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BACKGROUND: Current cancer drugs and 
treatments are aiming at eradicating tumor cells, 
but often are more toxic then effective, killing 

also the normal cells and not selectively the tumor cells. 
There is good personalized cancer therapy that involves 
administration to the cancer-bearing host of immune cells 
with direct anticancer activity, which called adoptive 
cell therapy (ACT). A review of the unique biology of T 
cell therapy and of recent clinical experience compels a 
reassessment of target antigens that traditionally have been 
viewed from the perspective of weaker immunotherapeutic 
modalities.

CONTENT: Chimeric antigen receptors (CAR) are 
recombinant receptors which provide both antigen-binding 
and T cell-activating functions. Many kind of CARs has 
been reported for the past few years, targeting an array of 
cell surface tumor antigens. Their biologic functions have 
extremely changed following the introduction of tripartite 

receptors comprising a costimulatory domain, termed 
second-generation CARs. The combination of CARs with 
costimulatory ligands, chimeric costimulatory receptors, or 
cytokines can be done to further enhance T cell potency, 
specificity and safety. CARs reflects a new class of drugs 
with exciting potential for cancer immunotherapy.

SUMMARY: CAR-T cells have been arising as a new 
modality for cancer immunotherapy because of their potent 
efficacy against terminal cancers. They are known to exert 
higher efficacy than monoclonal antibodies and antibody-
drug conjugates, and act via mechanisms distinct from T 
cell receptor-engineered T cells. These cells are constructed 
by transducing genes encoding fusion proteins of cancer 
antigen-recognizing single-chain Fv linked to intracellular 
signaling domains of T cell receptors.

KEYwORDS: chimeric antigen receptor, CAR T cells, 
adoptive cell therapy, ACT, T cell receptor, TCR, cancer, 
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Abstract

Introduction

Current cancer drugs and treatments such as chemotherapy 
aiming at eradicating tumor cells, but often are more 
toxic then effective, killing also the normal cells and not 
selectively the tumor cells. Actually our body have own 
immune system that can target tumor cells and kill them, but 
more often the immune responses were suppressed within 
a tumor and its surrounding.(1) New approaches involving 
immunotherapy to solve this immunosuppression problem 

via the programmed cell death protein 1 (PD-1)-receptor 
pathway, but a risk of immunological side effects have to be 
considered.(2,3) Up to now, there are three types of adoptive 
cell transfer (ACT) using effector T cells that are in path 
favoring to regulatory approval, including antigen-specific 
T cell therapy, using endogenous T cells sourced from 
peripheral blood, redirect T cells to tissue by transferring 
chimeric antigen receptors (CARs) or T cell receptors 
(TCRs), and  tumor-infiltrating lymphocytes (TILs), utilize 
lymphocytes expanded from biopsy sample. TIL is slow 
developed but keep progressing during decades.(4) 
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 The most interest of ACT drew to CAR- and TCR-
engineered T cells (TCR-T) currently, going uphill from 
basic theory to clinical immunotherapy. Combining the 
principles of synthetic biology, immunology, and genetic 
engineering, enhanced ACT of T cells engineered to 
express artificial receptors that target certain selected cells. 
This become very promising for treating cancer, chronic 
infection, or even autoimmunity. Clinical trials using cluster 
of differentiation (CD)19-specific CAR T cells to treat 
patients with advanced B cell leukemias and lymphomas 
induced durable remissions in adults and children, dawing 
attention of pharmaceutical industry.(4)
 Kymriah (tisagenlecleucel, formerly known as 
CTL019) was just approved by the USA Food and Drug 
Administration (FDA) recently. A CAR-T therapy, Kymriah 
scratched a history by showing good result on children and 
young adult patients with refractory or relapsing B cell 
precursor acute lymphoblastic leukemia (ALL). It became 
the first gene therapy to the United States also marks a new 
frontier in medical innovation with the ability to reprogram 
a patient’s own cells to attack a deadly cancer.(5).
 CAR-T cells are alive T cells taken from the blood, 
then genetically engineered by introducing DNA to them, 
so they could express synthetic, target-specific CARs on the 
cells surface. For tisagenlecleucel, T cells taken autologous 
from the patients themselves, then modified to target CD19 
in a manufacturing center, and sent back to the hospital and 
reinfused to the patients, performing the magic trick, which 
is recognizing the patient’s target antigen present on tumor 
cell, proliferate, and kill the tumor cells upon antigen contact.
(6) Many questions to be explored further, are the CAR-T 
performance on solid tumor cells, the more efficient  CAR-T 
isolation procedures and the possibilities to manufacturing 
CAR-T either from autologous or preparing the off-the-shelf 
products from allogeneic donors, then finally the safety and 
cost concerns related to the processes.(6)

12) Several hundred billion of T cells in our lymphoid 
tissues protect us all over our lives, they circulate through 
our bloodstream, detect and destroy any diseased cells. 
Diseased cells expressed major histocompatibility complex 
(MHC) molecules, which will become the antigen for TCR 
engagement, and mediating the T cells recognition and 
action.(13) 
 Then how majority of tumor cells could escape 
the immunity? These ingenious cells subvert the normal 
immune process, downregulate the antigen presentation 
by reducing antigen processing or MHC expression so 
the T cells misguided and do not recognized them as the 
diseased cells.(14) On the other hands, they may co-opt 
growth factors and immunosuppressive compounds from 
macrophages or granulocytes to downregulate immune 
activity and the tumor cells could grow.(15) ACT refer to 
utilizing large number of activated tumor-specific T cells 
from ex vivo expansion injected and induced complete 
and more stable regression for certain advanced cancers. 
The reinfused cells will traffic to the tumor and mediate its 
destruction. Genetically engineered, ACT from autologous 
T cells can be directed to express particular TCRs or CARs 
to fight diverse targets. (16-22)
 Preparative lymphodepletion is a temporary ablation 
of the immune system by destruction of lymphocytes and 
T cells using chemotherapy alone or in combination with 
irradiation, prior to immunotherapy to enhanced persistence 
of the transferred T cells due to no circulating leukocytes, 
very few regulatory cells and higher than normal amounts 
of cytokines that promote T cell survival. Combining 
lymphodepleting preparative regimen with ACT and the 
administration of the T cell growth factor interleukin 
(IL)-2 give advantage in prolonged tumor eradication 
either in metastatic melanoma or other tumor histologies 
(including leukaemias and synovial cell sarcomas).(16-
25) Unfortunately, it is also possible for unwanted and 
unanticipated autoimmune adverse events resulting from 
T cell recognition of antigens expressed by normal tissues 
(26-31). 
 Other forms of immunotherapy for cancer usually rely 
on sufficient numbers of active antitumor T cells developed 
in vivo. Beyond this, ACT has many advantages because 
antitumor lymphocytes (up to 1011) has been selected for 
high-avidity recognition of the tumor and expanded in vitro 
so any inhibitory factors existed in vivo were abolished, 
while the favorable microenvironment was set to support 
better antitumor immunity. ACT can proliferated in vivo 
while maintaining their antitumor effector functions, thus it 

Adoptive Immunotherapy for Cancer

Before  become  apparent,  many  microscopic  tumors 
have been eliminated by our immune surveillance. 
Some investigations proposed that tumors experience 
immunoediting.(7-9) Thus, some tumor cells escape the 
recognition by eliminating antigenic targets that they 
express, and even co-opt or deliver the host adaptive 
immunity to become insufficient, and lastly the tumor 
mass grow furiously, in the end killing their host.(10-
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is a living” treatment.(32) One critical point in determining 
the successful of ACT in human is the identification of 
cells, which is selectively target cancer antigens and not the 
essential normal tissues.(32-37)
 T cells were reprogrammed through genetic 
engineering to recognize and destroy cancer cells and the 
malignancies (Figure 1).(13) It is important to determine 
the target antigen for ACT specifically expressed by tumor 
and not healthy cells, to reduce chance of cross-reactivity 
against epitopes in unintended targets, which is further 
make a risk for autoimmune.(38,39)

Figure 1. Three ways to genetically engineer T cells to confer specificity for tumour-associated antigens.(12) (Adapted with permission 
from Springer International Publishing AG).

Basic Principles of CAR

Not only applied to enforce tumor antigen recognition, 
genetic reprogramming also improves T cell survival, boost 
T cell expansion, generate memory lymphocytes and offset 
T cell death, anergy and immune suppression. Other than 
that, genetic modified T cells could be used to track T cell 
migration in vivo, introduce safety or recall mechanism into 

T cells, to harness T cell responses. The main objective, 
which is the recognition of tumor antigen, is achieved by 
expressing antigen receptors, including either physiological, 
MHC-restricted TCRs or non-MHC-restricted CARs.(40)
 CARs, the living drug, are recombinant receptors 
for antigen, that redirect specificity and function of T 
lymphocytes or other immune cells using a single molecule. 
The application in cancer immunotherapy mainly aimed to 
generate immediate and long-term effects of tumor-targeted 
T cells rapidly, to bypass the barriers and incremental 
kinetics of active immunization.(41,42) Stable gene is 
required in T cell transduction to empower sustained CAR 
expression in clonally expanding and persisting T cells. Any 
cell surface molecule in principle can be targeted through a 
CAR, furthermore T cell reactivity scope could be limited 
by considering the tolerance to self-antigens and the antigen 
recognition gaps in the physiologic T cell repertoire.(43)
 CARs composed of several fusion molecules, including 
an specific extracellular single chain variable fragment 
(scFv) of a monoclonal antibody (mAb) for a surface 
molecule on the tumor cell, a spacer domain to provides T 
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cell flexibility and optimization, a transmembrane domain, 
and signaling modules to trigger T cell effector functions 
(Figure 2). Several other newer ligands are developing for 
clinical applications, but recently scFvs as ligand binding 
for tumor associated molecules have advantages of the high 
specificity and prevalence of mAbs.(44)
 While TCRs have been refined for their safety and 
efficiency all over the time, most CARs were empiric 
based, constructed synthetically and assembly of an optimal 
receptor. Ligand binding of a CAR is different from TCR 
in receptor affinity, antigen density and spatial properties. 
An optimal CAR relied on functional assays of transduced 
T cells in vitro or in human tumor xenograft models.(45) 
CARs have two domains (Figure 3), the first one is an 
extracellular antigen-recognition domain most-commonly 
consists of an scFv, usually has a hinge to anchor to the 
cell, and/or transmembrane domain which is binds to the 
tumour-associated antigen (TAA), and the second one is 
an intracellular signaling domain for T cells activation and 
determine the CAR-T classification as first-, second- and 
third-generation.(46,47)
 First-generation CARs noticed by utilizing the CD3z 
signaling chain, to activate signal 1, but clinical trials 
of this generation result in low of anti-tumor efficacy, 
apparently due to activation-induced cell death (AICD) of 
the transplanted T cells, or because of the shortage of long-
term T cell expansion.(48-51) On the contrary, in the case 
of human immunodeficiency virus (HIV) treatment, CD4-
specific CAR T cells can have a half-life of more than 16 
years (52).

 The second-generation CARs improving the first one 
with additional co-stimulatory signaling domain, named 
signal 2 as the second signal then, the same receptors 
delivers two signals include both a CD3z and a CD28 
signaling to optimally activated the T cell. The second 
generation specific for CD19, showed better persistence 
and proliferation compared to the first one, when infused 
simultaneously into patients with non-Hodgkin lymphoma 
(NHL) at the Baylor College of Medicine, Texas, USA.(51) 
In last 5 years, the second generation CD19-targeted CAR 
T cells with either CD28 or 4-1BB (CD137) co-stimulatory 
signaling domains demonstrated clinical efficacy in treating 
B-ALL, but the optimal second signal moiety remain to be 
determined.(53-55)
 Third generation CARs contains two co-stimulatory 
domains besides a CD3z domain, including CD28, 
4-1BB, or OX40 (CD134). The preclinical studies showed 
preferable antitumour efficacy compared to the other ones 
(NCT01853631).(56-58) Thus, these give insight about 
designing future CARs with one or two co-stimulatory 
signaling domains to treat most tumor types.(13)

Figure 2. The structural elements of CAR.(45) (Adapted with 
permission from Elsevier Ltd).

CAR T Cells for Adoptive Cell Therapy

The history of ACT was opened by hematopoietic stem cell 
transplantation.(59) Adoptive T cell transfer involves the 
isolation and reinfusion of T lymphocytes into patients to  
treat  disease,  conceptually  similar  to  T  cell immunization, 
associated with vaccine-based strategies, i.e., required de 
novo activate and expansion of a tumor antigen-specific 
T cell response in patients who was usually immune 
compromised and deeply tolerant to cancer antigens or to 
antigens that are expressed during chronic infection.(60) 
 Basic discoveries in immunology fueled the 
development of another class of off-the-shelf targeting 
reagents that combined the antigen recognition domain 
of antibodies with the signaling domains of T cells. Such 
receptors, known as CARs, entered clinical trials in more 
than 15 years since first being described (61,62), paralleled 
by continued improvements in design and efficacy.(63)
 CAR-Ts act via different mechanisms from TCR-T 
to recognize complexes of tumor antigens. Unlike TCR-T, 
which were processed in antigen-presenting cell (APC) 
cells and presented on APC cell surfaces with MHC 
class molecules, CAR-Ts do not require processing and 
presentation of tumor antigen-recognizing moieties with 
MHC molecules.(64) Thus, CAR-T have wider eligible 
patients group.(47)
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 Contrary to the responses elicited by therapeutic 
tumor vaccines which need several months, adoptive T 
cell transfer therapy can be observed within days to weeks. 
Pro-inflammatory immune state will be developed as a 
predicted consequence of target antigen-driven activation of 
infused T cells or because of secondary immune activation 
triggered by the primary T cell activation event.(60) Of 
course, several consideration about the infused product has 
to be raised, including the most effective strategies for cell 
expanding, defining the subpopulation for central and/or 
effector memory subsets (65), virus-specific T cells (66), the 
impact of tumor-driven immunosuppressive mechanisms, 
or potentially products derived from engineered T cell stem 
cell precursors (67) important to resolve. Data showed small 
numbers of engineered T cells is enough to deliver potent 
and persistent antitumor activity (37,68), implied that the 
critical point accentuate quality over quantity. Tumor 
burden in theoretical also affects the complex decision 
where higher tumor burden will yield in most effective T 
cell activation and the therapies may paradoxically be less 
effective or require higher doses at earlier stages of disease.
 Another controversial issue to address is to maintain 
a long-term persisting memory T cells in patients in the 
case of tumor dormancy, given that human tumors can 
remain dormant more than 16 years.(59) A clinical study 
performed by Kalos, et al., with CAR engineered cells that 
target CD19 demonstrated a favorable molecular remission 
with persisting engineered T cells for at least 2 years after 
treatment, but B cells aplasia also developed resulting from 
targeting of normal CD19-positive B cells, encourage the 
next development to specific ablate engineered cells and 
enable normal B cell reconstitution.(60,69)

Figure 3. CAR-T-cell design. All chimeric 
antigen receptor (CAR) designs contain an 
antigen-recognition domain and a signaling 
domain that provides ‘signal 1’ to activate 
T cells.(46) (Adapted with permission from 
Springer International Publishing AG).

 With recent advanced technology transfer, adoptive T 
cell therapy give a strategic opportunity for combination with 
other antitumor therapies such as therapeutic vaccination, 
checkpoint inhibition, agonistic antibodies, small molecule 
inhibitors of tumors, and targeting of tumor stroma and 
neo-vasculature, moreover the possibility of automated cell 
culture system development.

Cell Sources and Clinical Manufacturing 
of CAR T Cells

ACT via genetic engineering utilize the naturally occurring 
endogenous tumor-infiltrating lymphocytes or T cells to 
express either TCRs (70) or CAR (43). The promising clinical 
outcomes in phase ½ clinical studies attract the interest of 
many pharmaceutical and biotechnological industries (71-
74) to manufacture the clinical grade CAR-T cells under 
current good manufacturing procedure (cGMP). Currently, 
CAR-T cell-manufacturing platforms are labor intensive, 
and the most extensive experience in CAR-T manufacturing 
still lies in the academic centers, while the industries 
company just step in.(75-77) Automated, powerful, and 
cost-effective cell production platforms compliant with 
cGMP coupled with robust analytics, ensure reproducible 
cell quality was now on hunted to commercialize these 
potent personalized, therapeutic modalities in an efficient, 
effective manner.(78,79) 
 The fusion proteins genetically engineered in CARs 
including: (1) an antigen domain, derived from a monoclonal 
antibody and (2) intracellular T cell signaling and 
costimulatory domains.(44,62,80-82) The development of 
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CAR T cell therapy has now expanded beyond phase 1 trials 
and moved into phase 2 multi-site trials (NCT02435849 and 
NCT02228096.(83) 
 CAR-Ts  are  manufactured  using  three  consecutive 
steps (84-86): (1) generate genetic constructs of CAR 
to encode tumor antigen-specific Fv linked to signaling 
sequences of T cell receptors; (2) Transduction of T 
cells with CAR using viral (commonly used retroviral 
or lentiviral), non-viral (using plasmid DNA or RNA) 
via electroporation (87-91) or physical methods; and (3) 
CAR-T cells cultivation. CAR-T cells production demands 
several carefully performed steps, accompany with quality 
control testing throughout the entire protocol.(86) The 
first step involves removing blood from the patient’s body 
with leukapheresis, separate the leukocytes, and return 
the remainder of the blood to the circulation (92) until a 
sufficient number of leukocytes have been harvested, 
and continue with T cell enrichment to the lymphocytes 
while washing the buffer and anticoagulants out (Figure 
4).(93) The enrichment process can be performed through 
counterflow centrifugal elutriation, which separates cells by 
size and density and maintains cell viability.(94) In some 
cases, additional step such as separation of T cell subsets at 
the level of CD4/CD8 composition using specific antibody 
bead conjugates or markers may be performed.(95) A potent 
CAR-T cell product is difficult to be collected from purified 
autologous antigen-presenting cells (APCs) (86) and need 
some extra steps to attain a standard activated T cells, for 
example Life Technologies developed beads coated with 
anti-CD3/anti-CD28 monoclonal antibodies.(83)
 T cells were incubated with the viral vector encoding 
the CAR, to induce the activation. Lentiviral vectors is 
commonly used including CTL019, rather than gamma-
retroviral vectors because if the safety integration. The 
vectors then be washed out in a way of medium exchange. 
The viral vectors attach to the patient cells using its 
machinery, and introduces genetic material encodes CAR in 
the form of RNA.(96) The RNA is reverse-transcribed into 
DNA, integrates into the patient cells’ genome permanently. 
Thus, every time the cells divide in the bioreactor, CAR 
expression is maintained, until the adequate cells number 
is reached. After transcribed and translated by the patients 
cell, the CAR is expressed on the cell surface.(97,98) 
Another methods of gene transfer used is the Sleeping 
Beauty transposon system or mRNA transfection.(99,100)
 With high interest and investments on this, transferring 
the  CAR T production  protocols from academic institution 
to industrial manufacture, a highly controlled for each 
process had to be implemented across the collection, 

manufacturing, and treatment. A clear understanding of 
quality attributes both for the process and the products 
should be established.(83)
 CAR-T cell appertained on the fast track of FDA 
approval for B-cell malignancies, but many active clinical 
trials and investigations were keep routing to build better 
CAR-T cells for treating hematologic malignancies and 
solid tumors.(101) Figure 5 shows some major steps in 
CAR-T-cell manufacturing process.

Clinical Application of CAR T Cells

CARs are synthetic receptors proteins that have been 
engineered to give T cells the new persistent ability to 
target a specific protein.(41,102) In contrast to generic 
T cell receptors, CARs doesn’t independent on MHC to 
bind with cell surface molecules, means that CARs can 
target patient’s proteins, carbohydrates, or glycolipids and 
function regardless of patient human leukocyte antigen 
(HLA) haplotype. After binding to antigen, T cell become 
active mediated by the cytoplasmic domain of the CD3z 
chain.(103-107) Costimulatory domain was needed to 
provide the expansion of T cells to retain their functionality 
upon repeated exposure to antigen (108-112), and bring 
up the second generation CARs as the more persistence 
T cells (40), prospecting for treating solid tumors (113-
116). Autologous modified T cells targeting CD19 showed 
a promising results in patients with refractory B-cell 
hematologic malignancies (117), also in children and adults 
with relapsed B-ALL, chronic lymphocytic leukemia (CLL), 
and B-NHL. However, each institution designed their own 
methods for T cell activation and transduction, as well as the 
cell doses.(118) Standard treatment for B cell malignancy 
consist of chemotherapy, radiotherapy, haematopoietic 
stem cell transplantation auto and allogeneic, and donor 
lymphocyte infusion. Refractory disease or still relapsing 
after all treatments do something, change to live to enroll 
on CAR T cell.
 A powerful CAR is not enough powerful enough 
in clinical reality, but a suitable target which is specific 
expressed in the tumor cells but not in normal cells is needed. 
CD19 is promising, due to its signaling pattern and its cell-
surface expression in most leukemia and lymphomas.(119-
122) Unfortunately, CD19 targeting also induces a B cell 
aplasia (123-126), although it is clinically manageable for 
a limited time therapy. Some studies suggested that this B 
cell elimination has the intent to prevent the appearance of 
suspected anti-CAR antibodies.(127-129) Another issues is 
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Figure 4. CAR-T manufacturing steps. 
A: Leukapheresis and T cell isolation. 
B: Cell culture and transduction.(83) 
(Adapted with permission from Elsevier).

A

B

how about the long-term clinical outcome. Several strategies 
to improve the performances of CAR-T19 therapy has been 
implemented, those are  increasing efficacy against indolent 
B cell leukemia and lymphomas, avoiding or preventing 
antigen-loss relapses, toxicity reduction and management, 
and CART therapy on routine clinical practice. 

 However, until recently, no single ideal antigen has 
yet been identified for solid tumors. The investigating 
CAR targets including gene products arising from 
genetic mutations or altered splicing (EGFRvIII), altered 
glycosylation patterns (MUC1), cancer-testis antigen-
derived peptides (MAGE), overexpressed differentiation 
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Figure 5. Major steps in chimeric antigen receptor-T-cell manufacturing process and examples of available technologies and 
devices.(75) (Adpted with permission from Springer International Publishing AG).

antigens (CEA, PSMA, GD2, MUC16, HER2/ERBB2, and 
mesothelin (MSLN)), or tumor-associated stroma (FAP 
and VEGFR).(116) If we could relate the target antigen 
with tumor invasion or metastasis formation, we could 
use CAR therapy for directing the more aggressive cancer 
cells and be less vulnerable to tumor relapse. MSLN is a 
glycoprotein initially synthesized as a 69 kDa cell-surface 
protein, cleaved by the furin protease at the amino terminus 
results in a 40-kDa C-terminal fragment attached to the 
plasma membrane by a glycophosphatidyl inositol (GPI) 
domain, and a soluble 32-kDa N-terminal fragment, named 
megakaryotic-potentiating factor (MPF), is released.(130) 
There has been some therapy clinical trials done which 
are related to antigens targeted in solid tumor CAR T cell 
(Figure 6). 
 MSLN knockout in mice does not exhibit any 
differences in development, reproduction, and blood 
cell count, suggest that this protein do nothing essential 
in normal tissues.(131) Nevertheless, in tumor cells, 
aberrant MSLN expression actively role in both tumor 
malignant transformation by committing to local invasion 
and metastasis, also contribute to tumor aggressiveness 
by promoting cancer cell proliferation, and supplying cell 
resistance to apoptosis induced by cytotoxic agents.(132-
135) Its high expression in consort with the low expression 
in normal tissues, increase a consideration of making MSLN 
for a targeted immunotherapy. However, currently, CD19 
still become the holy grail of CAR therapy.(136) 

Cytokine Release Syndrome (CRS)

In contempt of its early success, together with the limitation 
of available targeted antigens, CAR T cell therapy had to 
be considered for its toxicity, including bystander effects 
leading to systemic inflammatory reactions such as cytokine 
release syndrome (CRS) besides the neurologic toxicities, 
hypersensitivities or autoimmunity or graft-versus-host 
disease (GVHD) caused by T cell products, on- and off- 
target effects of CARs, possibilities of mutagenesis mediated 
by transgene delivery, autonomous CAR signaling, and 
generation of a replication-competent virus.(137,138) 
 EGFRvIII in glioblastoma, not like the ideal criteria of 
CAR T ideal antigen, also present at some level in normal 
tissues. CAR T cell activation is mainly drove by direct 
engagement of the scFv with its cognate antigen. Thus, the 
co-expression of this antigen on any non-tumor cell could 
eliminate both tumor and non-tumor targets, although the 
affinity of the CAR, the antigen expression level on the 
healthy tissue, the CAR potency and the relative functional 
importance of the healthy tissue target also determine the 
degree of on-target toxicity.(139)
 CAR have benefit because its specificity is edicted by 
antibody-like binding, not by the MHC expression. Unlike 
TCR-modified T cell therapies, so far CAR T cell therapy 
has not demonstrated any inappropriate scFv recognition 
of a non-target antigen.(139) Mostly the modified T cell 
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infusion addressed tolerable adverse effects (140), only two 
cases of serious adverse events reported in 2010 (141,142), 
both were caused related to a systemic cytokine release 
that has been termed CRS. According to the National 
Cancer Institute Common Terminology Criteria for 
Adverse Events (CTCAEs) Version 4.0, CRS defined as a 
disorder characterized by nausea, headache, tachycardia, 
hypotension, rash, and shortness of breath caused by 
the release of cytokines from the cells.(143) This could 
happen because of an excessive release of cytokines and 
chemokines  from systemic immune response mediated by 
T cells, B cells, NK cells and monocytes/macrophages. CRS 
common occurs in many clinical setting, such as GVHD 
after transplantation, severe bacterial and viral infections, 
hemophagocytic lympohistiocytosis (HLH)/macrophage 
activation syndrome (MAS) and mAb therapy.(144-148) 
Acute inflammatory response after cytokine released will 
spread into systemic and induce endothelial and organ 
damage, result in microvascular leakage, heart failure and 
even death.(149-151) That’s why CRS should be well 
managed during CAR-T therapy.(152)
 The classic and basic design of a CAR includes a 
scFv targeting TAA, an extracellular spacer/hinge region, 
a trans-membrane domain and an intracellular signaling 
domain. Once the CAR-T cells encountered tumor cells, the 
scFv is engaged by the TAA sending the activation signal to 
the immunoreceptor tyrosine-based activating motif of the 
CD3z chain, continues to provide signal 1 which activate 
T cell, cytokine secretion and kill the target cell.(106,153) 
The second generation CARs were enhanced with the co-
stimulatory incorporating such as CD27, CD28, 4-1BB 
and ICOS.(61,154-156) As the CAR-T cells activated, a 
variety of inflammatory cytokines, including interferon 
(IFN)-g, tumor necrosis factor (TNF)-a, IL-1b, IL-2, IL-6, 
are released. IFN-g activates the macrophages which release 
more cytokines including TNF-a, IL-1b, IL-6, IL-8 and 
IL-10, which further enhancing the positive feedback loop 
for activation, proliferation and more cytokine secretion 
of T cells except IL-10 because IL-10 act as the immune 
suppressor and play a limited role in this arena. This 
formation therefore, induce the cytokine storm.(152)
 Similar to sepsis, the cytokine storm could 
promote systemic inflammatory response and induce 
fever, headache, dizziness, nausea, rigors, chills, rash, 
hypotension, tachycardia and dyspnea. This syndrome also 
associated with arrhythmia and cardiac arrest, hepatic, and 
renal failure. Acute vascular leak could happen and leads to 
fluid retention, causing pulmonary and general edema like 
ARDS. Usually hydration will be given due to hypotension 

symptoms, but this will even worsen the situation.(152) 
CRP biomarkers can be applied as a marker for CRS risk. 
CRS have a positive correlation with tumor burden, in other 
words, lower tumor burden will give a lower risk of CRS.
(53,46)
 Side effects of CAR T cell therapy can be classified 
into 3 side effects, which are CRS, nervous side effect and 
B aplasia. CSR toxicity consist of grade 1, grade 2, grade 
3 and grade 4. Despite of all risk of adverse reaction and 
toxicities, T cell therapy grows rapidly and have tremendous 
potencies as the living drug for treating and offers the 
possibility of dramatically extending the lives of patients 
with cancer.(139)

Immunotherapy has undergone a long road before come 
to success. A major step of hope come as CAR-based 
technology. These cells can be modified as a synthetic 
identical receptor, as long as we can get the specific 
lymphocytes (autologous or allogeneic) regardless of the 
HLA context, makes this therapy become very universal. 
The ultimate goal for this therapy is for treating cancer, 
either alone or be combined with current cancer therapies. 
CAR T-cell therapy respond, 70-94% complete remission 
rate for B cell ALL, CLL overall response with 70% 
respond lasting more than 9 months, for diffuse large B-cell 
lymphoma (DLBCL) at six month 30% patients in complete 
response with 70 % relapse free rate. Numerous clinical 
trials were still ongoing to gather us more information for 
getting the best strategy to achieve this goal.

Conclusion
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