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-------------------------------------------------------------------ABSTRACT--------------------------------------------------------------- 
Competition among adaptive video streaming players severely diminishes user-QoE. When players compete at a 

bottleneck link many do not obtain adequate resources. This imbalance eventually causes ill effects such as screen 

flickering and video stalling. There have been many attempts in recent years to overcome some of these problems. 

This work focuses on such a situation. It evaluates current stochastic adaptive video players at a bottleneck link 

and when the number of players increases. Experimental setup includes the TAPAS player and emulated network 

conditions. The results show mDASH outperforms x-MDP, sdpDASH and the Conventional players. 
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I.  INTRODUCTION 

The player can be in two different phases: (1) 

Buffering phase: Segments requests are performed back-to-

back to quickly fill the playout buffer, and (2) Steady-state: 

segment requests are spaced to keep the playout buffer 

level constant. This generates an ON-OFF traffic pattern. It 

has been experimentally shown that the ON-OFF traffic 

pattern causes the video flows to obtain a significantly 

smaller bandwidth share with respect to the fair one when 

competing with long-lived TCP flows [9], [23]. The 

downward spiral effect can lead to an even worse 

degradation of the perceived QoE when concurrent long-

lived TCP flows share the bottleneck with the video flow. 
It is very challenging to provide satisfactory quality of 

experience (QoE) during an entire video session [15], [18], 
[16]. When there are one or multiple players working in a 
bandwidth rich environment, adaptive streaming works 
very well. However, in a constrained bandwidth 
environment with two or more players fair sharing of 
bandwidth is not achieved. This is due to highly dynamic 
network conditions which frequently occurs in the real-
world, for example, multiple players sharing a bottleneck 
link. Without an effectual rate adaption algorithm, a DASH 
client may suffer from frequent buffer underruns, 
significant quality switches and other QoE related 
degradation. For example, a buffer underruns can cause 
flickering, freezing, skipping of video which negatively 
affects the user QoE. QoE 
is multi-dimensional and involves the following five 

metrics: 

1. fair share of bandwidth (equal bandwidth 

allocation), 

2. stability (quality switches), 

3. buffer over/under-runs (flickering, freezing, 

skipping), 

4. bandwidth utilization (unused bandwidth), 

5. quality (low versus high) 

Adaptive video streaming in multi-player scenarios 

sharing bottleneck links poses many user-perceived Quality 

of Experience (QoE) challenges. Existing solutions still do 

not adequately address fair sharing of QoE metrics and this 

work seeks to find better solutions to the research gaps. 

However, achieving all of these goals simultaneously is 

intractable and often involves trade-offs between the QoE 

metrics. Bandwidth-based approaches for adaptive 

streaming use estimated bandwidth as input to the adaptive 

streaming algorithm. Buffer-based approaches for adaptive 

streaming use buffer levels as input to the adaptive 

streaming algorithm (see Figure 1). Hybrid-based 

approaches for adaptive streaming combines both features 

of both bandwidth- and buffer-based approaches. The 

solution presented in this paper is a bandwidth-based 

approach. 

 
Figure 1: Adaptive streaming approaches. 

In adaptive video streaming a Markov Decision Process 

(MDP) [19] is used to optimize future decisions based on 

recent history (see Figure 2). A player that has past 

streaming data can calculate an optimal policy using valid 

states and actions that move the player between states. This 

policy would indicate the optimal quality to request from 

the server for the duration of the streaming session (see 

Figure 3). However, in present MDP solutions the policy is 

global and is used by all players [28], [4], [12]. This may 

result in viewers receiving sub-optimal QoE characteristics. 

This paper explores current state-of-the-art MDP adaptive 

video streaming players. 
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Figure 2: The MPEG-DASH Media Presentation 
Description 

 
Figure 3: MDP policy determines next segment selection. 

 The rest of paper is organized as follows. Section 2 

explores different adaptive streaming approaches 

including x-MDP, mDASH, sdpDASH, Conventional 

players. In Section 3, we look at the experimental setup of 

the emulations illustrated in this paper. In section 4 we 

give the results. Finally, we give our conclusion in section 

5. 

II. LITERATURE REVIEW 

During streaming an adaptive video player selects 

chunks or segments of different quality (see Figure 4). 

There is a growing body of literature on utilizing Markov 

Decision Processes (MDP: see Figure 5) to optimize 

adaptive video streaming [17], [14]. We now outline 

different MDPs for video streaming. Research shows 

bandwidth varies severely in different locations [11] and 

[27]. Thus, they model the adaptive streaming quality 

selection problem as an MDP problem to cope with 

varying network conditions [13]. However, to guarantee 

performance, application of the strategy must be in same 

network environment. Researchers in [20] model the 

power consumption problem of video decoding as an 

MDP to optimize rate adaption, where network uncertainty 

is high, [24] and [25] model bandwidth as a Markov chain, 

with its own bandwidth states. The MDP model in [24]  

aims to find an optimal streaming strategy in terms of 

user-perceived QoE, such as (1) playback interruption, (2) 

average playback quality and (3) playback smoothness. 

The model obtains an optimal MDP solution using 

dynamic programming. Researchers in [12], [2], [21], [3] 

and [6] propose stochastic dynamic programming (SDP) 

approaches for rate adaption in DASH players, where 

player buffer occupancy and bandwidth conditions 

determine the system rate. In [22] researchers employ a 

two-state Markov channel model to analyze buffer 

underflow-delay trade-offs for adaptive playout strategies. 

The model with typical parameters reduces the average 

end-to-end delay by 1 to 2 seconds. 

 

Figure 4: The structure of an adaptive HTTP stream. 

Rows make up a single quality level of the entire stream. 

A single box represents a segment of the stream (usually 

somewhere between 2 to 10 seconds). Segments in the 

same column represent exactly the same content, but in 

different encoding bitrates (qualities). The orange colored 

boxes represent the video playout, indicating the streaming 

quality the player selects during the streaming session. 

 

Figure 5: A Markov Decision Process. The agent accesses 

the state of its environment or surroundings. It observes 

the actions and re-wards for transitioning to various states. 

Then, based on the state that the agent is in and the reward 

for that state, the agent selects an appropriate actions. 

 The researchers in [26] show how to efficiently and 

cost-effectively utilize multiple links to improve video 

streaming quality in mobile networks. Their MDP model 

utilizes the following parameters: (1) startup latency, (2) 

playback fluency, (3) average playback quality, (4) 

playback smoothness and (5) wireless service cost. In 

addition, they propose an adaptive, best-action search 

algorithm to obtain a sub-optimal solution. mDASH, [28] 

aims to maximize the quality of user experience, under 
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time-varying channel conditions. Their MDP parameters 

includes: (1) video playback quality, (2) video rate 

switching frequency and amplitude, (3) buffer 

overflow/underflow and (4) buffer occupancy. However, a 

trade-off between the overall video quality and continuous 

playback occurs. Researchers in [8] address the problem of 

streaming packetized media over a lossy packet network. 

Data units in a media presentation generally depend on 

each other according to a directed acyclic graph. However, 

they reduce the problem of rate-distortion optimized 

streaming of an entire presentation to the problem of error-

cost optimized transmission of a single data unit. The 

researchers solve the problem in a variety of scenarios, 

including the important common scenario of sender-driven 

streaming with feedback over a best-effort network. 

The goal of MDP-DASH [4] is to explore different 

methods of reducing decision making overhead, for 

DASH-based adaptive video players. The states depend 

on: (1) quality level of the segment download and (2) time 

available before segment playback deadline (current buffer 

occupancy as a measure in time). The action (decision) is 

the quality level of the next segment download. Higher 

rewards are given for watching a higher quality segment. 

There is a penalty for missing a deadline and switching 

quality from the present segment to the next. For a given 

action (segment size), calculation of state transition 

probabilities depends on the Cumulative Distribution 

Function (CDF) [5] of the network bandwidth. The CDF 

allows calculation of the probability of a given buffer 

occupancy, when the next segment download occurs. The 

buffer occupancy, together with the action (quality level 

decision), defines the next state. Transition probabilities 

will change with different CDF’s. Different CDFs lead to 

different MDP strategies. 

Adapting video data rate during streaming effectively 

reduces the risk of playback interruptions due to channel 

throughput fluctuations. The variations in rate, however, 

also introduce video quality fluctuations. This potentially 

affects viewer QoE. Rate adaptation and admission control 

improves the QoE of video users [7]. A subjective study 

shows viewer QoE is strongly correlates with an empirical 

cumulative distribution function (eCDF) of predicted 

video quality. Consequently, based on this observation, 

researchers propose a rate-adaptation algorithm 

incorporating QoE constraints on the empirical cumulative 

quality distribution per user. Also, a threshold-based 

admission control policy block users, whose empirical 

cumulative quality distribution is not likely to satisfy their 

QoE constraint. Research undertaken in [12] utilizes 

Stochastic Dynamic Programming (SDP) to model their 

MDP in order to aid adaptive video streaming users. 

Researchers use three parameters to compute the state 

transition matrix: (1) buffer level, (2) average channel 

bandwidth and (3) quality. A cost function penalizes 

situations leading to a reduction in QoE. This computation 

is done offline. The control policies map environment 

information to player requests. The main result is higher 

average quality of requests. However, there is an increase 

in the number of quality switches among segments. 

III. EXPERIMENTAL SETUP 

The Controller code was written in python. TAPAS 

[10], an open-source Tool for rApid Prototyping of 

Adaptive Streaming control algorithms. TAPAS is a 

flexible and extensible video streaming client written in 

python that allows researchers to easily design and carry 

out experimental performance evaluations of adaptive 

streaming controllers without needing to write the code to 

download video segments, parse manifest files, and decode 

the video. TAPAS have been designed to minimize the 

CPU and memory footprint so that experiments involving a 

large number of concurrent video flows can be carried out. 

The player logs experimental data results. The TAPAS 

player communicates with the video server in the form of a 

GET request. The Controller has access to a shared table 

which contains INFO data. The INFO packet is small and 

thus imposes very low overhead to the BEGGAR protocol. 

This data is used to calculate Fair share bandwidth and to 

then request or reduce the player’s bitrate request to the 

server. 

A virtual network is setup on the same host machine 

creating a custom emulation framework (see Figure 6). Our 

setup consists of client players, video servers, and a 

bottleneck link. The server resides on a Windows 10 

machine. All experiments are performed on a Windows 10 

client with an Intel(R) Core(TM)i7-5500U CPU 2.40GHz 

processor, 16.00 GB physical memory, and an Intel(R) HD 

Graphics processor. It serves video data to the client(s) who 

are on a Ubuntu operating system hosted on VMware. The 

virtual machine is allocated 12GB of physical memory. 

TAPAS is installed on Ubuntu 15.04 Linux. The TAPAS 

Adaptive Video Controller client makes different video 

segment bitrate level requests to the Apache server. 

TAPAS allow multiple instances of the player to be created 

enabling multi-client scenarios. This work involves the 

interaction between adaptive streaming algorithm at the 

controller and TAPAS players. All traffic between clients 

and servers go through the bottleneck, which uses VMware 

settings which allow bandwidth limits to be set during the 

experiment. TAPAS support both the HTTP Live 

Streaming (HLS) and Dynamic Adaptive Streaming over 

HTTP (DASH) format.  

The ten-minute-long MPEG-DASH video sequence 

“Elephant’s Dream”1
 is encoded at twenty different 

bitrates, between 46 Kbps to 4200Kbps and five different 

resolutions, between 320x240 to 1920x1080, is used to run 

the experiments (cf. Table II). The video is encoded at 24 

frames per second (fps) using the AVC1 codec. Fragment 

duration of 2s is used and is recorded in the mpd playlist 

accordingly. All the DASH files (.m4s fragments and .mpd 

playlists) are placed on the Apache server. We 

implemented three client-side algorithms in the TAPAS 

controller. The conventional approach is present by default 

and is used as a baseline in which to compare against other 

algorithms. TAPAS is lightweight in built, thus allowing 

the same receiving host to run a large number of separate 

video player instances at the same time at different 

command line interfaces. Thus, it allows the multi-client 

scenarios which are essential to the work in this paper.  
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The experiment considers a bottleneck link with two 

total video connections. The available bandwidth is set to b 

= 10Mbps for the two player experiments and b = 35Mbps 

for the increasing players. QoE metrics are described as 

follows: 

 
Figure 6: Network testbed setup. 

i. The unfairness metric (for two players) is the 

average of the absolute bitrate difference between 

the corresponding chunks requested by each 

player (cf. Equation 5, where p1 and p2 are 

player 1 and player 2, respectfully). The bitrate is 

the number of bits required to encode one second 

of playback. 
 𝑈𝑛𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒( ∑ |𝑟𝑖,𝑝1𝑛−1𝑖=0−  𝑟𝑖,𝑝2)|)                (5) 

 
ii. The utilization metric is defined as the aggregate 

throughput during an experiment divided by the 

available bandwidth in that experiment (cf. 

Equation 6, where 𝑡𝑝𝑖  is the throughput at time 𝑖 
and 𝑏𝑤 is the experimental available bandwidth).  

 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛=  ∑ 𝑡𝑝𝑖𝑛−1𝑖=0𝑏𝑤                                                         (6) 

 

 In the experiment (E2) the instability, inefficiency, and 

unfairness (different formulae used for the multi-player 

scenario) metrics, and re-buffering ratios is used to 

compare the performances of the considered algorithms.  
i. Instability: The instability for player 𝑖 at time 𝑡 is 

given in Equation 7, where 𝑤(𝑑)  =  𝑘 – 𝑑 is a 
weight function that puts more weight on more 
recent samples. 𝑘 is selected as 20 seconds. 

 𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦=  ∑ |𝑟𝑖,𝑡−𝑑 − 𝑟𝑖,𝑡−𝑑−1| ∗ 𝑤(𝑑)𝑘−1𝑑=0 ∑ 𝑟𝑖,𝑡−𝑑𝑘−1𝑑=0 ∗ 𝑤(𝑑)                (7) 

 

ii. Inefficiency: The inefficiency at time 𝑡 is given in 

Equation 8. Consider N players sharing a 

bottleneck link with bandwidth, 𝑤, with each 

player 𝑥, playing a bit rate, 𝑏𝑥,𝑡, at time 𝑡. A value 

close to zero implies that the players in aggregate 

are using as high an average bitrate as possible to 

improve user experience. 
 𝐼𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  |∑ 𝑏𝑥,𝑡− 𝑊𝑥 𝑤 |                               (8) 

 

iii. Unfairness: Let 𝐽𝑎𝑖𝑛𝐹𝑎𝑖𝑟𝑡  be the Jain fairness 

index (cf. Equation 10) calculated on the average 

received rates Error! Reference source not 

found., 𝑟𝑖, (cf. Equation 9) at time  𝑡 over all 

players. The unfairness at time t is defined as √1 −  𝐽𝑎𝑖𝑛𝐹𝑎𝑖𝑟𝑡. A lower value implies a fairer 

allocation. 
 𝑟𝑖 =  𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝑏𝑦𝑡𝑒𝑠𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙                                            (9) 

 𝐽𝐹𝐼=   (∑ 𝑟𝑖𝑛𝑖=1 )2𝑛 ∑ 𝑟𝑖2𝑛𝑖=1                                                            (10) 

 
iv. Re-buffering ratio: is the ratio of the time spent in  

re-buffering and the total playtime of the stream 
Equation 11. 

 𝑅𝑒 − 𝑏𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜=  𝑡𝑜𝑡𝑎𝑙 𝑟𝑒 − 𝑏𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛         (11) 
We utilize unfairness, inefficiency and instability in our 

results which is presented in the upcoming section. 

IV. RESULTS 

We first present the level curves which represent the 

incoming bitrates of players, see Figures 7, 8, 9 and 10. We 

observe mDASH with the best level curves among the 

competing two players. X-MDP does the second best with 

sdpDASH the third and the Conventional doing the worst. 

mDASH rate metric which is incorporated into its MDP 

allows future states to be predicted accurately. 

This result is also shown on Figures 11, 12 and 13 is for 

the increasing players’ experiments. mDASH utilizes 

buffer overflow/underflow and buffer occupancy as 

adaptation parameters. This allows players to quick recover 

when network capacity is reduced that is when link 

underutilization happens. 

V. CONCLUSION 

Competition among adaptive video streaming players 

severely diminishes user-QoE. When players compete at a 

bottleneck link many do not obtain adequate resources. 

This imbalance eventually causes ill effects such as screen 

flickering and video stalling. There have been many 

attempts in recent years to overcome some of these 

problems. This work focuses on such a situation. It 

evaluates current stochastic adaptive video players at a 

bottleneck link and when the number of players increases. 

Experimental setup includes the TAPAS player and 

emulated network conditions. The results show mDASH 
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outperforms x-MDP, sdpDASH and the Conventional 

players. 

 

 

Figure 7: mDASH LEVEL CURVE: BANDWIDTH 

VARIATIONS 

 
Figure 8: x-MDP LEVEL CURVE: BANDWIDTH 

VARIATIONS 

 
Figure 9: sdpDASH LEVEL CURVE: BANDWIDTH 

VARIATIONS 

 

 
Figure 10: CONVENTIONAL LEVEL CURVE: 

BANDWIDTH VARIATIONS 

 

 
 

Figure 11: Jain Fairness Index (JFI) for adaptive players. 

 
Figure 12: Instability Index for adaptive players. 
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Figure 13: Inefficiency Index for players. 
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