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Abstract: 
This work presents an alternative method to solve the nonlinear program (NLP) for 
nonlinear model predictive control (NMPC) problems. The NLP is the most 
computational demanding task in NMPC, which limits the industrial implementation of 
this control strategy. Therefore, it is important to consider algorithms that can solve the 
nonlinear program, not only in real time but also guaranteeing feasibility. In this work, 
the restricted enumeration method is proposed as alternative to solve the NLP for 
NMPC problems, showing successful results for pH control in a sugar cane process 
plant. This method enumerates in restricted way a set of final control element possible 
positions around the current one. Next, it tests all positions in that set to find the best 
one, taken as the optimization solution. 
 
Keywords: restricted enumeration method; nonlinear program (NLP); nonlinear model 
predictive control (NMPC); pH control. 
 
Resumen: 
Este trabajo presenta un método alternativo para resolver los problemas de 
programación no lineal (NLP) del control predictivo no lineal basado en modelo 
(NMPC). La NLP es la tarea más exigente en computación en NMPC, lo que limita la 
implementación industrial de esta estrategia de control. Por lo tanto, es importante tener 
en cuenta los algoritmos que pueden resolver la programación no lineal, no solo en 
tiempo real sino también garantizando la viabilidad. En este trabajo, se propone el 
método de enumeración restringida como alternativa para resolver el problema de la 
NLP en NMPC, mostrando resultados exitosos para el control del pH en una planta de 
procesamiento de caña de azúcar. Este método enumera de forma restringida un 
conjunto de posibles posiciones del elemento final de control alrededor de la posición 
actual. Luego, prueba todas las posiciones en ese conjunto para encontrar la mejor 
acción de control, tomada como la solución de optimización.  
 
Palabras clave: método de enumeración restringida; programación no lineal (PNL); 
control predictivo no lineal basado en modelo (NMPC); control de pH. 
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1. Introduction 
 
Model predictive control (MPC) is a successful control technique for plants with slow 

dynamics like chemical and petrochemical processes. Although these kind of plants are 
nonlinear, in some cases, the performance of linear MPC has been suitable (Darby & 
Nikolaou, 2012; Mayne, 2000; Rao & Rawlings, 2000; Xi, Li, & Lin, 2013). However, in order 
to improve the MPC performance a nonlinear model of the process should be used, which 
leads to nonlinear MPC (NMPC) (Chen & Allgöwer, 1998; De Oliveira, 1996).  The main 
disadvantage of NMPC is the complexity related with the resulting nonlinear optimization 
problem, which is usually nonconvex (Mishra, 2011) and must be solved in real time 
(Camacho & Bordons, 2007; Chen & Allgöwer, 1998). A typical solution to solve the 
resulting nonlinear program (NLP) in real time implies the use of high performance 
computing, however, in industrial facilities it is not available (Richalet, 1993). Additionally, 
any required complex computation for control implies an increase in maintenance protocols 
for which the fail probabilities also increase.  

Available numerical methods to solve the non-convex optimization problems for 
NMPC can be classified in three sub-groups: 𝑖) Direct enumeration, which is not very 
efficient at the computation level when the process model is not compact enough, but with 
models that can be evaluated at a good speed, this technique always produces feasible 
solutions and quite close to the global optimum; 𝑖𝑖) dynamic programming, like iterative 
dynamic programming (Luus, 1996) and blurred dynamic programming (Alkan, Erkmen, & 
Erkmen, 1994), but the disadvantage of dynamic programming methods is the high 
computation costs; and 𝑖𝑖𝑖)  heuristic methods such as genetic algorithms, Bacterial 
Chemotaxis (BCh) and simulated annealing. Although those methods provide feasible 
solutions very close to the global optimum, they consume a lot of computation time (Holland, 
1992). Therefore, to provide simple optimization procedures allows the industrial 
implementation of NMPC. The aim of this work is to propose the restricted enumeration 
method to solve the nonlinear-nonconvex optimization problem of NMPC to increase the 
possibilities of its implementation in industrial processes.         

This article is structured as follows. In Section 2, the problem formulation is stated. In 
Section 3, the optimization by restricted enumeration is proposed. Subsequently, in Section 
4 an illustrative case study is presented, showing the suitability of this proposal. Finally, 
conclusions are given in Section 5. 

 
2. Model predictive control 

 
Model predictive control (MPC) is a control technique applicable to both linear and 

nonlinear systems, which is based on optimal control theory (Camacho & Bordons, 2007). 
MPC has its roots in the development of optimal control theory in the fifties of the twentieth 
century, but achieved its consolidation as an independent technique at the end of the 
seventies. In this kind of control, a process model predicts the evolution of the variables 
over a specified finite prediction horizon. Thus, an optimal control strategy is obtained by 
minimizing an objective function, which usually includes, among others, a term related to 
the error and another that penalizes the applied control effort, all on a finite prediction 
horizon. The control action is optimized over a control horizon, which is shorter or at most 
the same as the prediction horizon. Only the first calculated control action is applied to the 
process and the optimization is repeated at the next sampling time. Several works have 
shown that MPC allows the construction of stable control laws (Camacho & Bordons, 2007; 
Chen & Allgöwer, 1998; De Oliveira, 1996; Xi et al., 2013). 

For linear system and quadratic objective function, MPC strategies are considered as 
well-founded subject in which stability, optimality and feasibility of control actions are 
guaranteed (Camacho & Bordons, 2007). In contrast, non-linear MPC arises when the 
prediction model is nonlinear and/or restrictions on the states of the process are included 
into the optimization problem. In this case, a nonlinear optimization problem must be 
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efficiently solved to obtain the control actions. Those control actions should fulfill certain 
characteristics, including their feasibility. For nonlinear systems, the nonlinear MPC can be 
formulated as shown in Equations 1a – 1e.  

 

𝑚𝑖𝑛
𝑢(𝑡)

 𝐽(𝑥(𝑡), 𝑢(𝑡)) 

𝑠. 𝑡.  

(1a) 

�̇�(𝑡)   =     𝑓[𝑥(𝑡), 𝑢(𝑡), 𝑡] (1b) 

𝑥(𝑡0) =  𝑥0 ,      𝑡 ∈ [𝑡0, 𝑡0 + 𝐻𝑝𝑇] (1c) 

0 = 𝑤1[𝑥(𝑡), 𝑢(𝑡)] (1d) 

0 ≤ 𝑤2[𝑥(𝑡), 𝑢(𝑡)] (1e) 
 

Where 𝐽(∙), Equation (1a), is the control performance objective function, 𝑥(𝑡)  ∈ ℝ𝑛𝑥 
denotes the vector of state variables and 𝑢(𝑡)  ∈ ℝ𝑛𝑢 is the vector of manipulated inputs or 
calculated control actions. Process model is represented by Equation (1b) with 
corresponding initial conditions 𝑥0, Equation (1c), while Equation (1d)-(1e)  are equality and 
inequality constraints for the process, respectively. The vector fields 𝑓(∙), 𝑤1(∙), and 𝑤2(∙) 
map from some open subsets Ω𝑓  ⊂  ℝ𝑛𝑥  ×  ℝ𝑛𝑢  ×  ℝ  and Ω𝑤  ⊂  ℝ𝑛𝑥  ×  ℝ𝑛𝑢  into ℝ𝑛𝑥 , 

ℝ𝑛𝑤1 , and ℝ𝑛𝑤2 , respectively,  and are assumed to be continuous in Ω𝑓  and Ω𝑤 , 

respectively. 𝐻𝑝 is the prediction horizon and 𝑇 the sampling period.   

 

In general, 𝐽(∙) is expressed as shown in Equation 2. 
 

𝐽(𝑥(𝑡), 𝑢(𝑡)) =  𝜓(𝑥(𝑡), 𝑢(𝑡), 𝑡0, (𝑡0 + 𝐻𝑃𝑇)) + ∫ 𝑥(𝑡)𝑇𝑄𝑥(𝑡)

𝑡0+𝐻𝑃𝑇

𝑡0

 

                              + ∫ 𝑢(𝑡)𝑇𝑅𝑢(𝑡)
𝑡0+𝐻𝑢𝑇

𝑡0
  

 
 
 

(2) 

 

Where 𝜓(∙) is a penalty function based on initial and terminal conditions of the system 

and integral terms evaluate the state transient behavior of the system for 𝑡 ∈  [𝑡0, 𝑡0 + 𝐻𝑝𝑇] 

and the control action behavior for 𝑡 ∈  [𝑡0, 𝑡0 +  𝐻𝑢𝑇] with 𝐻𝑢 the control horizon. 𝑄 and 𝑅 
are positive definite matrices acting as weights for representing the  biased solution 
between minimum error in process output but reduced control effort.   

The basic MPC structure used in this paper is shown in Figure 1, where it is assumed 
that the complete state vector is available from direct measurements at the plant. This 
assumption was considered to avoid the implementation of a state estimator and to make 
easier the validation of the proposed optimization methodology. However, the use of this 
proposal with one or more estimators for those non-measured states is direct.   
 

 
Figure 1. Model predictive control structure. The state vector of the plant is assumed completely 

available. 
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As shown in Figure 1, the prediction model uses both input (manipulated and 
disturbances) and output information (states as measured variables) to compute the future 

estimated states 𝑥(𝑘 + 1|𝑘), … , 𝑥(𝑘 + 𝐻𝑝|𝑘) for a future horizon 𝐻𝑝. At sampling time 𝑘, the 

MPC given by  Equation (1), predicts the set of control actions 𝑢(𝑘), … , 𝑢(𝑘 + 𝐻𝑝 − 1), which 

allow that the states track a predefined trajectory over the prediction horizon 𝐻𝑝. This is 

possible with the manipulated variable executing the computed movements in the control 
horizon 𝐻𝑢 < 𝐻𝑝  and guaranteeing feasibility respect to equality, Equation (1d), and 

inequality, Equation (1e), constraints. From time instant 𝑘  to time  𝑘 + 1 , only the first 
element of the computed sequence of manipulated variables is applied to the process. At 
𝑘 + 1 all the measurements are actualized allowing the prediction model to use 𝑥(𝑘 + 1) 
and 𝑢(𝑘) to compute the future state vector. The prediction horizon 𝐻𝑝 and control horizon 

𝐻𝑢 move a step forward, which is called moving horizon control.   
The solution of the optimization problem is the part of the NMPC algorithm with the 

highest computational cost, in particular when the considered model is non-linear and 
constraints are included. To this aim, in a general approach three kind of numerical methods 
can be used: 𝑖) Direct enumeration, 𝑖𝑖) Dynamic programming methods (Alkan et al., 1994; 
Aydin, Bonvin, & Sundmacher, 2017; Binder, Cruse, Villar, & Marquardt, 2000; Holland, 
1992), and 𝑖𝑖𝑖) Heuristics methods. In this work, a direct enumeration method is proposed, 
which consists in the generation of possible control vectors to find a minimum value for the 
NMPC objective function. This control vectors are the position of the FCE during the 
prediction horizon Hp. It should be notice that the attained “degree of optimality” of the 
problem depends on the amount of control vectors that are generated. Under these 
circumstances, there are three different techniques to generate possible control vectors: 
Random, staggered and restricted enumeration. Random and staggered techniques chose 
the control vectors without knowledge of the process, while the restricted enumeration not 
only includes possible positions of actuator but also takes into account the dynamic 
response of the used final control element (FCE). The construction of this set of FCE 
movements imitates the branch and bound technique to solve decision trees used in 
Artificial Intelligence (AI). In this way, a drastic and organized reduction of the search space 
is obtained, and the time for solving the NMPC optimization problem is reduced compared 
to direct enumeration methods. Thus, the method of generating control vectors by restricted 
enumeration allows an organized and successful choice of the “near to best” control action 
at each sampling time unlike the other two previous methods (random and staggered). This 
technique is considered in this work and described in the following section. 

 
3. Optimization by restricted enumeration 

 
Optimization by restricted enumeration (ORE) is a numerical method to solve 

nonlinear optimization problems. Some previous works report similar approaches to other 
tasks not related to MPC (Vatter, 2008) and (Zenem, Chehade, & Yalaoui, 2012). As it is 
known, the major obstacles to implement model predictive control (MPC) at industrial 
environments are two: the availability of a precise enough process model and the 
computational burden of optimization into MPC algorithm. The model availability is being 
solved with increasingly powerful modeling techniques. However, for reducing the 
optimization computational burden, it is necessary to try new approaches. In this sense, the 
ORE approach proposed here offers a set of possible solutions to the optimization problem. 
It should be highlighted that mentioned enumeration is non-exhaustive, i.e., only a part of 
all possible solutions are tested. The real movement capability of the final control element 
(FCE) is used as the criterion to perform the enumeration among all possible and feasible 
solutions. Compared to heuristic and gradient-based optimization methods, ORE is a 
technique with less computation effort and inherent convergence. Its application to MPC 
optimization solving was not found in the literature as a single topic. Additionally, ORE takes 
into account the characteristics of the FCE with a direct and simple industrial 
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implementation. According to (Alvarez, 2000), ORE requires the following steps, which are 
modified in this paper for including the option of control horizon 𝐻𝑢 greater than 1.0: 

 
(1). Create a grid step 𝛥𝑢  from the current position of the FCE acting over the 

manipulated variable, such that (Equations 3a – 3c): 
 

𝑢𝑖(𝑘 + 1) =  𝑢(𝑘) + 𝑖 𝛥𝑢 (3a) 

𝑖 =  − 𝑝, −𝑝 + 1, … ,0, … , 𝑝 − 1, 𝑝 (3b) 

𝑝 =  
1

2

(𝑢𝑔𝑚𝑎𝑥(𝑘) − 𝑢𝑔𝑚𝑖𝑛(𝑘))

𝛥𝑢
 

(3c) 

 
where 𝛥𝑢 is selected as an enough fine and feasible FCE movement with detectable 
effect over process state. Note that coarse 𝛥𝑢 values will produce non-smooth state 

changes. Contrary, very fine 𝛥𝑢  values will produce excessive computational 
burden and possibly the FCE will be unable to execute those fine movements. The 
𝑔 subindex indicates the grid current range of FCE incharged of execute the control 

action 𝑢. This generates the new dynamic restriction 𝑢𝑖(𝑘) ∈ (𝑢𝑔𝑚𝑎𝑥(𝑘), 𝑢𝑔𝑚𝑖𝑛(𝑘)), 

with the limits calculated as: 
 

𝑢𝑔𝑚𝑎𝑥(𝑘) = 𝑢(𝑘) + 𝑣𝐹𝐶𝐸𝐻𝒖𝑇 (4a) 

𝑢𝑔𝑚𝑖𝑛(𝑘) = 𝑢(𝑘) − 𝑣𝐹𝐶𝐸𝐻𝒖𝑇 (4b) 

 

with 𝑣𝐹𝐶𝐸 the operative speed of FCE in % of movement per second, 𝐻𝒖 the number 
of movements considered for the FCE during optimization (called control horizon) 
and 𝑇 the time step of NMPC in seconds. The difference between 𝑢𝑔𝑚𝑎𝑥(𝑘) and  

𝑢𝑔𝑚𝑖𝑛(𝑘) is called the restricted range of enumeration. This is the reason to call the 

current proposal as restricted enumeration, contrary to the known total enumeration.  
 

(2). Eliminate from previous found grid all control actions out of feasible FCE range. In 

this way it is guaranteed that 𝑢𝑖 ∈ (𝑢𝑚𝑖𝑛 , 𝑢𝑚𝑎𝑥), with 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 the extremes of 
real FCE, i.e., negative positions or FCE positions over 100% are not considered.  

 
(3). Test one to one each position of the final feasible stated grid around the current FCE 

position. Select as the best feasible control actions sequence (CAS) 𝑢𝑖(𝑘 +
1), … , 𝑢𝑖(𝑘 + 𝐻𝑢), which maxims the improvement of objective function for the MPC, 
Equation (1). The selected CAS is the solution to the optimization problem, which is 
feasible but not necessarily a local or global minimum.      

 

Note that the ORE method requires to tune only one parameter, namely 𝛥𝑢, because 
the other parameters: 𝑢𝑚𝑎𝑥, 𝑢𝑚𝑖𝑛, and 𝑣𝐹𝐶𝐸, are known from FCE coupling with the process 
and from FCE manufacturer manual. 𝑢𝑔𝑚𝑎𝑥(𝑘) and 𝑢𝑔𝑚𝑖𝑛(𝑘) are time-dependent and must 

be calculated at each 𝑘 time, as it was shown. The option of one-step ORE and multi-step 
ORE is possible after modification proposed above regarding the original proposal. Next, 
these two options are exposed. 

 
3.1 One-step ORE (𝑯𝒖 = 𝟏) 

 
The idea in this case is to select, from the set of generated and refined possible control 

action, the best one that minimizes the objective function of MPC (1) with 𝐻𝑢 = 1. The 
refined grid with the feasible FCE movements for current control actions is illustrated in 
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Figure 2. Due to 𝐻𝑢 = 1 no subsequent movements of FCE are executed for 𝐻𝑢 > 1, i.e., 
after 𝑘 + 1 all FCE positions are equal to the selected 𝑢(𝑘 + 1) until reaching the 𝐻𝑝.        

 
 

 
Figure 2. Set of generated control action with 𝐻𝑢 = 1 and prediction horizon 𝐻𝑝. 

 
3.2 Multi-step ORE (𝑯𝒖 > 𝟏) 

 
Contrary to previous option, multi-step ORE changes the control action during two or 

more steps into the prediction horizon, in accordance with the control horizon value 𝐻𝑢. 
Each FCE movement is calculated following the three-step procedure given above. In 
Figure 3 this option is illustrated for 𝐻𝑢 = 4. In the same way that applied for one-step ORE, 
here after the fourth FCE movement the rest of FCE positions are keeped constant and 
equal to the last one 𝑢(𝑘 + 4), until reach the end of the 𝐻𝑝.   

 

 
Figure 3. MPC operation using multi-step ORE with four steps forward (𝐻𝑢 = 4). In red the optimal 

control action sequence found after optimization executed. 
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Multi-step ahead approach to implement ORE suffers of the curse of dimensionality. 

For example, trying 20 possible control sequences with three-step ahead control horizon, 
the number of option to be tested is 8000 control actions combinations. Obviously, this is 
very time consuming requiring strategies to reduce that explosion of options to be tested. 
Among that strategies, the most easy to use and enough effective to reduce the number of 
combinations is to propose valve movements favoring the process error reduction. In that 
way a half of options is immediately reduced. If the same criterion is applied over the future 
errors detected by prediction with the model into the prediction horizon, a bigger reduction 
in the options to be tested is reached. That strategy is the used here only to determine the 
time reduction in the optimization time during NMPC execution. 

 
4. Illustrative case study 

 
Currently, most of the industries deal with a changing market which is difficult to 

predict. The consumers demand better characteristics and specifications of products, while 
the companies try to improve performance and profitability indexes. In addition, the 
processing of agricultural commodities implies the variability of raw materials regarding the 
interesting compound. In spite of these situations, the final product must have the same 
quality. For this purpose, it is necessary to implement advanced control strategies for 
industrial processes that operate at multiple operating points and achieve optimal 
conditions.  

The case study considered in this work corresponds to the pH control of sugar cane 
juice in the sugar industry. pH is an important variable to be tracked in order to keep the 
standard of final sugar. The aim is to control the pH in the alkalinization section of a sugar 
cane plant. Alkalinization is a part of juice clarification sub-process, but affecting 
subsequently processes as evaporation and crystallization. During alkalinization, the juice 
is added with a lime slurry to compensate the pH after sulphitation process, as it is illustrated 
in Figure 4. The purpose of this process is to neutralize the juice to 𝑝𝐻 = 7.0 dealing with 
the highly nonlinear and complex dynamics inherent to pH variable. Note that these facts 
difficult the use of conventional control systems as PID. 

 
Figure 4. Alkalinization section of a sugar cane plant for pH control. 

 
For controlling this process, it is used the phenomenological based semi-physical 

model (PBSM) developed in (Isaza & Alvarez, 2011) for the alkalinization stage of the sugar 
cane plant La Unión S.A, located in Guatemala. In this model, the variables are classified 
as follows: the controlled variable is the pH of the alkalized juice, the manipulated variable 
is the flow of lime slurry, also called whitewash, and the most common disturbances in the 
process are the flow of sulphited juice, the pH of sulphited juice and the pH of lime slurry, 
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which changes with the aging of the slurry. Table 1 shows the operating ranges of the 
variables involved in the process. 

For the simulation study, three disturbances are considered: the reduction in the flow 
of sulphited juice at 1 minute after beginning at stationary state, the reduction in the pH of 
sulphited juice at 6 minutes, and the increase of pH of lime slurry at 12 minutes, as shown 
in Figure 5. These disturbances are commonly found at the sugar cane clarification process 
in the real plant. This fact justify their use here.  

 
Table 1. Variables classification and operation conditions of alkalinization section of a sugar cane 

plant. 

Variable Unit Operating range 

Flow of lime slurry (𝐹2) gpm [10 −  40] 
Flow of sulphited juice (𝐹1) gpm [500 −  2100] 
pH of lime slurry (𝑝𝐻2) pH [11.7 −  12.2] 
pH of sulphited juice (𝑝𝐻1) pH [4.1 −  5.0] 
pH of the alkalized juice (𝑝𝐻3) pH [5.7 −  8.7] 

 
Figure 5. Disturbances applied over the process: flow of sulphited juice, the pH of sulphited juice 

and the pH of lime slurry. 

 
In order to reject these disturbances, a PID controller tuned using the technique 

presented in (Isaza & Alvarez, 2011) is used as the first option (the initially installed in that 
process). The performance of this controller faced with mentioned disturbances is shown in 
Figure 6. The pH behavior is oscillatory without stay over the set point during all the time. 
The disturbances effect is immediately reflected on pH as changes on oscillation amplitude. 
In the same way, the final control element output is oscillatory too, causing high mechanical 
stress to the valve dosing the lime slurry. It should be highlighted that negative flows of lime 
slurry were accepted in simulation to maintain unchanged the simulation program. 
Obviously, an IF structure put in the code conduce to the saturation of controller output at 

0% with the real consideration of those flow conditions are unfeasible in a real process. 
Several tuning alternatives where tested to improve the PID response, being the presented 
in this figures the best one obtained, indicating that Derivative effect is put in the control at 
its lower value (0.016), only to maintain the full PID structure. In addition a filtering of the 
pH signal is applied to reproduce the built-in electronic filter of the used pH transmitter 
(Hanna Instruments).  

As it can be seen, the PID response is poor due to its inability to predict the typical 
abrupt changes on pH response, totally caused by the strong nonlinear behavior of this 
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variable when small disturbances appear. That poor response of PID loop leads to think in 
using a NMPC as a feasible strategy to improve the pH control performance. Here, a NMPC 
strategy using the optimization algorithm proposed in this work, namely ORE, is illustrated. 
In spite of proofs with ORE using control horizon greater than 1.0, the simulation results 
presented here are for control horizon of 1.0. The nonlinear PBSM is used not only as the 
predictor for the NMPC but also to simulate the process response. This is not a limitation 
because the model is used in its complete version or with all its nonlinear characteristics in 
both tasks. Figures 7 and 8 correspond to the pH variable and the movements of the valve 
dosing the lime slurry or whitewash flow, respectively, both using the NMPC using ORE 

with control horizon equal to 1.0. 

 
Figure 6. Time evolution of pH and control variable for the alkalinization section of a sugar cane 

plant. 

 

 
Figure 7. Time evolution of controlled variable: pH of alkalized juice. 

 

It is evident the better response of the process when the NMPC is used compare to 
PID response. The pH behavior is less oscillatory with only the typical overshoot produced 
by the first effect of disturbance. After that, the prediction ability of the NMPC compensates 
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the disturbance long term effect maintaining the pH at the stated set point (SP). The final 
control element (FCE) movements are smooth and sequentially reached, due to the 
optimization by restricted enumeration used to solve the optimization problem of NMPC. 
The evident conclusion is the small mechanical stress to which the control valve is 
subjected. This fact, in addition to the better controlled response indicates the superiority of 
the NMPC over conventional PID control strategy, as it is expected. The ideal situation is to 
compare the current proposal with an industrial MPC structure. However, here the 
comparison was done regarding a PID controller because this kind of controller is the 
current one installed in the real process. 

 
Figure 8. Time evolution of manipulated variable: flow of lime slurry. 

 
Regarding computational cost of NMPC solved with ORE vs. NMPC solved with 

known optimization algorithms, a test was done indicating a reduction of near to 70% of 
computational cost for optimization executed using Matlab code. This results is for ORE 
with only one-step ahead or control horizon equal to 1.0. For control horizon of three, the 

reduction in computation time is less significant, being of only 30%. However, using a 
control horizon of 1.0 the performance of NMPC is the presented in previous results, which 
is enough to prefer ORE regarding other optimization approaches. In addition, the program 
to execute ORE with one-step ahead is as simple as it could be written with little lines of 
code in typical PLC platform. Its main characteristic is the absence of elaborated 
calculations to execute the optimization with the only requirement of solving the nonlinear 
PBSM of the process for different input or control action values. In that sense, other option 
is to convert the PBSM in format of differential and algebraic equations to a fuzzy inference 
systems, particularly Takagi-Sugeno as it is illustrated in (Isaza & Alvarez, 2011). Using that 
approach, the computation time is drastically reduced because to solve a Takagi-Sugeno 
FIS only require the basic mathematical operations. All these facts indicate the high 
applicability of ORE at industrial environments when the computational hardware is limited. 

 
5. Conclusions 

 
The main restriction of the industrial use of advanced control techniques is the 

complexity and robustness of their algorithms. From the practical point of view, the 
optimization by restricted enumeration (ORE) method was implemented showing feasible 
results. However, the most important contribution of the ORE method is its algorithmic 
simplicity, which is easily programmable in industrial control equipment such as a PLC. 
Thus, industrial implementation of advanced control techniques based on optimization is 
enhanced. 

As a future work to extend the control horizon for multi-steps ORE, the number of 
possible combinations that this method requires to solve the optimization problem must be 
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reduced. A predictive controller with enough dynamic information of the near future of the 
plant will have more possibilities to correct errors or future disturbances. In other words, it 
is not the same to excite the prediction model once and to keep the control action value 
during the prediction horizon, than to excite the model with a variable control action, which 
allows the model to exhibit dynamic characteristics of interest such that there is greater 
predictability on future plant behavior. 
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