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Abstract  

The article describes methods and algorithms related to the analysis of dynamically changing 
discrete random fields. Time-optimal strategies for the localization of pulsed-point sources having 
a random spatial distribution and indicating themselves by generating instant delta pulses at ran-
dom times are proposed. An optimal strategy is a procedure that has a minimum (statistically) av-
erage localization time. The search is performed in accordance with the requirements for localiza-
tion accuracy and is carried out by a system with one or several receiving devices. Along with the 
predetermined accuracy of localization of a random pulsed-point source, a significant complicating 
factor of the formulated problem is that the choice of the optimal search procedure is not limited to 
one-step algorithms that end at the moment of first pulse generation. Moreover, the article shows 
that even with relatively low requirements for localization accuracy, the time-optimal procedure 
consists of several steps, and the transition from one step to another occurs at the time of registra-
tion of the next pulse by the receiving system. In this case, the situation is acceptable when during 
the process of optimal search some of the generated pulses are not fixed by the receiving system. 
The parameters of the optimal search depending on the number of receiving devices and the re-
quired accuracy of localization are calculated and described in the paper. 
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Introduction 

The task of searching for random pulsed-point sources 
arises in many applied scientific and technical disciplines, 
for example, in applications of the classical theory of re-
liability and mathematical communication theory, when it 
is required to identify and suppress sources of local im-
pulse noise [1 – 3]. The need for such algorithms appears 
in the efficiency analysis of modern optoelectronic sen-
sors [3]. Similar studies are necessary for the develop-
ment of methods for tech troubleshooting, appearing in a 
form of the alternating equipment failures [4]. In modern 
sections of computational mathematics these methods are 
required to create algorithms for detecting low-contrast 
and small-sized objects on aerospace images, and, for ex-
ample, in signal theory, the same methods are used to es-
timate the reliability of random fields and point images 
registration [5 – 6]. 

An optimal search algorithm generally should satisfy 
one of two requirements: either to minimize the total 
search effort required to detect an object, or to maximize 
the total probability of its detection in the presence of a 
limited search effort. In this work, by a pulsed-point 
source we will mean the object of negligibly small angu-
lar dimensions (a mathematical point), that is placed ran-
domly on the x axis with an a priori distribution density 

f (x) and radiating infinitely short pulses (-functions) 
with Poisson intensity λ.  

Thus, the time intervals between pulses are a random 
variable t with an exponential distribution density 
h (t) = λ exp (–λ t). The search for an object is carried out us-
ing a recording device with “view window” that can be re-
constructed in any way in time. The impulse is recorded if 
the active object that initiated the impulse is located inside 
the view window of the recording device. Otherwise, the 
pulse is considered to be missed. After registering the pulse 
window narrows, as a result the position of the source be-
comes more accurate. It is required to find the source with 
accuracy  for the minimum (in statistical terms) time. 

1. Time-optimal search algorithms for pulsed-point 
sources for single-receiver systems 

Single-step search algorithms 

Introducing the binary function 

1, if the point  at the time moment  

is in the view window of the receiving 
u( , )

device,

0, otherwise,

x t

x t



 


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describing view window at time t, we obtain the ratio for 
the average time from the start of the search to the regis-
tration of the first pulse: 

0 0 0

d d ( ) ( , ) exp ( ( , )d ) .
t

t x tf x u x t u x
   

      
 

    

For the random priori distribution of the pulsed-point 
source on the x axis, the construction of even a single-
step (ending immediately at the moment of first pulse 
registration) procedure of the optimal-time search causes 
considerable difficulties. In single-step periodic search 
algorithms, the relative load φ (x) on the point x (that is, 
the relative time it stays in the view window) remains 
constant throughout the search time. With this approach, 
the problem is to find the function φ (x), which minimizes 
the average search time 

1 ( )
d

( )

f x
x

x
 

  ,  (1) 

provided that 

( )d ,x x    (2) 

0 ( ) 1.x    (3) 

Optimization of expression (1) with constraints (2) – (3) 
relates to non-linear programming problems [7 – 10]. To 
solve it, we use the method of Lagrange undetermined 
multipliers and find for the function  (x), which mini-
mizes the expression 

( )
( ) d

( )

f x
x x

x

 
   

 . 

Differentiating by  and taking into account the con-
straint (2), we get 

( )
( ) .

( ) d

f x
x

f x x


 


 (4) 

If condition (3) is not violated (for any x), then func-
tion (4) is a solution to the formulated extremal problem. 
If there are existing domains x where the solution 
 (x) > 1, then inside these areas it is necessary to set 
 (x) = 1, and for the remaining points to recalculate the 
undetermined multiplier µ taking into account the already 
changed conditions (2) and (3). After that, any binary 
function u (x, t) can be selected as the optimal search 
strategy, satisfying the relations 

( , ) d ; ( , ) d ( ) .u x t x u x x t        

In the general case, the construction of the optimal 
(not necessarily periodic) single-step search algorithm for 
an unknown Poisson source is connected with finding 
such a function  (x, t) – the relative load on the point x at 
a time t that minimizes the average search time  

0

d d ( )exp ( , )d
t

t x f x x
 

       
 

   , 

provided that 

( , )dx t x    (5) 

for any t, and 

0 ( , ) 1.x t    (6) 

To simplify further calculations, we introduce a function  

0

( , ) ( , )d
t

x t x       

corresponding to the total time spent by the point x in the 
viewing window from the beginning of the search to time 
t. To take into account the constraints (5) and (6), we in-
troduce the undetermined Lagrange multiplier (t). Then 
the problem of constructing the optimal strategy reduces 
to finding the function (x, t) that minimizes the functional 

 d d exp( ( , ) ( ) ( ) ( , )t x x t f x t x t     

provided that 

( , )d ,x t x t




     (7) 

0 ( , ) .x t t     

The solution of this variational problem is the function 

1 ( )
0, ln 0;

( )

1 ( ) 1 ( )
( , ) ln ,0 ln ;

( ) ( )

1 ( )
, ln ,

( )

f x

t

f x f x
x t t

t t

f x
t t

t

 
  

  
      

 

 

 (8) 

where (t) is determined from the relation (7). The opti-
mal search strategy u (x, t) must belong to the class of bi-
nary functions. It is set by the equations 

0

( , )d ( , ); ( , ) d .
t

u x x t u x t x        

Practical use of optimal search algorithms encounters 
certain difficulties. The fact is that in cases where priori 
distribution density function differs from the uniform 
one, both of the proposed optimal single-step search algo-
rithms cannot be realized if you try to implement it by 
moving an integral scanning window. Therefore, in real 
search procedures, one-step procedure is advisable to do 
in according to the following scheme. 

Preliminarily, the interval (0, L) is divided into a se-
ries of discrete elements with width , while the a priori 
given density f (x) is “stepwise” approximated on each of 
them. The value of ε is considered to be small enough 
(according to the high requirements for localization accu-
racy), so, the variation of the function f (x) within one 
discrete can be neglected. The search should begin with 
“observation” of the highest “step”, within which the 
function f (x) is maximum, then after the time t1, the win-
dow is alternately set under the two highest “peaks”, then 
after the time t2, three items are monitored and etc. All 
switching moments ti are determined in exact corre-
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spondence with the above relation (8), which is the basis 
for constructing an optimal search strategy.  

It should be noted that discussed search plan assumes 
that the intensity of the source  is known in advance. If 
such a priori information is not available, a periodic pro-
cedure can be recommended that does not depend on this 
intensity. In accordance with it, the integrals of the densi-
ty f (x) in each of the discrete must be calculated. If there 
are m discretes, and its squares-integrals are P1, P2, ..., Pm, 
then the view window should cyclically “run through” all 
the discretes with relative load  

1
( 1, ..., )

m

j
j mP Pi ji


   . 

These values βi are easily obtained if we again apply 
the method of undetermined Lagrange multipliers to min-
imize the average search time 

1 1 2 2(1 )( ... )m mP P P         , 

provided that β1
 + ... + βm

 = 1. 

Multistep search algorithms 

If we are not limited to single-step procedures, but 
consider the search algorithm as a multi-step process (that 
ends after n-th pulse registration), then the optimal strate-
gy should deliver a minimum to the functional 

 
1

1

1

1 0

 

1 1
11

1 1
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d , , , ...,
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l
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l
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k l

l l m l
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t

l l

t

x f x t

t u x t t t

u x t t















  

       
  

         
     

   





 (9) 

provided that 

1 1( , , ,..., ) dn nu x t t t x   . 

Here ui (x, t, t1, ..., ti–1) is the search strategy at the i-th 
step provided that the intervals between the first (i – 1) 
pulses were t, t1, ..., ti–1 respectively. In the general case, 
to find the optimal strategy u (x, t) that minimizes the 
functional (9) is not possible. At the same time, for an 
important special case, f (x) = const, the analytic solution 
is rather simple. Let 

1 , (0, ) ,
( )

0, (0, ) ,

L x L
f x

x L


  

 

i.e. there is no a priori information about placement of the 
source within the interval (0, L). Obviously, in the first 
step, the search effort should be equally distributed be-
tween all points x(0, L). It is possible to make such a 
load, for example, by television scanning of the whole in-
terval (0, L) by the aperture with width l1 (to avoid edge 
effects, we consider the end of the interval closed to its 
beginning, so, a circle with length L is scanned instead of 

the interval). When registering a pulse, the search contin-
ues inside the window with width l1 using another aper-
ture with width l2. If we discuss an n-step search, then at 
the last step scanning it is done by the aperture with 
width  (this is dictated by the conditions of the task). 
Then the average search time is 

1 1

1 2

1
... .nlL l

l l

           
 (10) 

For a fixed n, it's possible to find optimal values that 
minimize the expression (10): 

1
1 1

1 2

... .
n

nL l l L

l l
         

 

Then the average time of the optimal n-step search is 
1

.
n

n opt

n L         
 (11) 

Now (from the expression (11)) we can find the opti-
mal number of steps n minimizes the average search time. 
Since the function xa1/x for a > 1 has only one minimum 
point (x = ln a), the optimal value nopt is always either 
entier (ln (L/ε)) or entier (ln (L/ε)) + 1. Therefore, when 
L/ε   the following asymptotic relations are true: 

ln ( )optn L  , 

1 1

1 2

... ,nL l l
e

l l
   


 

1

ln .
опт

opt

n
opt

n
opt

n L e L                       
 

Thus, for L /  , multi-stage procedure (compared 
to a single-stage procedure) logarithmically reduces the 
average search time, so the gain increases unlimitedly as 
the ratio L / increases. Now we can compare the con-
structed optimal search procedure with some simplified 
algorithms. For example, if the search is organized ac-
cording to the principle of a dichotomy (the receiving de-
vice alternately “observes” the two halves of the scanned 
area at every stage of the search), then the average time 
of the source search is 

22

2 2
log ln

L L                          
. 

Dichotomous search has (in comparison with the op-
timal procedure) a small (≈ 6 %) loss in time. Trichotomic 
search is even closer to the optimal procedure: initial in-
terval (0, L) is divided into three subintervals, then the 
subinterval where impulse is fixed, in turn, is also divided 
into three subintervals, etc. Compared to the optimal pro-
cedure this procedure loses only 

1 3
0, 4% .

ln 3
e

e
   
 

 

It is natural to expect that in the case of arbitrariest a 
priori distribution f (x) the multi-step search procedure 
(compared to one-step search) can bring a significant gain 
in time, especially for large values of L /ε. Since minimi-



Time-optimal algorithms focused on the search for random pulsed-point sources Reznik A.L., Tuzikov A.V., Soloviev A.A., Torgov A.V., Kovalev V.A. 

608 Компьютерная оптика, 2019, том 43, №4 

zation of the functional (9) under the constraint (10) in 
each concrete case is very difficult problem, multi-step 
periodic search procedure seems to be more real in terms 
of practical implementation. In the first step, the interval 
(0, L) is divided into three parts (three parts are chosen 
because for a uniform distribution f (x) this procedure is 
closest to the optimal one). Then the values are calculated 

3 2 3

1 2 3

0 3 2 3

( )d ; ( )d ; ( )d .
L L L

L L

P f x x P f x x P f x x      

For any time interval Δt, view window with width L / 3 
must be alternately “tuned on” all three sections in such a 
way that t1

 + t2
 + t3

 = t where ti /t = βi is the rela-
tive viewing window presence time on each of the subin-
tervals (0, L / 3), (L / 3, 2 L / 3), (2 L / 3, L). When the pulse is 
registered, the search procedure continues similarly on 
the section where the pulse is fixed (i.e., this section is 
divided again into three parts, the coefficients 1, 2, 3 

are recalculated, etc.). At the first step their values are 
equal  

3

1

( 1, 2, 3)i j
j

P P i


 . 

The universality of the proposed procedure is also in the 
fact that its realization does not require a priori infor-
mation on the source intensity. 

2. Time-optimal search algorithms  
for the multi-receiver systems 

In the previous chapter of this paper optimal search 
algorithms for pulsed point sources were described, 
which assumed the using of a single receiver with arbi-
trarily tunable view window. Obviously, when using mul-
tiple receivers, the average localization time can be sig-
nificantly reduced. 

The task is to build an algorithm for finding random 
pulsed-point source using the system with an arbitrary but 
fixed number of receivers that has a minimum (statistical-
ly) average time to achieve the required localization accu-
racy. It is hardly possible to find an analytical solution of 
the problem in general, as noted in the previous section. 
Therefore, in the case of multi-receiver systems, we con-
sidered a special case that is very important from a prac-
tical point of view, when there is no a priori information 
about the probable location of the source, i.e. when the 
random point source is uniformly distributed over the 
search interval (0, L). The obvious advantage of the 
search algorithm, which is optimal for a uniformly dis-
tributed random source, is that when it is used as a source 
localization procedure with an unknown a priori distribu-
tion (and this distribution can be any), the average search 
time will correspond to the variant of the uniform distrib-
uted source in the search interval. 

The following Table 1 contains the parameters of the 
optimal search, that were calculated on the assumption 
that the receiving system has a fixed number of receiving 
devices n, the search is carried out in the interval (0, L), 
and the required localization accuracy is . The calculated 
parameters of the system were: the optimal number of 

search steps; the size of the view windows at each step; 
average optimal search time. Naturally, it was considered 
admissible and, moreover, it was assumed that not all the 
pulses generated by a random source are fixed by the 
receiving system. Due to the limitations on the volume of 
this message, Table 1 shows only the final results of the 
calculations, and all intermediate calculations are omitted. 

Table 1. Parameters of the optimal search for the random 
pulsed point source depending on the number of receivers 

n (n ≥ 2) and the required localization accuracy ε 

( / L)  
(required 

localization 
accuracy) 

optm  

, 1,m optW m m
 

(Viewing windows of 
the receiving system at 
each of  mopt stages of 

optimal search) 

< τ > 
(average 

localization  
time) 

1

1

1

(2 1)

( / )

1

(2 1)

1

n m

n m

m

L

m

m








  








  
 

 m 

1

2

1

,

1
,

2 1

...

1

(2 1)

n

m
n m

W L

W L

W L




 


 


 
m


 

1

(2 1)

1
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1

(2 1)

n m

m

n m

m

m

L






  






  
   m 

 

1

1/

(2 1)

( ) ,/

n

m

W
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  
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2

2/

(2 1)

( / ) ,

n

m

W

L L

  

    

...  

/

(2 1)
( / )

n
m

m m

W
L L

  
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1

(2 1)

( / )

n

m

m

L



 

 
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1

1

1
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e

L
e










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  


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m  

1

2

1

1

ln( / )

ln(2 1)

,
1

,
2 1

...
1

,
(2 1)

...
1

=
(2 1)

2 1
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(2 1)
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n

n

i
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m
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n

n

W L
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W

L

L


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



 





 


 



 


 


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ln ( / )

ln (2 1)n

m

L

 



 
 

 

*when  /L  0, the asymptotic number of stages m is equal  

ln( / )
.

ln(2 1)n

L
m

 



 

For comparison, Table 2 presents the parameters of the 
optimal search, calculated for a system with one receiver. 
Taking into account, that  

1lim
1m

M
e

M




    
, 

under high localization accuracy requirements, i.e., for 
( /L)  0, we have the following asymptotic relations for 
a system with one receiver: 
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ln ( / )
ln ( / ); , 1, ; .i

opt i opt opt
e L

m L W e L i m 
        



 

Table 2. Parameters of optimal search for a random uniformly distributed pulsed point source  
(for a system with one receiver) 

(/L) 
(required accuracy of localization) 

optM * 
, 1,m optW m m  

(system's search windows at each  
of Mopt steps of optimal search) 

<> 
(average time of 

localization) 

1
( / ) 1

4
L    1 1W    11
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
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*Optimal number of stages for given localization accuracy

Conclusion 

The proposed search strategies offer the prospect of 
constructing optimal localization algorithms in the case 
when the probability density function of a random source 
of pulses is different from the uniform one, and the search 
is performed by a multi-window system. Another inter-
esting and little explored direction of the problem is the 
construction of optimal search procedures aimed at simul-
taneously localizing several random sources. 
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