
Int. J. Advanced Networking and Applications
Volume: 10 Issue: 05 Pages: 3981-3989 (2019) ISSN: 0975-0290

3981

A Survey of Network-based Security Attacks
Koffka Khan

Department of Computing and Information Technology The University of the West Indies, Trinidad and Tobago, W.I
Email: koffka.khan@gmail.com

Wayne Goodridge

Department of Computing and Information Technology The University of the West Indies, Trinidad and Tobago, W.I
Email: wayne.goodridge@sta.uwi.edu.com

--ABSTRACT---
Cross Site Scripting, SQL Injection, Denial of Service (DOS), Buffer Overflow and Password Cracking are current

network-based security attacks that still looms on the Internet. Though these attacks have been around for

decades and there exist protective mechanism for overcoming them they are still relevant today. In this paper we

describe the basic workings of these attacks and outline how companies and individuals can mitigate these attacks.

By taking the necessary precautions the severity of these attacks can be diminished.

Keywords – Cross Site Scripting; SQL Injection; Denial of Service (DOS); Buffer Overflow; Password Cracking;

security attacks; Internet.

-- ---------------------------
Date of Submission: Jan 29, 2019 Date of Acceptance: Mar 01, 2019
-- ---------------------------
I. INTRODUCTION

Network-based security has become ever more important

with the advent and increasing connectivity brought about
by the rapid growth of the Internet. Many devices are now
connected, and this brings about the need for increased
security against intruders [29].
 Many attacks have been around at the start of the
Internet. Though many solutions have been proposed they
are not implemented properly or not at all. This is due to
the cost, time, effort and personnel needed to implement
these solutions. Still today many companies and
individuals lack the awareness of the threats out there.
This means that attacks such as Cross Site Scripting [30],
SQL Injection [20], [8], [36], Denial of Service (DOS)
[53], [51], Buffer Overflow [43] and Password Cracking
[1], [54] are still relevant and viable attacks in the today’s
world.
 This paper aims to outline these attacks and in so doing
increase the awareness to readers. It also gives practical
examples for easy understanding. Finally, some measures
of coping and/or mitigating some of these attacks are
given. It is hoped that the reader will gain interest in
network security attacks by reading this paper and see the
role of security in their own homes and organizations. The
reader should be able to understand the need for protection
against such attacks outlined.

This work consists of four sections. Section II presents a
categorization of network-based attacks. Section III gives
details of the attacks defined in the taxonomy. Finally, the
conclusion is given in Section IV.

II. CATEGORIZATION OF PRESENT-DAY

NETWORK ATTACKS

The network-based security attacks are categorized into
(1) Cross Site Scripting, (2) SQL Injection, (3) Denial of
Service, (4) Buffer Overflow, and (5) Password Cracking.
These categories are shown on Figure 1.

Fig. 1. Current network-based attacks.

III. NETWORK BASED ATTACKS

A. Cross Site Scripting

Cross site scripting (see Figure 2) is the number one
vulnerability on the web today. In the early days of the
internet Tim Berners-Lee at CERN contemplated on how
the web will work. The web use Hypertext Markup
Language (HTML) to format and display webpages [17].
An HTML document consists of tags. It starts with a start
tag like this, <HTML> and closes with an end tag like this
</HTML>. Anything between angle brackets is read as an
instruction. For example, to get bold text place a start
tag and a close tag. The text in the middle of the start
and end tags becomes bold. Thus, the angle brackets,
wherever they are in the document, mean "an instruction is
coming here." However, if you want to put an angle
bracket, which is basically a less-than sign, into your

Int. J. Advanced Networking and Applications
Volume: 10 Issue: 05 Pages: 3981-3989 (2019) ISSN: 0975-0290

3982

document you do something called escaping. Instead of
sending the angle bracket, you send an ampersand (&),
and then "lt" for less than, and then a semicolon. This
means, when rendered it will become an angle bracket.
Therefore, in the old days of the world wide web, you
could send a request, and the document would come back,
and the angle brackets would not mess everything up.

Fig. 2. Cross Site Scripting.

Then the internet started to become more interactive.
JavaScript was invented. JavaScript is a programming
language that sits in the middle of web pages [10]. You
start with a tag in the middle of your document. You start
with a <SCRIPT> start tag and a closing </SCRIPT> tag.
JavaScript is a separate programming language. For
example, you can declare variables and do calculations.
Thus, you can create an entire program and that program
can affect the document. Output from the program can be
placed into the rest of the "markup" text. Therefore,
JavaScript is dangerous. It can do anything to the web
page. But imagine if you could get JavaScript embedded
on a webpage, say, the login page of an online bank. You
could tell it that, instead of just taking the username and
password and sending them to the bank's servers, first, it
should send them to a third party. Further, when this third
party got the passwords the user won't know what has
happened. The third party could log into the bank.
JavaScript is dangerous because it lets you do anything on
a web page. So, how do you get it in there? Let us take a
Google search bar. Whatever I type in that search bar,
"hypertext", will probably appear on the next page a
couple of times. However, what happens if, instead, I type
in an italic tag? What won't happen is that Google will
send the whole page in italics. The Google server have
converted the < tag into less-than <. Let's imagine that
instead of typing "hypertext", I type within the <SCRIPT>
</SCRIPT> tags. If the web developer forgets to do that
little trick that changes them from less-than signs to that

code that means "put a less-than sign in there," the web
server puts the page out, and the web browser looks at that
and goes, "That is JavaScript code! I'm going to run that!"
and it does. Thus, anywhere on your site involving user
input is very important. For example, someone sending
you their age which you forget to escape, and someone
types in a little bit of code there instead, makes your web
site completely vulnerable.

B. SQL Injection

SQL injection (see Figure 3) is a way to attack websites
via their backend database. Sequel or SQL is a language
[11] which allows you talk to databases. It's very human
readable. Thus, you can say things like, "SELECT *
FROM TABLE" where * means information from all
database tables. So, basically you can pretty much type
commands in near English into SQL, and you'll get results
back from your database. This has existed for years and
years and years. It worked fine until the Web came along.
Now people are looking at websites and are thinking,
"These websites need to be hooked up to databases." In the
initial development of the internet, it was pretty much "I'm
am going to request a document and you're are going to
send that document back to me." However, eventually
people worked out that what do you really wanted to do
was send a document and have different things come back
depending on what you sent. Maybe you could type in a
search request, and that would go to a database and pull
back something. This is fine.

Fig. 3. SQL Injection.

Some programming languages dealt with this in a
sensible way, but unfortunately some did not. And one of
the most notable ones that didn't is a language called
Hypertext Preprocessor (PHP) [42]. PHP makes web

Int. J. Advanced Networking and Applications
Volume: 10 Issue: 05 Pages: 3981-3989 (2019) ISSN: 0975-0290

3983

programming much more accessible. The trouble is, that if
you're not careful, there's a lot of ways to go wrong. And
this isn't just PHP, but I'll use it as an example. You talk to
a database by issuing a command by typing “John” in a
textbox and clicking send. The database would create this
command SELECT * FROM users WHERE username
equals "John" and this works. The database will send back
all the details it knows about the user called "John". But
the catch is those quotation marks. Let's say, for example,
that I have a web form that lets me login and I type in
John, and it sends that and brings back "John". Now if I
type in John with a quote mark in it, and if you are not
careful, what will happen is the language will send
something like this. SELECT * FROM users WHERE
username equals "John"" as I had put a quote mark in, and
then it put a quote mark in. It fails because the quote
marks don't match up. And the whole database crashes and
sends back an error message. The big problem is putting in
any text that has quote marks. An attacker can do a lot of
damage that way because SQL does not just have
SELECT statements [23]. It has INSERT to add new
elements to the database. It has UPDATE to change
elements in the database. It has DELETE to remove
elements from the database. If I were to type a username
that was John"; and then put another command in there,
like, 'DELETE'. So, I would type in the textbox John";
DROP ALL DATABASES. The command would look
like SELECT * FROM users WHERE username like
John"; DROP ALL DATABASES; The database will go
"Well that's exactly what I should do."

It's is going to understand that there's a new command at
the semi-colon and that it should delete everything [25].
The main way around it is escaping. When there is
dangerous character, like a quote mark, you put a slash
before it. You go through, and you use a function that
says, "Everywhere there is a quote mark, put this slash
before it. And this should occur before you send it to the
database." Input comes in from the user, add some slashes
to it to make it safe, and send it out to the database [34].
The database will look at those slashes and will go, "Right,
every time there's one of those (the backslash), this thing
(the quotation marks) is coming next? Just treat it as a
regular quote mark. Don't treat it anything special, it's in
the text, just treat it as that." However, if you want to send
an actual slash, you send two slashes. The first one to say,
"Treat the next one as a real character", and then the
second is a real slash.

C. Denial of Service

Denial of service attacks have been around for quite
some time. For instance, with an internet connection over
a 56k modem it is incredibly easy to perform a Denial of
Service Attack. In those days particularly if you happen to
irritate someone who is on an enormous university
connection, at say, 1M. Though this isn't that much bigger
by today's standards in those days all it meant was they
sent a little message on their system, which sends as much
traffic as possible to your system. And if their system is
bigger than yours, your internet connection gets saturated,
and you can't send anything in and out. At which point you

will have to literally hang up the phone to dial in again and
get a new IP address so they would not be able to find you.

This was how it worked for a period. Until hackers
involved started creating botnets [4], [44]. They started
writing viruses that instead of destroying data, would go in
and take over other people's internet connections. They
would find broadband users, generally in the world, who
would be running unsecured versions of Windows XP or
98 for example. They would quietly install their software
in the background, and then would use those unsuspecting
users' internet connections to launch a big denial of service
attack. This was a distributed denial of service (DDOS)
[55], [7] so, instead of having one big computer, you had
lots of little computers, hundreds, thousands, maybe tens
of thousands. All sending as much traffic as they could
against one company. And it didn't matter how big that
company's internet connection was. Ultimately, ten
thousand people all reloading their website or turning out
as much traffic as possible as fast as possible is going to
take down their network connection. It is used for ransom.
It was found that in the 2000s gambling companies,
finance companies, and anyone whose job, whose
livelihood, depended on being up and online all the time
24/7, was being held for ransom. They would get a call, an
email, or a message that said, "If you don't pay us an
amount your website's is going to go down for quite a
while." There are defense strategies. You can generally
hire a very expensive company to try and mitigate this, at
which point it does become a bit of a bit of a protection
racket. But ultimately Microsoft got their act together and
the number of zombie computers, as they were called,
started to decrease. Also, the internet started getting more
and more and more and more bandwidth. Thus, you could
hire a net connection that could stand up to reasonable
denial of service attacks for not too much. Stacheldraht
[12] is a classic example of a DDoS tool, cf. Figure 4. It
utilizes a layered structure where the attacker uses a client
program to connect to handlers, which are compromised
systems that issue commands to the zombie agents [46],
which in turn facilitate the DDoS attack. Agents are
compromised via the handlers by the attacker, using
automated routines to exploit vulnerabilities in programs
that accept remote connections running on the targeted
remote hosts. Each handler can control up to a thousand
agents.

Fig. 4. Distributed DOS.

Int. J. Advanced Networking and Applications
Volume: 10 Issue: 05 Pages: 3981-3989 (2019) ISSN: 0975-0290

3984

Now the new threat is something called Amplified
Denial of Service (ADOS) [2]. And it's not a new threat as
such, it's just a new common threat that's been theorized
about for a while. It is a combination of a couple of
vulnerabilities in how some very old parts of the internet
work. First let us explore the difference between TCP [14]
and UDP [37]. TCP is how most of the web works. It's
how the webpage that you're viewing gets sent back and
forth. It is a two-way protocol and there's a handshake
involved. You request something, and then that request is
acknowledged, and you get something back and as all the
packets go back and forth. Thus, there is two-way
conversation going on making sure that everything's
arrived in the right order, intact. This means you can use it
for webpages and use it for financial transactions on your
online bank. You can use it for anything where getting
everything through “bit perfect” is required. UDP is very
much opposite of that. UDP sends the stream of data. The
two-way conversation does not exist. This is what you use
for voice over IP (VoIP) [16] [48]. It does not matter if a
bit of it gets lost or a bit arrives in the wrong order. UDP
does not have to acknowledge data sent and say "Yes! I
approve this stream being sent to me." It just kind of
arrives and there's not much you can do about it. There is a
flaw in the UDP protocol, or at least in some
implementations of it as you can essentially spoof the
return address. My computer can claim that I am someone
else entirely. This would not normally be a problem
because most well-designed network protocols will only
let you send on a small amount of data. I send a small
request to them. They send a small request onwards etc…
And it's not really a problem.

Except, there is something called the Network Time
Protocol (NTP) [31], [32], [33]. The Network Time
Protocol keeps all the clocks in your phone and your
laptop in sync to almost to the millisecond. The problem
lies with the command: "MONLIST". It sends the details
of the last 600 people who requested the time from that
computer. So, when I send a tiny request (send time
information 206 times), using the MONLIST command to
the time servers (all time servers are on enormous
connections), spoof where it came from, and they will
send an enormous amount of data 206 times the amount of
data to that poor computer with the spoofed address. This
is NTP amplification, but it's not the only amplification
attack. There's been DNS [47] for a while, there are a
couple of others that security researchers are hinting at,
but don't want to release the details. Recently, we have
seen one, maybe two, terabit per second attacks. That is a
hundred thousand times more than your broadband
connection. It's something that is on the scale of disrupting
the entire Internet, rather than just disrupting one
computer. How can you defend against it? Well... you
can't. I mean you can hire a company that claims to be able
to block a lot of attacks and they can, work at the network
level to try and filter it all out. But ultimately, against an
attack of that size there's not much a victim can do. But
what you can do is, campaign to get the relays, which
forces the amplification vectors to shut down. The relays

do this by blocking, filtering traffic and then shutting
down.

D. Buffer Overflow

A buffer overflow exploit is a situation where an attacker
is using some, probably low-level C function or procedure
[40] to write a string or some other variable into a piece of
memory that is only a certain length. However, the
attacker is trying to write something in that's longer and
then overwrites the later memory addresses, and that can
cause all kinds of problems.

The first thing we should talk about, probably, is
roughly what happens in memory with a program when it's
run. Now, let us use C programs in Linux [27]. But this
will apply to many different languages and many different
operating systems. So, when a program is run by the
operating system (so the attacker is in some shell and
types in a command to run a program) the operating
system will effectively call, as a function, the main method
of the code the program is running on. But your actual
process, your executable, will be held in memory in a very
specific way. This is consistent between different
processes. So, the attacker has access to a big block of
RAM (see Figure 5). We don't know how big our RAM is
because it can be varied, but we use something called
Virtual Memory Address Translation to say that
everything in one end of the RAM memory, this is 0.
0x000… the “base” of the memory. And the other end (the
“top”) is 0xFFF. So, this is the equivalent of "11111111"
memory address all the way up to 32 or 64 bits.

Fig. 5. RAM memory.

Now, there are certain areas of this memory that are
always allocated to certain computational elements. So, at
the top we have kernel computational elements. So, this
will be command line parameters that we can pass to our
program and environment variables etc... In the lower
portions we have something called the text. That's the
actual code of our program. The machine instructions [38]
that we've compiled get loaded in there. Now that's read-
only, because we don't want to be messing about down
there. Even lower we have data. So, uninitialized and
initialized variables get held here. And then we have the
heap. It's where you allocate large things in your memory.

Int. J. Advanced Networking and Applications
Volume: 10 Issue: 05 Pages: 3981-3989 (2019) ISSN: 0975-0290

3985

What you do with the heap is up to your program. Even
lower, and perhaps the most important bit, in some ways
anyway, is the stack. The stack holds the local variables
for each of your functions and when you call a new
function like, let's issue "printf" and then some parameters
that gets put on the end of the stack. So, the heap grows in
a downward direction as you add memory, and the stack
grows in an upward direction. We'll just focus on the
stack, because that's where a lot of these buffer overflows
happen. You can have overflows in other areas, but we're
not going to be dealing with them in this paper. At the
upper end of the stack we have the high memory addresses
(0xFFF...) and 0x000 at the lower end. As the stack grows
upwards, so when we add something onto the end of the
stack it gets put on this side and moves in a upward
direction. Recall the attacker has some program that's
calling a function. A function is some area of code that
does something and then returns to where it was before.
When the calling function wants to make use of
something, it adds its parameters that it's passing onto the
stack. So, let us assume parameter A and parameter B (see
Figure 6), is added into the stack in reverse order.

Fig. 6. Stack.

The Assembler [38] code for this function will make
something called a "call" and that will jump to somewhere
else in memory and work with these two parameters. It's
the nature of this stack that causes problems. Let's look at
some code and then we'll see how it works. So, it's a piece
of C code (see Figure 7). It's a very simple C code that
allocates some memory on the stack and then copies a
string into it from the command line.

Fig. 7. C program.

So, we've got the main function for C that takes the
number of parameters given and a pointer to those
variables. They'll be held in kernel area of our memory.
We've allocated a buffer that's 500 characters long and
then we call a function called "string copy" (strcopy)
which will copy our command line parameter from argv
into our buffer. Our function puts on a return address
which is replacing the code we need to go back to once
we've done strcopy. So that's how main knows where to go
after it's finished. Then we put on a reference to the base
pointer in our previous function. We won't worry about
that too much because it's not relevant particularly to this
paper. This is just going to be our EBP base pointer (EBP
is a pointer to the top of the stack when the function is first
called). This is our allocated space for our buffer, and it's
500 long. If we write into it something that's longer than
500, we're going to go straight past the buffer, over this,
and crucially over our return variable. That's where we
point back to something we shouldn't be doing. You can
walk through the following code and then see if it works.

You can use a Kali Linux distribution, which has all
kinds of slightly dubious password cracking tools and
other penetration testing tools. It's meant for ethical
hacking. Run the small function that does our copy from
the command line. Run your vulnerable code with "Hello".
This will copy "Hello" into this buffer and then simply
return, so nothing happens. Now we're going to run
something called GDB, which is the Linux command line
debugger. Type in "list" and it shows us the code for our
function. So, we can see it's just a compiled function. It
knows this because the compiler included this information
along with the executable. We can also show the machine
code for this so we can type "disas main" and we can see
the code for "main()". This line here, sub of 0x1f4 from
%esp, that's allocating the 500 for the buffer. That is, we
go 500 in the upward direction and that's where our buffer
goes. So, buffer's sitting to the top in Fig. xxx but it is
lower in memory than the rest of our variables. We can
run this program from GDB and if it crashes, we can look
at the registers and find out what's happened.

We type "run Hello" and it will start the program and
say "Hello". And it's exited normally. Now, we can pass
something in a little bit longer than "Hello". If we pass
something that's over 500, then this buffer will go over
this base pointer and this return value and break the code.
The program crashes. Let us print the "a" character" 506
times and see what happens. Just a little bit more than 500
so it's going to cause somewhat of a problem but not a
catastrophe. Run the program. A segmentation fault occurs
[5], [9]. Now a segmentation fault is what a CPU will send
back to you when you're trying to access something in
memory you shouldn't be doing. Now that's not what
happened because we overwrote somewhere, we shouldn't;
what has happened is the return address was half
overwritten. For example, there is nothing in memory at
0xb7004141, and if there is, it doesn't belong to this
process. It's not allowed, so it gets a segmentation fault.
So, if we change this to 508, we're going two bytes further
along, which means we're now overwriting the entirety of
our return address. We're overwriting this "ret" here with

Int. J. Advanced Networking and Applications
Volume: 10 Issue: 05 Pages: 3981-3989 (2019) ISSN: 0975-0290

3986

41s. Now if there were some virus code at 414141, that's a
big problem. So that's where we're going with this. So, we
run this, and you can see the return address is now
0x414141. I can show you the registers and you can see
that the construction pointer is now trying to point to
0x414141. This means that it's read this return value and
tried to return to that place in the code and run it, and of
course it can't.

Let us change this return value to somewhere where
we've got some payload we're trying to produce. Now in
fact this payload is just a simple, very short program in
Assembler, that puts some variables on the stack and then
executes a system call to tell it to run a shell to run a new
command line. If I show this code, our shell code, this
code will depend on the Linux operating system and
whether you're using an Intel CPU or something else. This
is just a string of different commands. Crucially, this xcd /
x80 is throwing a system interrupt, which means that it's
going to run the system call. That's all we're going to do
about this. What this will actually do is run something
called ZSH, which is an old shell that doesn't have a lot of
protections involved. Let's go back to our debugger. We're
going to run again but this time we're going to run a
slightly more malicious piece of code. We're going to put
in our \x41s times by 508 - and then we're going to put in
our shell code. So now we're doing all 41s and then a
bunch of malicious code. Finally, the last thing we want to
add in is our return address, which we'll customize in a
moment. To craft an exploit from this, what we need to do
is remember the fact that strcopy is going to copy into our
buffer. So, we're going to start here. We want to overwrite
the memory of this return address with somewhere
pointing to our malicious code. Now, we can't necessarily
know for sure where our malicious code might be stored
elsewhere on the disc, so we don't worry about that or
memory. We want to put it in this buffer. So, we're going
to put some malicious code and then we're going to have a
return address that points back into it. Memory moves
around slightly. When you run these programs, things
change slightly, environment variables are added and
removed, things move around. So, we want to try and
hedge our bets and get the rough area that this will go in.
In here, we put \x90. That is a machine instruction for
"just move to the next one". Anywhere we land in that No-
Op is going to tick along to our malicious code. So, we
have a load of \x90s here... then we have our shell code.

That's our malicious payload that runs our shell. Then
we have the return address, right in the right place, that
points back right smack in the middle of these \x90s. What
that means is, even if these move a bit, it'll still work. It's
like having a slope. Anywhere where we land in here is
going to cause a real problem for the computer. We need
to put in some \x90s, we need to put in our shell code,
which I've already got, and we need to put in our return
address. If we go back to the code: we change the first
\x41s that we were putting in, and we change to 90. We're
putting in a load of No-Op operations. Then we've got our
shell code and then we've got what will eventually be our
return address. And we'll put in 10 of those because it's
just to have a little bit of padding between our shell code

and our stack that's moving about. So, if we write 508
bytes, it goes exactly where we want: over our return
address. But we've now got 43 bytes of shell code and
we've got 40 bytes of return address. We'll change this 508
to 425, and so now this exploit here that we're looking at is
exactly what I hoped it would be here. Some \x90 no
operation sleds, the shell code and then we've got our
return address, which is 10 times four bytes. We run this
and we've got a segmentation fault, which is exactly what
we hoped we'd get.

E. Password Cracking

Bad passwords is a real problem. It's a problem because
People like LinkedIn [45] and TalkTalk [6] get hacked,
and a bunch of hashed passwords go out onto the Internet.
Then within hours’ half of them have been cracked. And
then people are going: "Oh well this user name and this
password's been cracked. Well let's just go and log on over
there and see if that username and password combination
gets me into their Amazon. Oh! it does? That's good
news." And, and so on. Password cracking has massive
implications for password security. Hashing algorithms
[3], [15] have become longer because they don't hold up as
well as the older ones. We don't store passwords
unencrypted in a database because that's a terrible idea.
What we do is we pass them through something called a
"One Way Pseudorandom Function" [28], [22], [35], [21].
Which basically take some plain text password and turns it
into gibberish. And then, when someone tries to login, we
do the same operation on what they just typed, and if the
gibberish matches, we know they've taught in their
password correctly, without actually having to know what
their password is. But if these hashes get dumped on the
internet then we can't reverse them because they're just
random nonsense but what we can do is test the load of
different words by hashing them and seeing if the hashes
match any of the ones in the dictionary and if they do, we
know we've cracked their password. This is easy to do. I'm
going to show you it and it's got me scared me the first
time.

Hashcat [19], [26], [39] is one of the foremost password
cracking tools. It lets you do lots of different types of
password cracking which I'll talk about and it does it very
quickly because it makes use of the graphics card or
graphics cards in parallel. A present-day graphics card is
capable of around 10 billion hashes per second. It takes 40
billion plaintext password hypotheses, hashes them using
MD5, and compares them to a list at a rate of 40 billion
per second. Hashcat is run off the command line. There is
a file with a list of hashes that comes with Hashcat.
There's about six or so thousand hashes in it that range in
difficulty. So, some of them are going to be "password1"
because that's what some people's passwords are, and
some of them are going to be much longer, so 20 or 30
characters, almost random, and they're going to be very
difficult to crack. MD5 produces a hundred- and twenty-
eight-bit hash [41], [49]. The problem is that lower
standard hashes like MD5 and SHA-1 [50] still get used a
lot for back end storage. Change your hashes to something
like SHA-512 [18], [24]quickly, because this is not

Int. J. Advanced Networking and Applications
Volume: 10 Issue: 05 Pages: 3981-3989 (2019) ISSN: 0975-0290

3987

acceptable. Hashing takes longer for the GPU to process
and so you will go down from 40 billion to, you know, a
few million or a few thousand for good hashing that's been
iterated a lot of times. This makes the process
insurmountably harder.

As a user, it just means you must have a password that's
acceptable, but you have to, in a way, assume that some of
the websites that you use won't know what they're doing
and will have it stored in MD5. If it's still in plain text,
then all bets are off, there's nothing we can do. Okay,
right, so let's just run this in brute force mode. So, the first
type of password cracking, which sees some use but not a
lot, is brute force. So, this is simply a case of starting with
"AAAAAAA" and then "AAAAAAB" and "AAAAC" and
so on for different character sets. If we assume that it's
going to be some subset of passwords that use only
lowercase letters, we can brute force those very quickly,
especially if they're not very long. So, what I'm going to
do first is I'm going to run an attack on these passwords of,
let's say, seven-character passwords all with lower case
letters. Hashcat attack mode 3, which is brute force,
example0.hash (the hash file) and then my mask which
tells me what character sets I'm going to use. So, L is a
lowercase letter, so 1, 2, 3, 4, 5, 6, 7 lower case letters.
Run your code. Okay, not very many, because there aren't
very many, luckily for these users, lowercase only
passwords. With lowercase letters only, there are 26
lowercase characters, 26, to the power of 7, for when we
were trying 7 passwords and then for, let's say, six-
character passwords with two digits on the end it's going
to be 26 to the power of 6 multiplied by 10 to the power of
2. Well, if you're using lower and uppercase, it's going to
be (26*2)^7.

If your password is six characters long, it's being
cracked right now, and it's being cracked quickly because
we can go through all the 6-character passwords in a
fraction of a second. For longer passwords, we must make
some assumptions about the way that people choose
passwords. So, obviously the password "password1" is
nine characters, in which brute force is pretty good, but it's
not good because it's the number one password to be used.
And so on the top of your list of hypothetical passwords, it
should be right at the top and the first one you try. This is
what a dictionary attack does. We have a dictionary of a
list of commonly used words or commonly used
passwords, and then we try those. And then we manipulate
them slightly, with rules, and we try them again and we
append them to other words and try them again and we do
lots of different combinations of things and try them again.
It's much more effective than brute force, and so it's
currently very popular. The hashing rate goes down a bit
because you're loading dictionaries and doing word
manipulations but it's still quick.

So, let's show you an example dictionary. This
dictionary has common passwords that have been cracked
from other sources. There are other password lists, like the
RockYou list [52] and soon the LinkedIn list, I'm sure,
which will have a big impact because they are real
passwords of people are using, so if you make a word list
out of those passwords that's going to be effective. Use

Hashcat, but this time we're going to run in attack mode 0,
which is straight dictionary attack. In a big database,
you're going to have a lot of people who have "password"
and "password1234" and "12341234" and so on. All those
people are going to be found this way but what we really
want to do is mix up the dictionary little bit, swap a few
letters around. So, there are rules that do obvious things
like they replace "I" with the number 1. Or they replace
"E" with a 3. Or put an "@" in instead of an "&" or
something. Toggling case up and down, you know, if a
password's viable, then the same password with the first
letter as uppercase also probably viable. So, with some
luck, we've done a bit of brute force, we've done a basic
dictionary attack, we have a few rules just to mix it up,
and we've got some passwords.

So how can we get even better? Well, we use a better
dictionary. That's the key. This example dictionary is fine,
it's not very long, you know some passwords are going to
be in it, but as you remember we ran it and it didn't find
many passwords. It found some when we ran it through
some rules, but it didn't find a lot. So what we really want
to do is find a list of actual passwords that people are
using in real life and use that. Now, these leaks happen all
the time and so passwords are just being dumped out onto
the internet all the time. So, there's this password list
called RockYou, which is a bit of a game changer in
password cracking, in that it has around 14 million or so
passwords, actually leaked from a proper database of real
passwords that people were using. It was a gaming service
or something like this and then it got leaked. And the point
is that if you run the RockYou database over these hashes
you start to really get results, because there's just much
more interesting passwords in the RockYou database,
there's just many more of them.

We tried by brute force or by normal dictionary but this
RockYou database has changed everything in the sense
that it's just so varied that you just get password that you
just get passwords that you think are good. So, for readers,
you got to think how good are your passwords? Are your
passwords better than half the people in the RockYou list,
right? And if they aren't, that's probably the next thing you
should do, is change them.

IV. CONCLUSION

Cross Site Scripting, SQL Injection, Denial of Service
(DOS), Buffer Overflow and Password Cracking are
current network-based security attacks that still looms on
the Internet. Though these attacks have been around for
decades and there exist protective mechanism for
overcoming them they are still relevant today. This paper
described the basic workings of these attacks and outlined
how companies and individuals can mitigate these attacks.
By taking the necessary precautions the severity of these
attacks can be diminished.

Int. J. Advanced Networking and Applications
Volume: 10 Issue: 05 Pages: 3981-3989 (2019) ISSN: 0975-0290

3988

REFERENCES

[1] Aggarwal, Sudhir, Shiva Houshmand, and Matt Weir.
"New Technologies in Password Cracking
Techniques." In Cyber Security: Power and
Technology, pp. 179-198. Springer, Cham, 2018.

[2] Ambrosin, Moreno, Mauro Conti, Fabio De Gaspari,
and Nishanth Devarajan. "Amplified distributed
denial of service attack in software defined
networking." In New Technologies, Mobility and
Security (NTMS), 2016 8th IFIP International
Conference on, pp. 1-4. IEEE, 2016.

[3] Andoni, Alexandr, and Piotr Indyk. "Near-optimal
hashing algorithms for approximate nearest neighbor
in high dimensions." In Foundations of Computer
Science, 2006. FOCS'06. 47th Annual IEEE
Symposium on, pp. 459-468. IEEE, 2006.

[4] Barford, Paul, and Vinod Yegneswaran. "An inside
look at botnets." In Malware detection, pp. 171-191.
Springer, Boston, MA, 2007.

[5] Beck, Leland L. System software: an introduction to
systems programming. Addison-Wesley, 1997.

[6] Bouwman, Peter, and Hans de Bruin. "Talktalk." In
Object-oriented and mixed programming paradigms,
pp. 125-141. Springer, Berlin, Heidelberg, 1996.

[7] Chang, Rocky KC. "Defending against flooding-based
distributed denial-of-service attacks: a tutorial." IEEE
communications magazine 40, no. 10 (2002): 42-51.

[8] Clarke-Salt, Justin. SQL injection attacks and defense.
Elsevier, 2009.

[9] Cohen, David M., Siddhartha R. Dalal, Jesse Parelius,
and Gardner C. Patton. "The combinatorial design
approach to automatic test generation." IEEE
software 13, no. 5 (1996): 83-88.

[10] Crockford, Douglas. The application/json media type
for javascript object notation (json). No. RFC 4627.
2006.

[11] Date, Chris J., and Hugh Darwen. A Guide To Sql
Standard. Vol. 3. Reading, MA: Addison-Wesley,
1997.

[12] Dittrich, David. "The ‘stacheldraht’distributed denial
of service attack tool." (1999).

[13] Flanagan, David. JavaScript: the definitive guide. "
O'Reilly Media, Inc.", 2006.

[14] Forouzan, Behrouz A., and Sophia Chung Fegan.
TCP/IP protocol suite. McGraw-Hill Higher
Education, 2002.

[15] Frakes, William Bruce, and Ricardo Baeza-Yates, eds.
Information retrieval: Data structures & algorithms.
Vol. 331. Englewood Cliffs, NJ: prentice Hall, 1992.

[16] Goode, Bur. "Voice over internet protocol (VoIP)."
Proceedings of the IEEE 90, no. 9 (2002): 1495-1517.

[17] Graham, Ian S. The HTML sourcebook. John Wiley
& Sons, Inc., 1995.

[18] Grembowski, Tim, Roar Lien, Kris Gaj, Nghi
Nguyen, Peter Bellows, Jaroslav Flidr, Tom Lehman,
and Brian Schott. "Comparative analysis of the
hardware implementations of hash functions SHA-1
and SHA-512." In International Conference on
Information Security, pp. 75-89. Springer, Berlin,
Heidelberg, 2002.

[19] Guidorizzi, Richard P. "Security: active
authentication." IT Professional 15, no. 4 (2013): 4-7.

[20] Halfond, William G., Jeremy Viegas, and Alessandro
Orso. "A classification of SQL-injection attacks and
countermeasures." In Proceedings of the IEEE
International Symposium on Secure Software
Engineering, vol. 1, pp. 13-15. IEEE, 2006.

[21] Håstad, Johan, Russell Impagliazzo, Leonid A. Levin,
and Michael Luby. "A pseudorandom generator from
any one-way function." SIAM Journal on Computing
28, no. 4 (1999): 1364-1396.

[22] Jarecki, Stanisław, and Xiaomin Liu. "Efficient
oblivious pseudorandom function with applications to
adaptive OT and secure computation of set
intersection." In Theory of Cryptography Conference,
pp. 577-594. Springer, Berlin, Heidelberg, 2009.

[23] Jarke, Matthias, and Jurgen Koch. "Query
optimization in database systems." ACM Computing
surveys (CsUR) 16, no. 2 (1984): 111-152.

[24] Khovratovich, Dmitry, Christian Rechberger, and
Alexandra Savelieva. "Bicliques for preimages:
attacks on Skein-512 and the SHA-2 family." In Fast
Software Encryption, pp. 244-263. Springer, Berlin,
Heidelberg, 2012.

[25] Liu, Zhi-Ying, and Cheng-Rong Zhu. "Comparison of
approaches to data security implementation based on
PHP [J]." Computer Engineering and Design 19, no.
011 (2009).

[26] Llewellyn-Jones, David, and Graham Rymer.
"Cracking PwdHash: A Brute-force Attack on Client-
side Password Hashing." In Proceeding of 11th
International Conference on Passwords (Passwords16
Bochum). 2016.

[27] Love, Robert. Linux Kernel Development (Novell
Press). Novell Press, 2005.

[28] Luby, Michael, and Charles Rackoff. "How to
construct pseudorandom permutations from
pseudorandom functions." SIAM Journal on
Computing 17, no. 2 (1988): 373-386.

[29] Madhura, P. M., Palash Jain, and Harini Shankar.
"NFC-Based Secure Mobile Healthcare System."
International Journal of Advanced Networking &
Applications (IJANA) (2014): 0975-0282.

[30] Mereani, Fawaz A., and Jacob M. Howe. "Detecting
Cross-Site Scripting Attacks Using Machine
Learning." In International Conference on Advanced
Machine Learning Technologies and Applications, pp.
200-210. Springer, Cham, 2018.

[31] Mills, David L. "Internet time synchronization: the
network time protocol." IEEE Transactions on
communications 39, no. 10 (1991): 1482-1493.

[32] Mills, David. Network Time Protocol (Version 3)
specification, implementation and analysis. No. RFC
1305. 1992.

[33] Mills, David. Network time protocol. RFC 958, M/A-
COM Linkabit, 1985.

[34] Özsu, M. Tamer, and Patrick Valduriez. Principles of
distributed database systems. Springer Science &
Business Media, 2011.

Int. J. Advanced Networking and Applications
Volume: 10 Issue: 05 Pages: 3981-3989 (2019) ISSN: 0975-0290

3989

[35] Patarin, Jacques. "How to construct pseudorandom
and super pseudorandom permutations from one
single pseudorandom function." In Workshop on the
Theory and Application of of Cryptographic
Techniques, pp. 256-266. Springer, Berlin,
Heidelberg, 1992.

[36] Pollack, Edward. "Protecting Against SQL Injection."
In Dynamic SQL, pp. 31-60. Apress, Berkeley, CA,
2019.

[37] Postel, Jon. User datagram protocol. No. RFC 768.
1980.

[38] Ramsey, Norman, and Mary F. Fernández.
"Specifying representations of machine instructions."
ACM Transactions on Programming Languages and
Systems (TOPLAS) 19, no. 3 (1997): 492-524.

[39] Ratna, Anak Agung Putri, Prima Dewi Purnamasari,
Ahmad Shaugi, and Muhammad Salman. "Analysis
and comparison of MD5 and SHA-1 algorithm
implementation in Simple-O authentication based
security system." In QiR (Quality in Research), 2013
International Conference on, pp. 99-104. IEEE, 2013.

[40] Ritchie, Dennis M., Brian W. Kernighan, and Michael
E. Lesk. The C programming language. Englewood
Cliffs: Prentice Hall, 1988.

[41] Rivest, Ronald. The MD5 message-digest algorithm.
No. RFC 1321. 1992.

[42] Royappa, Andrew V. "The PHP web application
server." Journal of Computing Sciences in Colleges
15, no. 3 (2000): 201-211.

[43] Sah, Love Kumar, Sheikh Ariful Islam, and Srinivas
Katkoori. "An Efficient Hardware-Oriented Runtime
Approach for Stack-based Software Buffer Overflow
Attacks." In 2018 Asian Hardware Oriented Security
and Trust Symposium (AsianHOST), pp. 1-6. IEEE,
2018.

[44] Silva, Sérgio SC, Rodrigo MP Silva, Raquel CG
Pinto, and Ronaldo M. Salles. "Botnets: A survey."
Computer Networks 57, no. 2 (2013): 378-403.

[45] Skeels, Meredith M., and Jonathan Grudin. "When
social networks cross boundaries: a case study of
workplace use of facebook and linkedin." In
Proceedings of the ACM 2009 international
conference on Supporting group work, pp. 95-104.
ACM, 2009.

[46] Sterne, Dan, Kelly Djahandari, Ravindra Balupari,
William La Cholter, Bill Babson, Brett Wilson, Priya
Narasimhan, Andrew Purtell, Dan Schnackenberg,
and Scott Linden. "Active network based DDoS
defense." In DARPA Active NEtworks Conference
and Exposition, 2002. Proceedings, pp. 193-203.
IEEE, 2002.

[47] Swildens, Eric Sven-Johan, and Richard David Day.
"Domain name resolution using a distributed DNS
network." U.S. Patent 7,725,602, issued May 25,
2010.

[48] Thirunavukkarasu, E. S., and E. Karthikeyan. "A
Security Analysis in VoIP Using Hierarchical
Threshold Secret Sharing." In Proceedings of the
UGC Sponsored National Conference on Advanced
Networking and Applications. 2015.

[49] Wang, Xiaoyun, and Hongbo Yu. "How to break
MD5 and other hash functions." In Annual
international conference on the theory and
applications of cryptographic techniques, pp. 19-35.
Springer, Berlin, Heidelberg, 2005.

[50] Wang, Xiaoyun, Yiqun Lisa Yin, and Hongbo Yu.
"Finding collisions in the full SHA-1." In Annual
international cryptology conference, pp. 17-36.
Springer, Berlin, Heidelberg, 2005.

[51] Wankhede, Sonali B. "Study of Network-Based DoS
Attacks." In Nanoelectronics, Circuits and
Communication Systems, pp. 611-616. Springer,
Singapore, 2019.

[52] Weir, Matt, Sudhir Aggarwal, Michael Collins, and
Henry Stern. "Testing metrics for password creation
policies by attacking large sets of revealed
passwords." In Proceedings of the 17th ACM
conference on Computer and communications
security, pp. 162-175. ACM, 2010.

[53] Yuan, Yuan, Huanhuan Yuan, Daniel WC Ho, and
Lei Guo. "Resilient control of wireless networked
control system under denial-of-service attacks: a
cross-layer design approach." IEEE transactions on
cybernetics (2018).

[54] Zaheer, Zainab, Aysha Khan, M. Sarosh Umar, and
Muneeb Hasan Khan. "One-Tip Secure: Next-Gen of
Text-Based Password." In Information and
Communication Technology for Competitive
Strategies, pp. 235-243. Springer, Singapore, 2019.

[55] Zargar, Saman Taghavi, James Joshi, and David
Tipper. "A survey of defense mechanisms against
distributed denial of service (DDoS) flooding
attacks." IEEE communications surveys & tutorials
15, no. 4 (2013): 2046-2069.

Author Profile:

Koffka Khan received the M.Sc., and
M.Phil. degrees from the University
of the West Indies. He is currently a
PhD student and has up-to-date,
published numerous papers in
journals & proceedings of

international repute. His research areas are computational
intelligence, routing protocols, wireless communications,
information security and adaptive streaming controllers.

Wayne Goodridge is a Lecturer in the
Department of Computing and
Information Technology, The
University of the West Indies, St.
Augustine. He did is PhD at Dalhousie
University and his research interest
includes computer communications

and security.

	I. INTRODUCTION
	II. CATEGORIZATION OF PRESENT-DAY NETWORK ATTACKS
	III. NETWORK BASED ATTACKS
	A. Cross Site Scripting
	B. SQL Injection
	C. Denial of Service
	D. Buffer Overflow
	E. Password Cracking

	IV. Conclusion
	References

