Available online <u>www.tpcj.org</u>

Research Article

ISSN: 2349-7092 CODEN(USA): PCJHBA

Chemical Composition and antimicrobial activity of the Hexane Fraction of Sudanese Fennel (Apiaceae) Seeds

Abdel Karim M¹, Afaf A², Weam A K³

¹Sudan University of Science and Technology, Faculty of Science, Sudan

²Jazan University, Samtah University College, Saudi Arabia

³Omdurman Islamic University, Faculty of Pharmacy, Sudan

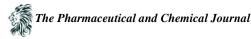
Abstract Fennel is widely cultivated in many countries where it is used as flavouring agent. Fennel is rich in some minerals like calcium, sodium, iron, potassium and phosphorus. The plant also contains fibre (18.5%), protein (9.5%); fats (10%) beside niacin, riboflavin and thiamine. Fennel hexane fraction was analyzed by GC-MS. Gas chromatogram revealed presence of: fatty acids (87.83%); aldehydes (5.80%); ketones (2.90%); alcohols (1.44%); mono- and sesquiterpenes (1.23%); hydrocarbons (0.80%).

Foeniculum vulgare hexane fraction was evaluated for antimicrobial activity against five standard human pathogens. The extract exhibited significant activity against *Staphylococcus aureus* in the concentration range: 100-50mg/ml. It also exhibited significant anticandidal activity at 100mg/ml.

Keywords Foeniculum vulgare, Hexane extract, GC-MS analysis, Antimicrobial activity

Introduction

Foeniculum vulgare Mill. (fennel) is a perennial herb in the family Apiaceae. Fennel is widely cultivated in many countries where it is used as flavouring agent in baked foods [1,2]. Fennel is rich in some minerals like calcium, sodium, iron, potassium and phosphorus. The plant also contains fibre (18.5%), protein (9.5%); fats (10%) beside niacin, riboflavin and thiamine [3]. Seeds of fennel which are hypotensive and diuretic are claimed to improve eyesight, while seed extract has been tested against glaucoma in experimental models [4]. Fennel essential oil contains some bioactive molecules like anethole, fenchone, estragol, p- anisaldehyde and α -phellandrene [2,5].


Sterols, acetylated kaempferol and some benzoisofuranone derivatives have been reported from fennel [6,7]. Also some flavonoids have been isolated from fennel [8-10]. These phenolics seem to be responsible for the antioxidant properties of fennel. The antispasmodic , diuretic, antinflammatory, analgesic, hepatoprotective properties of fennel essential oil have been documented [11-14]. It has been reported that fennel essential oil exhibited antimicrobial activity [15,16].

However, beside its health promoting properties, a constituent of fennel-leugenol- has become a cause of concern since the structurally related, methylleugenol has been listed as a potential carcinogenic agent [17].

Materials and Methods

Plant Material

Foeniculum vulgare seeds were purchased from the local market-Khartoum, Sudan. The plant was identified and authenticated by direct comparison with a reference herbarium sample.

Test organisms

- Gram +ve: Bacillus subtilis and Staphylococcus aureus
- Gram -ve: Escherichia coli and Pseudomonas aeruginosa
- Fungal strain: Candida albicans.
- Positive controls:
- i. Ampicillin: for G+ve bacteria.
- ii. Gentamicin: for G-ve bacteria.
- iii. Clotrimazole: antifungal standard.
- -Media for bacteria: Mueller –Hinton agar.
- Media for fungus: Sabouraud dextrose agar.

Methods

Hexane extract

Powdered seeds of *Foeniculum vulgare* (300g) were macerated with n-hexane for 72hr. The solvent was removed under reduced pressure to give the hexane extract.

GC-MS analysis

Foeniculum vulgare hexane fraction was analyzed by GC-MS using a Shimadzo GC-MS-QP2010 Ultra instrument. chromatographic conditions are as follows:

-Column oven temperature : 150.0 °C

corumn oven temperature	•	150.0 C
-Injection temperature	:	300.0 °C
-Injection mode	:	Split
-Flow control mode	:	Linear velocity
-Pressure	:	139.3KPa
-Total flow	:	50.0ml/ min
-Column flow	:	1.54ml/sec.
-Linear velocity	:	47.2cm/sec.
-Purge flow	:	3.0ml/min.
-Spilt ratio	:	- 1.0

Antimicrobial assay

For bacteria an inoculum suspension (20 ml Mueller-Hinton Agar) was swabbed uniformly to solidify, and then allowed to dry. Holes of 6 mm in diameter were made in the seeded agar using glass Pasteur pipettes. Aliquots of the hexane extract (100 and 200 mg/ml) were added into each well on the seeded medium and allowed to stand on the bench for 1 h for proper diffusion and thereafter incubated at 37 °C for 24 h. The resulting inhibition zones were measured in millimeters (mm). The assays were repeated in duplicate and the concurrent values were taken.

The same procedure was adopted for antifungal activity, but Sabouraud dextrose agar was used instead of Mueller Hinton agar.

Results and Discussion

The hexane fraction of *Foeniculum vulgare* was investigated by GC-MS. The analysis revealed detection of 53 components. The retentions times and percentages of these constituents are illustrated in Table 1. Fig. 1 shows the total ion chromatograms. The hexane fraction was dominated by fatty acids (87.83%) followed by aldehydes (5.80%), ketones (2.90%), alcohols (1.44%), mono-and sesquiterpenes (1.23%) and hydrocarbons (0.80%)-see Fig. 2.

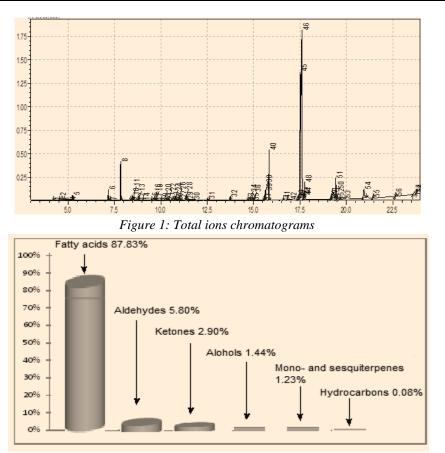

The essential oil of Sudanese material of *Foeniculum vulgare* has been investigated by Omnia *et.al* [18]. These authors reported that monoterpenoids were the major constituent (98.06%), while sesquiterpenes were present as a minor constituent (0.66%).

Table 1: Constituents	of the hexane fraction
-----------------------	------------------------

Peak#	R.Time	Area	Area%	
1	4.203	84570		Bicyclo[3.1.1]heptane, 6,6-dimethyl-2-met
2	4.525	30413		.alphaPhellandrene
3	4.680	11635		1,3-Cyclohexadiene, 1-methyl-4-(1-methyl
4	4.781	117328		o-Cymene
5	5.239	790094	0.53	
6	7.169	1770355		1-Cyclohexene-1-carboxaldehyde, 4-(1-me
7	7.254	32642		Ethanol, 2-(3,3-dimethylcyclohexylidene)-
8	7.838	7377623		Benzaldehyde, 4-(1-methylethyl)-
9	8.340	105596		1-Cyclohexene-1-carboxaldehyde, 4-(1-me
10	8.461	978631		2-Caren-10-al
11	8,500	84529		p-Cymen-7-ol
12	8.736	65607		3-Cyclopenten-1-one, 2-hydroxy-3-(3-met
13	8.786	151033		Bicyclo[2.2.1]heptan-2-ol, 7,7-dimethyl-, a
14	9.014	107999		1,4-Cyclohexadiene-1-methanol, 4-(1-methanol)
15	9,496	139965		Silane, (4-ethylphenyl)trimethyl-
16	9.625	73030		Benzoic acid, 4-(1-methylethyl)-, methyl e
17	9.685	88198		2,4-Pentadienoic acid, 3,4-dimethyl-, isopp
18	9.738	172439		Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-
19	9.998	98576		Benzaldehyde dimethyl acetal
20	10.188	29159		2,5-Dimethylbenzenethiol, S-pentafluorop
21	10.310	177806		Caryophyllene
22	10.421	65563		Bicyclo[3.1.1]hept-2-ene, 2,6-dimethyl-6-(
23	10.605	255455		(E)betaFamesene
24	10.750	30200		1,4,7,-Cycloundecatriene, 1,5,9,9-tetrame
25	10.804	24453		.betacopaene
26	10.964	129754		1H-Cyclopenta[1,3]cyclopropa[1,2]benzer
27	10.999	453512		Di-epialphacedrene
28	11.320	94523		.betaBisabolene
29	11.374	209527		Butylated Hydroxytoluene
30	11.408	113605		Dodecanoic acid, methyl ester
31	12.520	377438		Carotol
32	13.726	605076		Methyl tetradecanoate
33	14.642	54816		5-Octadecenoic acid, methyl ester
34	14.802	246515		Pentadecanoic acid, methyl ester
35	14.922	100059		5H-3,5a-Epoxynaphth[2,1-c]oxepin, dode
36	15.023	44048		2-Pentadecanone, 6,10,14-trimethyl-
37	15.534	42935		7,10-Hexadecadienoic acid, methyl ester
38	15.607	1058379	0.71	7,10,13-Hexadecatrienoic acid, methyl est
39	15.637	1395519		Methyl hexadec-9-enoate
40	15.834	9906577		Hexadecanoic acid, methyl ester
41	16.598	463306		Methyl 18-fluoro-octadec-9-enoate
42	16.809	180927	0.12	Heptadecanoic acid, methyl ester
43	17.361	817919	0.55	Methyl 5,11,14-eicosatrienoate
44	17.411	860594		Methyl 6,11-octadecadienoate
45	17.519	40550698		9,12-Octadecadienoic acid (Z,Z)-, methyl
46		59585782		
	17.600			9-Octadecenoic acid (Z)-, methyl ester
47	17.671	817221		Phytol
48	17.750	2720097		Methyl stearate
49	19.141	399938		Methyl 5,13-docosadienoate
50	19.243	2970620		3-Hydroxy-2,6,6-trimethyl-hept-4-enoic a
51	19.430	4046234	2.73	1H-Indene, 2,3,3a,4,7,7a-hexahydro-2,2,4
52	19.501	533479	0.36	Methyl 18-methylnonadecanoate
53	19.659	417377		6,9,12,15-Docosatetraenoic acid, methyl e

Figure 2: Abundance of oil constituents

Major constituents of the hexane fraction are discussed below:

a-9-Octadecenoic acid methyl ester(40.24%)

Fig. 3 shows the mass spectrum of 9-octadecanoic acid methyl ester .The peak at m/z 296(R.T. 17.600) accounts for : $M^{+}[C_{19}H_{36}O_{2}]^{+}$, while the signal at m/z265 corresponds to loss of a methoxyl.

b-9,12-Octadecadienoic acid methyl ester(27.38%)

The EI mass spectrum of 9,12-octadecanoic acid methyl ester is shown in Fig. 4.The peak at m/z 294, which appeared at R.T. 17.519 in total ion chromatogram, is due to the molecular ion : $M^+[C_{19}H_{34}O_2]^+$. The peak at m/z263 corresponds to loss of a methoxyl group.

c-Hexadecanoic acid methyl ester(6.69%)

The EI mass spectrum of hexadecanoic acid methyl ester is shown in Fig. 5. The peak at m/z 270, which appeared at R.T. 15.834 in total ion chromatogram, corresponds to $M^+[C_{17}H_{34}O_2]^+$. The peak at m/z239 corresponds to loss of a methoxyl function.

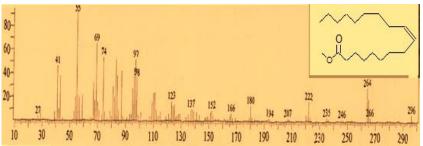


Figure 3: Mass spectrum of 9-octadecanoic acid methyl ester

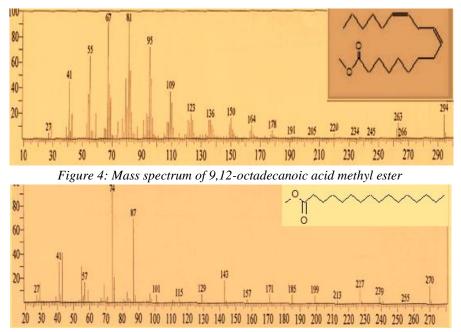


Figure 5: Mass spectrum of hexadecanoic methyl ester

Antimirobial activity

Foeniculum vulgae hexane fraction was evaluated for antimicrobial activity against five standard human pathogens. The diameters of the growth of inhibition zones are shown in Table (2). Ampicillin, gentamicin and clotrimazole were used as positive contol(Tables 3 and 4). *Foeniculum vulgare* hexane fraction exhibited significant activity against *Staphylococcus aureus* in the concentration range: 100-50mg/ml. It also exhibited excellent anticandidal activity at 100mg/ml.

	Table 2: Antimicrobial activity of hexane fraction									
_	Туре	Conc	e.(mg/r	nl) Sa	a	Bs	Ec	Ps	Ca	
_	Oil	100		20)	14	15	15	17	
		50		18	3	-	14	14	15	
		25		17	7	-	13	13	10	
		12.5		15	5	-	12	12	9	
		6.25		11	L	-	10	7	-	
Table 3: Antibacterial activity of standard chemotherapeutic age								agents		
	Drug		Conc	.(mg/m	l)	Bs	Sa	Ec	Ps	
	Ampici	illin	40			15	30	-	-	
			20			14	25	-	-	
_			10			11	15	-	-	
	Gentan	nicin	40			25	19	22	21	
			20			22	18	18	15	
			10			17	14	15	12	
Table 4	4: Anti	fungal	activit	y of sta	nda	rd cl	nemot	herap	eutic	agent
	Dr	ug		Conc.(1	ng/	ml)	An	Ca	_	
	Clotrimazole		zole	30			22	38	_	
				15			17	31		
			,	7.5			16	29		

Sa.: Staphylococcus aureus Ec.: Escherichia coli

Pa.: Pseudomonas aeruginosa An.: Aspergillus niger Ca.: Candida albicans Bs.: Bacillus subtilis

References

- Diaaz-Moroto, M.C., Hidalgo, I.J., Saanchez-Palomo, E., Pearez-Coello, M.S., J. Agric. Food Chem., 2005, 53, 6814.
- [2]. Diaaz-Moroto, M.C., Pearez, M.S., Esteban, J., Sanz, J., J. Agric. Food Chem., 2006, 54, 6814.
- [3]. Manzoor, A., Bilal, A.D., Shahnawaz, N., Bilal, A.B., Mushtaq, A., Arabian Journal of Chemistry, 2016, 9(2), S1574.
- [4]. Agarwal, R., Gupta, S.K., Agarwal, S.S., Srivastava, S., R. Saxena, R., Indian J. Physiol. Pharmacol., (2008), 52, 77.
- [5]. Tognolini, M., Ballabeni, V., Bertoni, S., Bruni, R., Impicciatore, M., E. Barocelli , E., *Pharmacol. Res.*, 2007), 56, 254.
- [6]. Marino, S.D., Gala, F., Borbone, N., Zollo, F., Vitalini, S., F. Visioli, F., Iorizzi, M., Phytochemistry, 2007, 68, 1805.
- [7]. Soliman, F.M., Shehata, A.F., Khaleel, A.E., S.M. Ezzat, S.M., Molecules, 2002, 7, 245.
- [8]. Faudale, M., Viladomat, F., Bastida, J., Poli, F., Codina, C., J. Agric. Food Chem., 2008, 56, 1912.
- [9]. Park, H.J., J. Nat. Prod., 1996, 59, 1128.
- [10]. Parejo, I., Viladomat, F., Bastida, J., Schmeda-Hirschmann, G., Burillo, J., Codina, C., J. Agric. Food Chem., 2004, 52, 1890.
- [11]. Chio, E.M., Hwag, J.K., Fitoterapia, 2004, 75(6), 557.
- [12]. Misharina, T., Polshkov, A.N., Prikladnia Biokhimia Mikrobiologia, 2005, 41(6), 693.
- [13]. Prejo, I., Viladomat, F., Bastida, J., Rosas-Romero, A., Flerlage, N., Burillo, J., J. Agric. Food Chem., 2002, 50(23), 6882.
- [14]. Ozbek, H., Ugras, S., Dulger, H., Bavram, I., Tuncer, I., Ozturk, G., Fitotrapia, 2003, 74(3), 317.
- [15]. Silvia, L.A., Mota, A.S., Martins, M.R., Arantes, S., Lopes, V.R., Bettencourt, E., *Natural Products Communications*, 2015, 10(4), 673.
- [16]. Gulfraz, M., Mehmood, S., Minhas, N., Jabeen, N., Kauser, R., Jabeen, K., African Journal of Biotechnology, 2008, 7(24), 4364.
- [17]. Zeller, A., M. Rychlik, M., J. Agric. Food Chem., 2006, 54, 3686.
- [18]. Omnia, M., H. and Itmad, A.E., J. Pharmacognosy and Phytochemistry, 2017, 6(1), 109-112.

