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ABSTRACT 
 
 

In recent years, stem cell therapy tried to improve the life of patients that suffer from 

neurodegenerative disease, like Alzheimer's disease. Although teeth are non-essential for life, but the 

dental tissues are an important source of mesenchymal stem cells that are suitable for neural regeneration. 

The studies showed that dental stem cells (DSCs) have the potential to differentiate into several cell 

types that among the most important is neural progenitor. In this review article, discusses the types of 

dental stem cells and then focused on application of dental stem cells on neural regeneration. 
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Introduction: 

 
In science, stem cell is an undifferentiated cell 

that has the potential for self-renewal and the 

ability of differentiating into more than one cell 

phenotype [1]. Several stem cell populations 

isolated from different parts of the mature and 

immature tooth. These dental stem cells, including 6 

types: DPSCs (Dental Pulp Stem Cells), SHEDs 

(Stem cells from Human Exfoliated Deciduous
 
 

List of abbreviation: DPSCs (Dental Pulp Stem Cells), SHEDs (Stem cells from Human Exfoliated Deciduous teeth), DFPCs 

(Dental Follicle Precursor Cells), SCAPs (Stem Cells from the Apical Papilla), PDLSCs (Periodontal Ligament Stem Cells), GMSCs 

(Gingival Mesenchymal Stem Cells), SCs (Stem Cells), BMSCs (Bone Marrow Stem Cells), ASCs (Adult Stem Cells), GFAP (Glial 

Fibrillary Acid Protein), IGF-2 (insulin- like growth factor-2), EMSCs (ectomesenchymal stem cells), PNS (peripheral nerve system), 

NSCs (neural stem cells), BMPs (bone morphogenetic proteins) and FGFs (fibroblast growth factors) 
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teeth), DFPCs (Dental Follicle Precursor Cells), 

SCAPs (Stem Cells from the Apical Papilla), 

PDLSCs (Periodontal Ligament Stem Cells) and  

GMSCs (Gingival Mesenchymal Stem Cells). 

Dental stem cells have multi-

differentiation potential into cell lineages, 

including osteogenic, adipogenic, and neurogenic. 

Therefore, these cells are suitable for cell therapy. 

Researchers showed that NSCs renewed a damage 

nervous system. DPSCs and SHEDs were able to 

differentiate into neurons, in rat and human. 

Furthermore, studies showed that transplantation 

of DPCs and SHEDs into caused to express 

neuronal markers in brain [2, 3]. This review 

article discusses the types of dental stem cells, and 

then focused on application of dental stem cells in 

neural regeneration. 

 
 

1. Origin of the dental stem cells 

 
   The tooth development formed during the sixth 

week of development, and then neural crest cells 

migrated into head and neck mesenchyme and also 

the ectoderm conversion to the dental laminae. The 

forming of tooth composed of epithelial and 

mesenchymal interactions, these interactions 

formed separate tooth germs [4-7]. The tooth germ 

is organized into three parts, namely enamel organ, 

dental papilla and dental follicle. The dental papilla 

develops into odontoblasts, which are dentin-

forming cells [8, 9].  Mesenchymal cells within the 

dental papilla develop into tooth pulp. The dental 

follicle gives rise to three essential nature: 

cementoblasts, osteoblasts, and fibroblasts. 

Cementoblasts formed the cementum covering the 

root of a tooth [10]. Osteoblasts give rise to the 

alveolar bone and fibroblasts develop the PDL, 

which connect teeth to the alveolar bone through 

Sharpey’s fibres that insert into the cementum [11]. 

   The studies showed that development of mice 

teeth associated with gene expression such as 

Barx1, Lhx8, Msx1 and Msx2, also some secretory 

molecules such as BMPs  and FGFs [12]. Bernick 

and Nedelman showed that during the aging 

process appeared a decrease in the size of the pulp 

cavity and deposition of calcium in the root and 

crown of the dental Pulp [13], it could indicate that 

dental pulp stem cells efficiency associated with age 

of subjects.  

 

 

2. Types of dental stem cells  

  

2.1 Dental pulp stem cells  

 

   Gronthos and co-workers in 2000 were the first 

persons that identification of stem cells from adult 

human dental pulp [14]. Dental pulp has a population 

of stem cells, which is often called odontoblast cells 

Because these cells synthesis and secretion of dentin 

matrix [15]. The origin of odontoblast cells not clear, 

but one of the hypothesis showed that the origin of 

these cells were progenitor stem cells [16]. The 

studies showed that DPSCs have high efficacy in 

proliferation and frequency of colony-forming 

compared with BMMSCs [14]. Furthermore, 

researchers showed that DPSCs formed functional 

dental tissue in vivo transplantation of mice. In 

addition, DPSCs express neuronal precursors and glial 

cell markers such as Nestin and GFAP respectively;  

and have the ability of differentiation into neural-like 

cells [17]. Studies demonstrated mouse and human 

dental tissues preserved the odontogenic potential in 

during early tooth development [18, 19] 2.2 Stem 

cells from human exfoliated deciduous teeth  

 

   These stem cells have high efficacy like stronger 

proliferation rate, cell-population doublings, and 

sphere-like cell-cluster formation [3]. SHED 

expressed cell markers such as STRO-1 and CD146, 

and embryonic stem cell surface antigens such as 

Oct4, Nanog, and SSEA-3/4 [20]. 

   Studies demonstrated that SHED have a high 

capacity for induction of bone formation in vivo [3, 

21, 22]. Also, SHED have a neural crest-cell origin of 

the dental pulp and expressed neuronal and glial cell 

markers [23]. Neural crest cells have the ability of 

giving rise to a variety of cell types such as neural 

cells, pigment cells, smooth muscle, craniofacial 

cartilage, and bone [24]. 

 

 

2.3 Periodontal ligament stem cells   
 

   The PDL is a fibrous connective tissue that fixed a 

tooth to the alveolar bone [25]. Human PDLSCs 

located in periodontal ligament from third molar teeth. 
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   Seo and coworker [26] showed that PDLSCs 

have potential to differentiate along cementoblast-

like cells and adipocytes. Studies showed that 

isolated hPDLSCs displayed fibroblasts and spiky 

morphology; also an expression of mesenchymal 

stem cell markers such as CD146/MUC18 and 

STRO-1 [26]. In addition, PDLSCs have a 

potential to secretion of interleukin-6 (IL-6) so 

suppress the proliferation, differentiation and 

immune reaction of B cells [27, 28]. Furthermore, 

a tendon-specific transcription marker called 

scleraxis expressed higher levels in PDLSCs than 

in DPSCs or BMSCs. Therefore, PDLSCs are a 

unique population of adult MSCs [22]. 

 

2.4 Root apical papilla stem cells  

 

   Located at the apex that known as (SCAP). 

During root development, there is an “apical  

cell-rich zone lying” between the apical papilla and 

the pulp. Abe and co-worker in 2007 isolated and 

characterized of Human SCAP [29]. SCAP has a 

higher proliferative potential, then this population 

suitable for cell therapy; also SCAP could 

differentiate into odontoblasts and adipocytes [30, 

31]. Furthermore, SCAP has significantly greater 

potential in comparison with DPSCs such as 

doubling population numbers, capacity of tissue 

regeneration, bromodeoxyuridine uptake rate, 

number of STRO-1 positive cells, express a higher 

level of survivin (anti-apoptotic protein) and 

positive hTERT (human telomerase reverse 

transcriptase that maintains the telomere length) 

activity [31].  

   Studies showed that SCAP have a positive 

staining for several neural markers by 

immunocytochemical staining such as Nestin, 

tubulin III, NeuN (neuronal nuclear antigen), 

glutamic acid decarboxylase, CNPase (glial 

marker) [32]. Therefore SCAP are a suitable source 

for neural researches and therapy of 

neurodegenerative diseases. 

 

 

2.5 Dental follicle precursor cells  

 

   The DF is a loose ectomesenchyme that 

originated from connective tissue and isolated from 

human third molars [25]. For the first time 

Morsczeck and co-worker in 2005 showed the 

existence of progenitor cells of DF in wisdom teeth 

[34]. In addition Handa and co-workers in 2002 

showed the presence of DF in bovine [33]. In 

general, DF had a high ability to differentiated into 

multi-linage like chondrogenic, osteogenic and 

adipogenic and neurogenic [35,  36], although there is 

conflict idea about the differentiation potential of 

DFSCs into chondrogenic [36]. 

   The dental follicle expressed some cell markers 

such as Nestin, STRO-1, Notch1 [34] and IGF-2 [37]. 

Although the DF expressed MSC markers like CD29, 

CD44, and CD 105 [35]. In comparison with BM 

cells, DFPCs expressed higher levels of IGF-2. 

 

   Studies showed that the addition of TLR3 and TLR4 

agonists to DFPCs caused to secretion of TGFB and 

IL-6 [38, 39]. Morsczeck and co-worker in 2010 

demonstrated that SHED and DFCs have different 

neural differentiation potentials and cell marker 

expression patterns under the same cell culture 

conditions [39]. 

 

 

2.6 Gingival stem cells  

  

   Gingiva connected to the alveolar bone of tooth 

sockets. The fibroblasts of gingival contribute to the 

wound healing process by secreting extracellular 

matrix proteins and growth factor [40-42]. Zhang and 

co-worker are the first persons that isolated a 

progenitor stem cells within gingival tissues [42]. The 

neural crest origin of gingiva make it suitable for 

neural regeneration. The study showed colony 

forming efficiency among three MSCs types as 

follows: DSCs > GMSCs > PDLSCs [43]. 

  GMSCs could differentiate into osteoblasts, 

adipocytes, chondrocytes, and neural cells; also they 

express some markers such as Oct-4, SSEA-4 and 

STRO-1 [44-48]. 

 

 

3. Dental stem cells in neural regeneration 

 

  Studies showed that NSCs isolated from dental 

tissue were a good choice for neural regeneration [49-

53]. Studies demonstrated that transplantation of 

dental EMSCs have potential to adopting a neural 

phenotype and make renewal neurogenesis in 

experimental animals [54, 55, 3]. In CNS and PNS 

injury animal models transplanted of NCSC-derived 

dental tissue make trouble in regeneration and 

recovery [50, 51, 56-60]. 

   Studies showed that transplanted of DPSCs into 

striatum from the right dorsolateral caused to induce a 

significant promotion of neurological dysfunction in 

animal models [61].  



72 

www.genesandcells.com/journal 

Malekzadeh et al., January, 2017.Journal of Genes and Cells, 3(2017-Cell Therapy & Reg. Med.-I): p, 69-75                             

doi: 10.15562/gnc.60 
 

  
 
 
  

 

Researchers showed that transplantation of  SHED  

spheres improved the behavioral  disorders in a 

Parkinson rat model [62].  Studies showed that 

injection of DPSCs into the cerebro-spinal  

fluid caused to integrate into the brain and induced 

neuronal properties in cortical  lesion models 

[63].   Studies showed that HDPCs caused to 

expressed of trophic factor, the existence of 

axons or oligodendrocytes in  spinal  cord  injury  

models [64].  

   Studies showed that differentiation of MSCs to 

neural cell-linage essentially require to Nestin 

expression [65]. Martens and co-workers showed 

that human DPSCs have ability of differentiation to 

Schwann-like cells. In addition, hDPSCs expressed 

Schwann cell markers. These findings, make 

hDPSCs suitable for cell therapy in PNS injury 

[66].  Many factors play role in neuronal 

differentiation such as expression of Nestin [67], 

tubulin3 (Tub3) [68], and MAP2 [69]. The 

existence of Nestin displayed the ability of 

differentiating into neurons [67, 71]. Also, studies 

demonstrated that Nestin expressed by other cell 

types such as myofibroblasts, and pancreatic 

fibroblasts [72], pericytes [73], hair follicle stem 

cells  [74] and endothelial cells [75]. Nestin is a 

neuronal marker in the brains of rat and human 

[76]; and play an important role in neuronal 

differentiation of vertebrate cells [68, 70]. In 

addition, these neuronal markers (Nestin and Tub3) 

were used to examine neuronal differentiation in 

the hippocampus [54]. 

 

   This evidence opens new doors on the treatment 

of human neural disorders, like brain, and 

neurodegenerative diseases. 

 

Conclusion: 

 

   Many characteristics of dental stem cells, 

including: neural crest origin, expression of neural 

markers such as Nestin, Map2 and Tub3 make 

dental stem cells as a candidate for neural 

regeneration. Because of dental stem cells have a 

common origin with the nervous system, dental 

stem cells may be ideal for cell therapy in 

conditions such as stroke, Alzheimer disease, 

spinal cord trauma, and other neurodegenerative 

diseases. 
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