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Neurodegenerative diseases are divided into acute 

cases, like spinal cord injury (SCI) and brain 

ischemia (BI), in which different types of both 

neurons and glial cells restricted to the stroke site are 

lost over a short period of time (1, 2), and chronic 

cases such as Alzheimer disease (AD), Parkinson 
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Neurodegeneration is a general term for the progressive loss of structure and/ or function of neurons, 

gives rise to dysfunction or death of neurons. Neurodegenerative diseases including Alzheimer´s disease 

(AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), 
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therapeutic means using different types of stem cells, mainly adult stem cells (ASCs), to treat 

neurodegenerative diseases. 
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disease (PD), Huntington’s disease (HD), 

amyotrophic lateral sclerosis (ALS), multiple 

sclerosis (MS), that dysfunction or death of 

neurons and/or glial cells happen over the years. In 

chronic state, degeneration process could be 

widespread/general (i.e. affect many types of 

neurons in AD) or selective involving just one 

specific type of cell (e.g. dopaminergic neurons in 

PD and motor neurons in ALS) (3-5). However, 

currently there are no available treatments, and 

drugs are entirely palliative for these diseases, 

finally leading to progressive loss of sensation, 

cognition, and motor neurons and gradual 

paralysis of the patient (4). Therefore, stem cells 

have been proposed as a promising treatment for 

neurodegenerative diseases (1).  

Most of the studies in stem cell-based therapy for 

neurodegenerative diseases have been conducted 

preclinically in animal models which have shown 

stem cells could differentiation into neuronal and 

glial cells, promote functional recovery of nervous 

tissue, affect endogenous cells, decrease motor 

impairments by trophic support and also prevent 

detrimental events associated with 

neurodegenerative disorders (6-9). In addition, 

there are some evidence from clinical trials 

indicates the same results as preclinical studies, 

although they are not consistent and convincing at 

this time (7, 10-13). Moreover, there are many 

planned and ongoing clinical studies investigating 

different aspects of stem cell therapies for 

neurodegenerative disorders (please refer to 

https://clinicaltrials.gov), which is growing every 

day.  

Many different sources of stem cells have been 

examined to determine which one is the most 

efficacious for stem cell therapy of 

neurodegenerative diseases (14-16). In addition to 

embryonic stem cells (ESCs), stem cells derived 

from adults tissues/organs are of keen interest 

because they are readily available sources of stem 

cells and easily expanded in vitro without ethical 

problems and no tumor formation report so far (17, 

18). The key benefit of adult stem cells (ASCs) is 

that they can be harvested from various sources 

frequently and possibility to use in autologous 

therapy. This omits the risks, ethical and religious 

problems and immunorejection issues that 

allogeneic ESCs have. However, their limited 

differentiation potential restricts universal use of 

ASCs (17, 19). In recent years, extensive efforts 

have been carried out by investigators to successfully 

generate neurons and glial cells from different types 

of stem cells, and to exploit other beneficial aspects 

of stem cells to treat neurological diseases. We 

review here previously published experiments, 

animal studies and clinical trials involving stem cells 

based treatment for neurodegenerative diseases and 

discuss the potential future perspective for stem cell 

therapy of neurological diseases in the clinical 

setting. 

 

Degenerative disorders of the central nervous 

system (CNS) 

Central nervous system (CNS) consists of brain and 

spinal cord, as well as their coverings which has 

special features such as diverse and complex cytology 

and topography, axoplasmic transport, 

neurotransmitters, myelin, three classes of 

intermediate filaments (i.e. vimentin, glial fibrillary 

acidic protein (GFAP), and neurofilaments), separate 

population of interstitial cells, glia cells, 

cerebrospinal fluid, blood brain barrier, absent 

lymphatic vessels and lymph nodes, and etc. Some 

conditions such as programmed aging (20), 

disruption of extracellular matrix (ECM) (21), 

deterioration by oxidative stress (22), and insufficient 

protein degradation and subsequently accumulation 

of misfolded proteins (23) could give rise to synaptic 

loss and neural or glial cells damage in CNS. For 

instance, aging through loss of brain parenchyma, 

shrinkage of large neurons, cellular gliosis, 

intraneuronal (intraglial) aggregation of proteins, 

viruses or lysosomal substrates affects CNS to 

develop neurodegenerative conditions (20). 

Generally, neurodegenerative diseases such as AD, 

PD, HD, AML and MS have unknown etiology and 

associated with progressive dysfunction/death of 

neurons or their systems due to biochemical, 

structural and functional changes selectively or 

widespread which result in dementia (memory and 

cognitive impairment) and/or severe motor 

impairment (1, 4, 20). However, understanding of 

disease pathology in each case would be certainly 

required to develop stem cell based strategic plan/s. 

Hence, we aimed to mention pathology of each 

specific disease. For instance, AD is a widespread 

chronic case caused by neuronal loss throughout the 

brain; involve the basal forebrain cholinergic system, 

hippocampus, amygdala and several cortical areas 
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(grey matter) with pathological characteristics of 

cortical atrophy, β-amyloid senile plaques 

(extraneuronal), and neurofibrillary tangles 

(intraneuronal) accumulation. One of possible 

mechanisms of synaptic and neural toxicity in 

Alzheimer’s disease has been shown, in part, is 

due to β-amyloid and Tau proteins 

hyperphosphorylation and aggregation (4). AD is 

the most prevalent form of dementia. This 

intractable degenerative disease was first 

explained by German neuropathology’s and 

psychiatrist Alois Alzheimer in 1906 and was 

entitled AD after him (24). 

Other neurodegenerative disease, PD, is a selective 

chronic disease caused by the progressive death of 

a specific population of the cells, i.e., 

dopaminergic (DA) neurons in the substantia nigra 

and reduced DA stimulation in the striatum. PD is 

the second most prevalent form of dementia that 

like AD, researchers haven’t yet found the cure of 

PD. People with PD use therapies that increase 

their dopamine levels (10). The most current 

effective drug for treatment of PD is levodopa 

(Sinemet), because it directly converted into 

dopamine in the brain (25). 

 

Moreover, AML is an adult-onset 

neurodegenerative disorder caused by 

degeneration and loss of motor neurons in the 

cerebral cortex, brainstem and spinal cord, leading 

to fatal paralysis. HD is another incurable disorder 

which caused by expansions of polyglutamate in 

the huntingtin protein. HD characterized by 

neuronal dysfunction and degeneration contribute 

to the progressive physiological, cognitive, 

sensational and motor impairments. MS is a CNS 

autoimmune disease contributed to degradation of 

myelin that sheath affects axonal signals transport 

of neurons, eventually leading to progression of 

the disease range from fairly benign to extremely 

debilitating. Unlike AD, PD, HD and ALS, MS 

predominately affects usually young adults, and 

also females affected nearly twice as often as 

males. Again, purely symptomatic treatments are 

currently available for MS patients. 

In addition to chronic neurodegenerative 

processes, acute disorders of the CNS as a result of 

ischemic or trauma still are a big challenge for 

medicine (26). Focal tissue loss caused by cerebral 

artery occlusion in ischemic stroke of brain leads to 

the death of oligodendrocytes, and astrocytes, in 

addition to multiple types of neurons (5). Similar 

situation exist in spinal cord injury (SCI) due to 

traumatic damage to the spinal cord which commonly 

caused by vehicle accidents, sports injuries, and 

traumatic injury in the workplace (2). Loss of 

oligodendrocyte and axonal demyelination are major 

secondary damages after injury of SCI contribute to 

pathological processes (27).  

How regeneration works 

There is homeostasis in the human body which means 

that the tissues/organs are able to regulate internal 

conditions against external changing conditions, 

usually by feedback controls, and stabilize whole 

body functioning and health (28, 29). One part of 

homeostasis is the periodic or constant generation of 

new cells to repair or replace damaged/dying cells 

which is called regeneration. Adult (tissue) stem cells 

(ASCs) normally remain quiescent unless they 

received activation signals to divide through a 

process called asymmetric cell divisions. Through 

this process they can maintain their populations and 

also differentiate into the desired cell types by 

creation of a progenitor (more committed cells) for 

tissues regeneration (29, 30).  

ASCs have located in throughout the body. These 

stem cells reside in a particular microenvironment of 

tissues/organs called the “niche” which fosters the 

growth, proliferation and differentiation of resident 

stem cells. Damages to tissues, signals they receive, 

and changes in the stem cell niche can activate them 

to take part in tissue/organ regeneration (28-30). 

The CNS has a limited regeneration potential which 

is a main challenge to develop new effective 

therapeutic strategies to induce its functional repair. 

Already, various types of stem cells have been 

proposed as a viable therapeutic option for 

degenerative diseases as they possess high 

proliferation capacity and able to differentiate into 

multiple lineages (30-32). Alternatively, through 

paracrine mechanisms, stem cells are also capable of 

influencing their microenvironment, maybe by 

sharing soluble secretory factors, and exosome 

(vesicle) containing proteins, coding RNAs and even 

non-coding RNAs including miRNAs and lncRNAs 

(29, 33, 34) (Figure 1). 
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Figure 1. Mechanism of regeneration for neurodegenerative diseases by stem cells. Stem cells by asymmetric cell division 

proliferate, maintain cell populations, create progenitor cells, help to heal, and play a critical role in regeneration, more 

importantly, by secreting paracrine factors influence on neighboring cells. 

 

There are four wide categories of stem cells 

considering their origin: embryonic, fetal, induced 

pluripotent stem (iPS) cells and ASCs (4, 30). 

Among ASCs, hematopoietic stem cells (HSCs) 

frequently found in the bone marrow, as well as in 

umbilical cord blood and placental tissue. They 

produce all the blood cell types including myeloid 

(e.g. macrophages, erythrocytes, monocytes, 

eosinophil, neutrophils, basophils, dendritic cells, and 

platelets) and lymphoid (i.e. B-cells, T-cells, and NK-

cells) (35, 36). As it is obvious, HSCs could not be 

differentiated into neurons and glial cells, rather it 

normally used to completely replace abnormal 
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immune system of a patient in usually 

autoimmune-based disease like MS (37).   

Another type of ASCs is neural stem cells (NSCs) 

located in (1) subventricular zone lining the lateral 

ventricles, and (2) subgranular zone, part of the 

hippocampus (38). NSCs can easily differentiate 

into neurons, oligodendrocytes and astrocytes (39, 

40), however, they are hard to obtain, and also 

their ex vivo expansion and maintenance are hard 

(38, 40).  

Rather than HSCs and NSCs, MSCs is considered 

as a more attractive type of ASCs possesses ten 

clinically interesting properties as shown in Figure 2. 

MSCs found in many adult organs but currently from 

bone marrow, adipose tissue, and cord blood are 

easiest to isolate (33). MSCs could be differentiated 

into cartilage cells, muscle cells, fat cells, bone cells, 

ligaments, tendons, and connective tissue cells. 

Although MSCs has mesodermal origin, interestingly 

they might differentiate into endodermal cell linages 

such as hepatocytes and ectodermal origins including 

neurons and glial cells (31), but with low efficacy and 

under special condition medium (3, 41).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Ten properties of mesenchymal stem cells (MSCs) that make them more attractive for clinic. These properties 

represent intriguing aspect of MSCs, introducing the possibility that these cells might be used as effective therapy in 

neurodegenerative diseases. 

Neural replacement purpose 

Clinically, stem cell therapy of neurodegenerative 

diseases must give rise to long-lasting amendment 

in sensory, cognitive and motor neurons, disease 

symptoms, or undo disease stem cell-based 

therapies by replacement strategies; stem cell-

based therapies by replacement strategies; 

generating neurons and glial cells successfully 

from stem cells (7, 42). 

 

 

 

 

Studies have indicated that it is possible to generate 

all neural cell types as well as glial cells in culture 

from stem cells of various sources, including ESCs 

(43-49), iPSCs (50, 51), 

NSCs (52-56), and even from the MSCs (3, 40, 57). 

For example, for stem cell therapy of PD, 

dopaminergic (DA) neurons with the properties of 

substantia nigra neurons have been generated from 

human ESCs by several studies (58-60). More 

recently, Hwang et al. have shown that ESC-derived 

neural progenitor cells (NPCs) cultured in media 
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supplemented with sonic hedgehog (SHH) and 

retinoic acid (RA) could be efficiently 

differentiated into DA neurons and following 

transplantation in SCI rat model, dramatically 

attenuate the chronic neuropathic pain (61). 

Additionally, there are several great review article 

about clinical trials have examined transplantation 

of human fetal DA neurons or NSCs; suggesting 

that cell replacement strategy can produce long-

lasting improvement in PD patients (62, 63). 

 

 In another study, ESC-derived NPCs genetically 

modified by brain-derived neurotrophic factor 

(BDNF) to promote differentiation into the 

GABAergic neurons which are suitable to 

treatment of PD and SCI (64). Recently, allograft 

of ESC-derived NSCs/NPCs into the cerebrospinal 

fluid of nonhuman primate model of SCI led to 

improved motor function, but whether these 

neurons could integrate into existing circuitries has 

not been yet determined (65). Importantly, Pan et 

al. by studying axonogenesis of ES-derived motor 

neurons have shown that aberrant axon 

morphology was still present after engraftment of 

GFP- positive neurons into the SCI, suggesting 

that even a mature neural environment may fail to 

provide a proper niche to guide normal axon 

formation. These findings emphasis necessity for 

exanimating the functionality and morphogenesis 

of neurons before the clinical trials using ESCs or 

ASCs (66). First-in-human (FIH) trials have 

received approval in the United States in January 

2009 to initiate a clinical trial assessing a human 

ESCs-derived oligodendrocyte, named 

GRNOPC1, by the Geron Corporation, for 

treatment of severe SCI (67). Chapman et al. have 

evaluated the ethical issues raised by the Geron 

FIH trial and then recommended ways to improve 

future proposed trials with novel stem cell 

therapies (67). 

As mentioned above some examples, for 

replacement therapy, most of studies have used 

ESCs, or NSCs; however, several attempts have 

been done to induce MSCs towards neural and 

glial cells aim to use them as a neural replacement 

strategy (57, 68-71). For instance, to solve the 

problems of low differentiation rate of MSCs, 

Dezawa et al. efficiently induce differentiation of 

both rat and human BM-MSCs into neuronal cells 

using gene transfection with Notch intracellular 

domain (NICD) and subsequent treatment with 

trophic factor such as bFGF, forskolin, and ciliary 

neurotrophic factor (CNTF). Interestingly, further 

pretreatment of the induced neuronal cells with 

GDNF generated more specialized population, i.e. 

tyrosinehydroxylase (TH)+ cells and DA neurons. 

Following intrastriatal transplantation of these 

GDNF-treated cells, behavioural improvements 

appeared in animal model of PD (57).  

 

In other study, it has been revealed that rat BM-MSCs 

induced by treatment of bFGF and neurotrophin 3 

(NT-3) can transdifferentiate into neural-like cells in 

culture (68). Additionally, it has been further 

demonstrated human BM-MSCs under conditions of 

cocultured with olfactory ensheathing cells (OECs) 

and daily supplement of  bFGF could be 

differentiation into neural-like cells  (71).  

Paracrine effects and trophic supports 

Whereas neuronal and glial cells replacement in 

neurodegenerative disease seems to be a long-way 

goal, using stem cells to prevent CNS cells from 

dying is a more realistic and short-term approach to 

reach clinic. This perspective is supported by the fact 

that most of clinical trials (107 out of 190) focused on 

using MSCs injection into the CNS to treat 

neurodegenerative diseases, traumatic spinal cord 

injury and brain ischemia, mainly by beneficial 

paracrine effects of these cells (Table 1). 

 

Unlike studies using other stem cells, MSCs have 

been transplanted without prior in vitro 

differentiation in most studies aimed to use its 

beneficial paracrine effects. As a proof of the concept, 

Vercelli et al. demonstrated that human MSCs are a 

good candidate for ALS cell therapy because they can 

migrate and survive after transplantation in the 

lumbar spinal cord; prevent microglial activation and 

astrogliosis, decrease motor neuron cell death 

through paracrine actions, thus ameliorate the motor 

performance in an experimental ALS model (72). 

 

 

 

 

 

 

Table 1. Clinical trials that have been conducted using stem cells to treat various neurodegenerative diseases. The 

number clinical trials targeting treatment of these diseases by stem cells have been presented in this table. Up to now, 

more than 190 clinical trials worldwide (completed, planned, and ongoing) have applied different types of stem cells, 

mainly MSCs, as treatment for a neurodegenerative disease including Alzheimer´s disease (AD), Huntington’s disease 

(HD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), spinal cord injury (SCI) 

and brain ischemia (BI). The data collected from https://clinicaltrials.gov on 1th, January, 2016. 

 

Type of cell AD PD HD AML MS SCI BI 

https://clinicaltrials.gov/
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However, more recently, Mazzini et al. presented 

the results of a long-term follow-up of 19 ALS 

patients using autologous MSCs transplanted into 

the dorsal spinal cord which showed no obvious 

clinical benefits (73). Recently, Salem et al. have 

explored the possible therapeutic potential of 

single intravenous (IV) injection of BM-MSCs in  

treatment of AD experimental model compared 

with 2 conventional therapies of AD; cerebrolysin 

and rivastigmine administered daily. They 

observed significant improvement BM-MSCs after 

4 months against AD rather than the reference 

drugs, suggesting that paracrine properties have 

important therapeutic roles. In addition, 

histopathological examination showed that BM-

MSCs could remove beta-amyloid plaques from 

hippocampus (74). Moreover, it has been revealed 

that BM-MSCs were able to migrate on the brain 

and remove β-amyloid senile plaques from the 

hippocampus and reduce β-amyloid depositions by 

the activation of endogenous microglia in an AD 

mouse model (74, 75). Similarly, in additional 

studies, it has been shown that hMSCs reduce 

deposition of β-amyloid, improve synaptic 

transmission and memory deficits (76, 77).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recently, the potential efficacy of adipose tissue-

derived hMSCs in treatment of HD has been also 

confirmed. They observed that even 

xenotransplantation of human AT-MSCs could be 

counteracted neurodegeneration caused by HD and 

ameliorate some behavioral impairments (78). In a 

clinical study, followed-up to 5 years, intravenous 

autologous MSCs transplantation showed safe for 

ischemic stroke patients. Interestingly, clinical 

improvements had been associated with serum levels 

of stromal cell-derived factor-1(SDF-1) and the 

degree of involvement of the subventricular region of 

the lateral ventricle, showing that recovery after 

stroke is depend on the specific characteristics of the 

patients (79). 

Many other studies have shown that MSCs primarily 

through paracrine actions can promote endogenous 

neurogenesis (80-82), decrease apoptosis of 

bystander cells (81, 83), reduce levels of free radicals 

especially in ischemic condition (84), encourage 

neurorestoration (85, 86), modulate inflammation 

(87-89) and etc. 

Also, NSCs has been demonstrated that act through 

neurotrophic factors and promote axonal growth in 

spinal cord injury (90-92). For instance, a study has 

been shown that hESC-derived NPCs transplanted 

 into the cerebral ventricles of an MS mouse model 

exert therapeutic benefits by immunosuppressive 

neuroprotective mechanism. This animal experiment 

may serve as a first step forward to further 

developments of hESC for stem cell therapy in MS 

(93). 

Additionally, many experimental studies have shown 

the beneficial neuroprotective effect of HSCs-

releasing factors such as erythropoietin (EPO), 
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granulocyte colony-stimulating factor (G-CSF), 

stem cell factor (SCF), VEGF, and SDF-1-alpha  

(94, 95). Interestingly, HSCs have innate tropism 

towards the site of inury (96), could be exploited 

this features for delivering neurothrophic and 

protective factors. 

Genetically modification of stem cells to get 

better outcomes 

The efficacy of both differentiation and paracrine 

approach could be improved by genetically 

modifying the stem cells for carrying new genes to 

better differentiate towards neuronal lineages or to 

secrete a specific therapeutic molecules in addition 

to their innate trophic support (97, 98). Stem cells 

naturally produce various neurotrophic factors, 

such as BDNF, nerve growth factor (NGF), 

cerebral dopamine neurotrophic factor (CDNF) or 

GDNF, and facilitate neuronal differentiation and 

maintenance of endogenous stem cells of CNS (83, 

85, 99-101). For instance, transplantation of 

genetically engineered MSCs overexpressing 

BDNF showed stronger therapeutic benefits 

following transplantation in cerebral ischemia 

animal models rather than MSCs alone (102-104). 

The strategies to exploit therapeutic effects of stem 

cells have been shown in Figure 3.  

Alternatively, stem cells could be genetically 

engineered to have high migratory ability 

following transplantation to delivery of factors that 

can modify the course of the disease by their innate 

trophic support (105, 106).  

Furthermore, as understanding of the pathology of 

the specific disease is key factor to develop stem 

cell based treatments for neurodegenerative 

diseases, many studies directed to genetically 

modified stem cells to express disease-relevant 

genes (107, 108). Therefore, creating model 

system have advantages of investigating basic 

issues of neural development and cell replacement, 

gene therapy, disease-specific cellular pathways 

and testing new therapeutic approaches; would 

accelerate way to reach clinical (107, 109-111).  

Stem cells in combination with other drug or 

treatment  

There is still no cure for neurodegenerative 

diseases since the precise mechanisms of these 

diseases are largely unknown. However, 

advantages of stem cells due to the restorative and 

trophic abilities are far beyond drugs (108, 112).  

To develop successful and more effective stem cell-

based therapy for neurodegenerative diseases, several 

studies have suggested that it would likely require 

that the stem cells based therapy complement with 

other drugs or treatments, such as antioxidants and/or 

therapeutic molecules (108, 113, 114). For instance, 

it has been demonstrated that antioxidants such as 

vitamin E thorough reducing ROS levels, and 

protecting against peroxidation of lipids in the brain 

could reduce the risk of AD (113). 

Many of neurodegenerative diseases are 

characterized by the accumulation of disease-specific 

misfolded proteins in the CNS (23, 115, 116). 

Therefore, for instance, limited proteolysis and 

clearance of β-amyloid plaques by activation of 

Cathepsin B could be offered a complement 

therapeutic strategy with stem cells to get better 

results for AD (117). 

Stem cells as a cartridge 

It has been suggested that the prolonged and 

controlled delivery of GDNF, one of the neurotrophic 

factors for dopamine and motor neurons recovery, 

into the brain could be used to long-term and more 

effective therapy of neurodegenerative disorders like 

PD (118). However, as GDNF is a large peptide, it 

cannot efficiently enter the brain from blood and 

cerebrospinal fluid (CSF) (119, 120). Therefore, it 

needs to be directly delivered to tissue. Possible 

solutions might be direct infusion into brain tissue 

with pumps (118, 121), delivery by injection of virus 

producing GDNF (122), delivery by using 

encapsulated cells secreting GDNF (123, 124) and 

delivery using stem cells secreting GDNF (125-128).  
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Alternatively, the novel cartridge based 

bioreactors have been 

developed in supporting liver cells with good 

viability and functional performance which can be 

an effective design for delivering trophic factors. 

Recently, Niu et al. have developed a machine that 

controls the flow of blood through   the cartridge 

which contains billions of liver cells  used as a 

bioartificial liver  (129). The significance of these 

devices is that they supply  

 

 

 

 

an environment to maintain cells in a way that 

allows performing key cellular and tissue 

functions. In a study, expanded human BM-MSCs 

have been used as a cartridge system to work like a 

bioartificial liver (130). Therefore, this innovative 

approach could be exploited for neurodegenerative 

diseases either. However, the main drawback of this 

technique is impossibility to maintain cell viability 

effectively for the long period of time. 

 

 

Conclusion 

The use of stem cells, although in its early stages, 

appears likely to contribute to future clinical 

treatments of neurodegenerative disease through 

replacement of dysfunctional or dying neurons as 

well as neuroprotective and neurorestorative 

approaches.  

Stem cells from a variety of sources have shown 

effective in improving motor function after 

Figure 3: Strategies and innovations to get better outcomes in treatment of neurodegenerative disease by stem cell therapy. 

In addition to other drug or treatment, approaches could be used innate trophic actions of stem cells. Furthermore, stem 

cells could be genetically engineered to secret a specific therapeutic factor into site of neural damage by a novel carrier 

system like a cartridge. The engineered cells could be deliver new therapeutic genes, differentiation induction genes or 

migration-induced gene or a missing/disease-relevant gene product. 

 

 

Figure 3: Strategies and innovations to get better outcomes in treatment of neurodegenerative disease by stem cell therapy. 

In addition to other drug or treatment, approaches could be used innate trophic actions of stem cells. Furthermore, stem 

cells could be genetically engineered to secret a specific therapeutic factor into site of neural damage by a novel carrier 

system like a cartridge. The engineered cells could be deliver new therapeutic genes, differentiation induction genes or 

migration-induced gene or a missing/disease-relevant gene product. 
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neurodegenerative diseases in animal experiments, 

but still need further investigation in clinical trials. 

Regardless of differentiation potential among 

different stem cells, MSCs due to having great 

paracrine properties are of keen interest to use in 

clinical settings. Furthermore, combinatorial 

administration of other drugs/therapeutic 

molecules with stem cells is proposed as a 

desirable approach especially to complement the 

gaps yet existing by the single therapeutic 

application of stem cells neurodegenerative 

disorders.  

Transplantation of stem cells or stem cell-derived 

motor neurons or glial cells in neurodegenerative 

diseases in a clinical setting to replaces lost 

neurons, and integrates into existing neural 

circuitry neuronal by replacement strategy seems 

to be currently unrealistic and long-distant goal. 

Rather, using stem cells for the delivery of trophic 

factors to prevent disease progression seems to be 

a more realistic and short-term achievable goal for 

clinic. However, factors that control the 

differentiation, survival, and maturation of stem 

cells in the context of degenerative diseases must 

be more thoroughly understood before stem cell 

therapy that could be transferred to clinic. 
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