)

by (2.36)

≤ 3p
′−1Cp

′
em‖g‖

p′

Lq(Ω)

+ 3p
′−1

[
|Ω|1−

p′
r

( r
α

) p′
r

+ Cp
′
γ0
p ′

]
(µ+ 1), (2.37)

‖uk‖p
′

Lp′ (ΓN )
≤ p′ sup

k∈N
J(uk, yk) ≤ p′(µ+ 1), (2.38)

‖f(yk)‖rLr(Ω) ≤
r

α
sup
k∈N

J(uk, yk) ≤
r

α
(µ+ 1). (2.39)

Thus, without loss of generality, we can suppose that there exists a subsequence
of the minimizing sequence {(uk, yk)}k∈N (still denoted by the same index) and a

pair (u0, y0) ∈ Lp′(ΓN )×W 1,p
0 (Ω; ΓD) such that

(uk, yk) ⇀ (u0, y0) weakly in Lp
′
(ΓN )×W 1,p

0 (Ω; ΓD) as k →∞, (2.40)

yk(x) ⇀ y0(x) a.e. in Ω. (2.41)

Utilizing properties (2.36), (2.40), and (2.41), we deduce from Proposition 2.2
that (u0, y0) ∈ Ξ. To conclude the proof, it remains to take into account the
lower semi-continuity of the cost functional J : Lp

′
(ΓN )×W 1,p

0 (Ω; ΓD)→ R with

respect to the weak convergence in Lp
′
(ΓN ) ×W 1,p

0 (Ω; ΓD) and property (2.30).
This yields

µ = inf
(u,y)∈Ξ

J(u, y) = lim
k→∞

J(uk, yk) ≥ J(u0, y0).

Thus, (u0, y0) ∈ Ξ is an optimal pair to the problem (1.2)�(1.5).

3. On bounded feasible solutions

Before proceeding with the proof of the main result of this paper, we begin
with some preliminaries.

Lemma 3.1. Let 1 ≤ p < N and let s∗ = (N−1)p
N−p . Then the following norms

‖y‖
W 1,p

0 (Ω;ΓD)
:=

(ˆ
Ω
|∇y|p dx

)1/p

,

‖y‖∗ :=

(ˆ
Ω
|∇y|p dx

)1/p

+

(ˆ
ΓN

|γ0(y)|s∗ dHN−1

)1/s∗
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are equivalent for W 1,p
0 (Ω; ΓD).

Proof. Since the inequality ‖y‖
W 1,p

0 (Ω;ΓD)
≤ ‖y‖∗ is obvious, we focus on the

reverse one. With that in mind we remind that by continuity of the trace operator
γ0 : W 1,p(Ω; ΓD)→W 1/p′,p(ΓN ), we have

‖γ0(y)‖W 1/p′,p(ΓN ) ≤ Cγ0‖y‖W 1,p(Ω;ΓD), ∀ y ∈W 1,p(Ω; ΓD).

Since, for p < N , the Sobolev space W 1/p′,p(ΓN ) is continuously embedded in
Ls(ΓN ) for all s ∈ [1, s∗], it follows existence of a constant Cs > 0 such that

‖γ0(y)‖Ls∗ (ΓN ) ≤ Cs‖γ0(y)‖W 1/p′,p(ΓN ) ≤ CsCγ0‖y‖W 1,p(Ω;ΓD), (3.1)

for all y ∈W 1,p(Ω; ΓD). Hence,

1

1 + CsCγ0

(
‖γ0(y)‖Ls∗ (ΓN ) + ‖y‖

W 1,p
0 (Ω;ΓD)

)
≤ ‖y‖

W 1,p
0 (Ω;ΓD)

.

Thus, the indicated norms are equivalent onW 1,p
0 (Ω; ΓD). For our further analysis,

we make use of another representation for the last estimate. As immediately
follows from (3.1), we have

ˆ
Ω
|∇y|p dx ≥ 1

2

[
1

CpsC
p
γ0

‖γ0(y)‖p
Ls∗ (ΓN )

+

ˆ
Ω
|∇y|p dx

]
. (3.2)

The next result re�exes some special properties of composition ofW 1,p
0 (Ω; ΓD)-

functions with regular functions and is a direct consequence of the well-know
Stampacchia Lemma.

Lemma 3.2 ( [20]). Let G : R→ R be a Lipschitz continuous function such that

G(0) = 0. Then for every function y ∈W 1,p
0 (Ω; ΓD) we have:

(i) G(y) ∈W 1,p
0 (Ω; ΓD);

(ii) ∇G(y) = G′(y)∇y almost everywhere in Ω.

We note that at the �rst glance the equality in (ii) is not valid because a
Lipschitz continuous function G : R→ R is only almost everywhere di�erentiable,
so that the right-hand side in (ii) may not be de�ned. On the other hand, we have
two possible cases: if k ∈ R is a value such that G′(k) does not exist, then either
the set {x ∈ Ω : y(x) = k} has zero measure or the set {x ∈ Ω : y(x) = k} has
positive measure. In the �rst case, since the identity ∇G(y) = G′(y)∇y only
holds almost everywhere, this value does not give any problems. In this latter
case, however, we have both ∇y = 0 and ∇G(y) = 0 almost everywhere, so that
the identity ∇G(y) = G′(y)∇y still holds.
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In what follows, we will use the composition of functions of Sobolev space
W 1,p

0 (Ω; ΓD) with the following Lipschitz continuous function

Gk(z) = z − Tk−1(z) = (|z| − k|)+ sign (z), (3.3)

where k > 0 is a given value. Here, Tk−1(z) stands for the truncation operator (see
(2.20)). Then Lemma 3.2 implies the following equality forW 1,p

0 (Ω; ΓD)-functions

∇Gk(y) = ∇y χ{x∈Ω : |y(x)|≥k} almost everywhere in Ω, (3.4)

where χA denotes the characteristic function of the set A (for the details we refer
to L. Orsina [23]).

The �rst result concerning the boundedness of the weak solutions of Dirichlet
boundary value problem for elliptic equations comes from Stampacchia classical
work [25].

Theorem 3.1. Let y ∈W 1,p
0 (Ω) be the weak solution of the following BVP

−div
(
|∇y|p−2∇y

)
= g in Ω,

y = 0 on ∂Ω,

where g ∈W−1,q(Ω) and q > N
p−1 . Then y ∈ L

∞(Ω).

The proof of this result essentially based on the following technical lemma.

Lemma 3.3 ( [25]). Let ψ : R+ → R+ be a nonincreasing function such that

ψ(h) ≤ Mψδ(k)

(h− k)γ
, ∀h > k > 0, (3.5)

where M > 0, δ > 1, and γ > 0. Then ψ(d) = 0, where

dγ = Mψδ−1(0)2
δγ
δ−1 .

For the reader's convenience, we cite the proof of this lemma.

Proof. We de�ne the numerical sequence {dk}k∈N as follows dk = d(1 − 2−k) for
each k ∈ N. Let us show that

ψ(dk) ≤ ψ(0)2−
kγ
δ−1 , (3.6)

where ψ possesses the property (3.5). Indeed, inequality (3.6) is clearly true if
k = 0. If we suppose, by the induction, that it is true for some k, then (3.5)
implies

ψ(dk+1) ≤ Mψδ(dk)

(dk+1 − dk)γ
≤Mψδ(0)2−

kγδ
δ−1 2(k+1)γd−γ = ψ(0)2−

(k+1)γ
δ−1 .

Since (3.6) holds for every k, and since ψ is a non-increasing function, it follows
that

0 ≤ ψ(d) ≤ lim inf
k→∞

ψ(dk) ≤ lim
k→∞

ψ(0)2−
kγ
δ−1 = 0.

The proof is complete.
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We are now in a position to prove the main result of our paper that has been
announced in Theorem 1.1.

Proof. Let k > 0 and let (u, y) ∈ Ξ be a feasible solution to the original optimal
control problem. We de�ne the set Ωk as the bigest closed subset of Ω such that

Ωk ⊆ {x ∈ Ω : |∇y| ≤ k} .

Hereinafter, we suppose that the parameter k varies within a strictly increasing
sequence of positive real numbers tending to ∞ and such that

Ak := Ω \ Ωk (3.7)

is an open set with Lipschitz boundary for each k and {Ak}k>0 form a strictly
monotone by inclusion (i.e. Ah ⊂ Ak for h > k) sequence such that limk→∞ |Ak| =
0. We also set

ΓN,k := {σ ∈ ΓN : |γ0(y)(σ)| ≥ k} . (3.8)

By de�nition of the trace operator γ0 : W 1,p(Ω; ΓD) → W 1/p′,p(ΓN ), we can
suppose that ΓN,k ⊂ ∂Ak for each k ∈ N within a subset of ΓN,k with zero
Hausdor� surface (N − 1)-dimensional measure.

Since the integral identity (2.3) is valid for each function ϕ ∈W 1,p(Ω; ΓD), we
chose ϕ = Gk(y) as the test function in (2.3). Here, Gk(z) is de�ned in (3.3). Then
Gk(y) = Gk(y)χAk a.e. in Ω, and, by Lemma 3.2, ∇Gk(y) = ∇yχAk for almost
all x ∈ Ω. Moreover, the inclusion ΓN,k ⊂ ∂Ak implies the following relations

γ0(Gk(y)) = Gk(γ0(y)) and Gk(γ0(y)) = Gk(γ0(y))χΓN,k a.e. on ΓN .

Using the fact that g ∈ Lq(Ω) and q > p′ (see (1.8)), we deduce from (2.3) that

〈g,Gk(y)〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD) =

ˆ
Ω
gGk(y) dx

and, therefore,

ˆ
Ak

|∇Gk(y)|p dx =

ˆ
Ω
|∇y|p−2(∇y,∇y)χAk dx =

ˆ
Ω
f(y)Gk(y) dx

+

ˆ
ΓN

γ0(Gk(y))u dHN−1 + 〈g,Gk(y)〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD)

=

ˆ
Ak

f(y)Gk(y) dx+

ˆ
ΓN,k

γ0(Gk(y))u dHN−1 +

ˆ
Ak

gGk(y) dx

= I1 + I2 + I3. (3.9)

In order to estimate the terms Ii, we make use of the H�older inequality and the
following facts: W 1,p

0 (Ω; ΓD) ↪→ Lp
∗
(Ω) and W 1/p′,p(ΓN ) ↪→ Ls

∗
(ΓN ) with con-

tinuous embedding for p∗ = Np
N−p and s∗ = (N−1)p

N−p , respectively. As a result, we
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have

I1 ≤
(ˆ

Ak

|f(y)|p∗ dx
) 1
p∗
(ˆ

Ak

|Gk(y)|p∗ dx
) 1
p∗

(3.10)

I2 ≤

(ˆ
ΓN,k

|u|s∗ dx

) 1
s∗
(ˆ

ΓN,k

|γ0(Gk(y))|s∗ dx

) 1
s∗

, (3.11)

I3 ≤
(ˆ

Ak

|g|p∗ dx
) 1
p∗
(ˆ

Ak

|Gk(y)|p∗ dx
) 1
p∗

, (3.12)

where s∗ = (s∗)′ = p
p−1

N−1
N and p∗ is de�ned by (2.4).

To estimate the left-hand side of (3.9), we make use of the well-known Sobolev
inequality. Namely, in view of the Sobolev embedding theorem there exists a
constant Sp (depending only on N and p) such that

‖Gk(y)‖Lp∗ (Ak) ≤ Sp
(ˆ

Ak

|∇Gk(y)|p dx
) 1
p

provided 1 ≤ p < N. (3.13)

Then utilizing (3.13), Lemma 3.1 (see (3.2)), and our assumptions with respect
to the set Ak and its boundary, we obtain
ˆ
Ak

|∇Gk(y)|p dx ≥ 1

2

[
1

CpsC
p
γ0

‖γ0(Gk(y))‖p
Ls∗ (ΓN,k)

+

ˆ
Ak

|∇Gk(y)|p dx
]

≥ 1

2

[
1

CpsC
p
γ0

‖γ0(Gk(y))‖p
Ls∗ (ΓN,k)

+
1

Spp
‖Gk(y)‖p

Lp∗ (Ak)

]
≥ 1

2p
min

{
1

CpsC
p
γ0

,
1

Spp

}[
‖γ0(Gk(y))‖Ls∗ (ΓN,k) + ‖Gk(y)‖Lp∗ (Ak)

]p
= Ĉ

[
‖γ0(Gk(y))‖Ls∗ (ΓN,k) + ‖Gk(y)‖Lp∗ (Ak)

]p
. (3.14)

Combining this issue with estimates (3.10)�(3.12), we see from (3.9) that

Ĉ
[
‖γ0(Gk(y))‖Ls∗ (ΓN,k) + ‖Gk(y)‖Lp∗ (Ak)

]p−1

≤ ‖f(y)‖Lp∗ (Ak) + ‖g‖Lp∗ (Ak) + ‖u‖Ls∗ (ΓN,k). (3.15)

We now take h > k so that

Ah ⊆ Ak and Gk(y) ≥ h− k on Ah,

ΓN,h ⊆ ΓN,k and γ0(Gk(y)) ≥ h− k on ΓN,h.

Then we have

‖Gk(y)‖Lp∗ (Ak) =

(ˆ
Ak

|Gk(y)|p∗ dx
)1/p∗

≥
(ˆ

Ah

|Gk(y)|p∗ dx
)1/p∗

≥ (h− k)|Ah|1/p
∗
, (3.16)
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‖γ0(Gk(y))‖Ls∗ (ΓN,k) =

(ˆ
ΓN,k

|Gk(y)|s∗ dHN−1

)1/s∗

≥

(ˆ
ΓN,h

|Gk(y)|s∗ dHN−1

)1/s∗

≥ (h− k)|ΓN,h|1/s
∗
. (3.17)

Since
1

s∗
=

N − p
(N − 1)p

=
N

N − 1

1

p∗
,

it follows that

Ĉ
[
‖γ0(Gk(y))‖Ls∗ (ΓN,k) + ‖Gk(y)‖Lp∗ (Ak)

]p−1

by (3.16)�(3.17)

≥ Ĉ(h− k)p−1
[
|Ah|1/p

∗
+ |ΓN,h|

N
N−1

1
p∗
]p−1

≥ Ĉ(h− k)p−1 [ψ(h)]
p−1
p∗ , (3.18)

where
ψ(h) := |Ah|+ |ΓN,h|

N
N−1 . (3.19)

For our further analysis, we make use of the following observations. Since, by the
initial assumptions, we have

p′ ≥ p∗ =
Np

Np−N + p
and q, r ≥ p′, (3.20)

it follows by the H�older inequality that

‖g‖Lp∗ (Ak) =

(ˆ
Ak

|g|p∗ dx
)1/p∗

≤ ‖g‖Lq(Ω)|Ak|
1
p∗

q−p∗
q , (3.21)

‖f(y)‖Lp∗ (Ak) =

(ˆ
Ak

|f(y)|p∗ dx
)1/p∗

≤ ‖f(y)‖Lr(Ω)|Ak|
1
p∗

r−p∗
r . (3.22)

As for the term ‖u‖Ls∗ (ΓN,k) in (3.15), following the similar arguments and

taking into account the inclusion u ∈ Lt(ΓN ) for t satisfying condition (1.9), we
get

‖u‖Ls∗ (ΓN,k) =

(ˆ
ΓN,k

|u|s∗ dx

) 1
s∗

≤ |ΓN,k|
t−s∗
ts∗ ‖u‖Lt(ΓN ). (3.23)

Since p∗/(p− 1) > 1, it follows from (3.15), (3.18), and (3.21)�(3.23) that

(h− k)p
∗
ψ(h) ≤

[
Ĉ−1

(
‖f(y)‖Lr(Ω) + ‖g‖Lq(Ω) + ‖u‖Lt(ΓN )

)] p∗
p−1︸ ︷︷ ︸

D

× 3
p∗−p+1
p−1

[
|Ak|

1
p∗ (1− p∗

r ) p∗
p−1 + |Ak|

1
p∗

(
1− p∗

q

)
p∗
p−1 + |ΓN,k|

1
s∗ (1− s∗

t ) p∗
p−1

]
. (3.24)
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We also see that

p∗ (r − p∗) p∗r(p− 1) =
Np
[
r(Np−N + p−Np+ p2 +N − p)−Np

]
(N − p)(Np−N + p)

=
Np

(N − p)(Np−N + p)

[
p2r −Np

] by (1.8)
> 0.

Hence,

δ1 :=
1

p∗

(
1− p∗

r

) p∗

p− 1
> 1. (3.25)

By analogy it can be shown that

δ2 :=
1

p∗

(
1− p∗

q

)
p∗

p− 1
> 1 provided inequality (1.8)1 holds true. (3.26)

As for the third exponent in (3.24), we see that

1

s∗

(
1− s∗

t

) p∗

p− 1
=

N

N − 1
δ3,

where

δ3 =
N − 1

N

1

s∗

(
1− s∗

t

) p∗

p− 1
=

[(N − 1)p−N + p] t− (N − 1)p

(N − p)(p− 1)t
> 1 (3.27)

provided the parameter t satis�es inequality (1.9).
Since |ΓN,k| < 1 and |Ak| < 1 for k large enough, it follows from (3.24) that

ψ(h) ≤ 3
p∗−p+1
p−1

D

(h− k)p∗

[
2
(
|Ak|+ |ΓN,k|

N
N−1

)]min{δ1;δ2;δ3}

=
Mψδ(k)

(h− k)p∗
, (3.28)

where

δ = min {δ1; δ2; δ3}
by (3.25)�(3.27)

> 1,

M = 3
p∗−p+1
p−1 2δ

[
Ĉ−1

(
‖f(y)‖Lr(Ω) + ‖g‖Lq(Ω) + ‖u‖Lt(ΓN )

)] p∗
p−1

.

Therefore, by Lemma 3.3 we �nally deduce that

ψ(d) := |Ad|+ |ΓN,d|
N
N−1 = 0

for

d = M
[
|Ω|+ |ΓN |

N
N−1

]δ−1
2
δp∗
δ−1 .

Thus, for the given feasible pair (u, y) ∈ Ξ, the following inference is valid:
conditions (1.8)�(1.9) imply that y ∈ L∞(Ω) and γ0(y) ∈ L∞(∂Ω). The proof
of Theorem 1.1 is complete.
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As for the proof of Theorem 1.1, its validity immediately follows from Theo-
rem 2.2 and Sobolev embedding theorem saying that the injectionW 1,p

0 (Ω; ΓD) ↪→
C(Ω) is compact if p > N .
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