Potentiometric Titrations of New 1,3,5-Tri-\{4-[(3-alkyl/aryl-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl)-azomethin]-phenoxycarbonyl\} Benzenes

*Gül Özdemir, Haydar Yüksek, Sevda Manap, Özlem Gürsoy-Kol

Department of Chemistry, Kafkas University, 36100 Kars, Turkey

Abstract

A series of new 1,3,5-tri-\{4-[(3-alkyl/aryl-4,5-dihydro-1 H -1,2,4-triazol-5-one-4-yl)-azomethin]phenoxycarbonyl\} benzenes (4) were obtained from the reactions of 3-alkyl/aryl-4-amino-4,5-dihydro-1 $\mathrm{H}-1,2,4$ -triazol-5-ones (2) with 1,3,5-tri-(4-formylphenoxycarbonyl)-benzene (1) and characterized by IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$ NMR spectral data. In addition, to investigate the effects of solvents and molecular structure upon acidity, the new nine compounds 4 were titrated potentiometrically with tetrabutylammonium hydroxide in four non-aqueous solvents (isopropyl alcohol, tert-butyl alcohol, N, N-dimethylformamide and acetone). The half-neutralization potential values and the corresponding $\mathrm{p} K_{\mathrm{a}}$ values were determined for all cases.

Keywords: 4,5-Dihydro-1H-1,2,4-triazol-5-one, Schiff base, Syntheses, Acidity, Potentiometric titration, pKa.

Introduction

Triazoles are heterocyclic compounds that contain three nitrogen atoms. It is known that 1,2,4-triazole and 4,5-dihydro- $1 \mathrm{H}-1,2,4$-triazol-5-one rings have weak acidic properties, so that some 1,2,4-triazole and 4,5-dihydro- 1 H -1,2,4-triazol-5-one derivatives were titrated potentiometrically with TBAH in non-aqueous solvents [1-4]. Determination of $\mathrm{p} K_{\mathrm{a}}$ values of the active constituent of certain pharmaceutical preparations is important because the distribution, transport behavior, bonding to receptors, and contributions to the metabolic behavior of the active constituent molecules depend on the ionization constant [5-7].
1,2,4-Triazole and 4,5-dihydro- $1 H$-1,2,4-triazol-5-one derivatives are reported to possess a broad spectrum of biological activities such as antitumor, antibacterial, antioxidant and anti-inflammatory properties [1-4, 8, 9].
In this paper, we present the synthesis of nine new 1,3,5-tri-\{4-[(3-alkyl/aryl-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl)-azomethin]-phenoxycarbonyl\} benzenes. The starting compounds 3 -alkyl/aryl-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones (2) were prepared from the reactions of the corresponding ester ethoxycarbonyl-hydrazones (1) with an aqueous solution of hydrazine hydrate as described in the literature [10,11]. Compounds 4 were synthesized from the reactions of compounds 2 with 1,3,5-tri-(4-formylphenoxycarbonyl)-benzene (3), which were synthesized by the reactions of 4-hydroxybenzaldehyde with 1,3,5-benzenetricarbonyl chloride by using triethylamine (Scheme 1).
In addition, we also examined the potentiometric titrations of the synthesized compounds 4 with tetrabutylammonium hydroxide (TBAH) in four non-aqueous solvents such as isopropyl alcohol, tert-butyl alcohol, N, N-dimethylformamide (DMF) and acetone to determine the half-neutralization potential (HNP) and the corresponding $\mathrm{p} K_{\mathrm{a}}$ values. The data obtained from the potentiometric titrations were interpreted and the effects of molecular structure and solvents were studied [1-4, 12].

The Pharmaceutical and Chemical Journal

Scheme 1: Synthesis route of compounds 1 - 4: i) $E t_{3} N$, $\mathrm{AcOEt}, 0-5^{\circ} \mathrm{C}$; ii) $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{O}$, reflux, 6 h; iii) AcOH, reflux, 1 h ; a) $\mathrm{R}=\mathrm{CH}_{3}$, b) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}$, c) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$, d) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, e) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} . \mathrm{CH}_{3}(p-$), f) $\mathrm{R}=$ $\left.\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OCH}_{3}(p-), \mathrm{g}\right) \mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Cl}(p-), h\right) \mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Cl}(\mathrm{m}-)$, i) $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$

Materials and Methods

Chemical reagents used in this paper were bought from Merck AG, Aldrich and Fluka. Melting points were recorded in open glass capillaries using a Stuart SMP30 melting point apparatus and were not corrected. The infrared spectra were recorded on an Alpha-P Bruker FT-IR Spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were determined in deuterated dimethyl sulfoxide with TMS as internal standard using a Bruker Avance III spectrophotometer at 400 MHz and 100 MHz , respectively. In this study, a Jenway 3040 ion analyzer pH meter equipped with an Ingold pH electrode was used for potentiometric titrations. For each compound titrated, a 0.001 M solution was separately prepared in each non-aqueous solvent. A 0.05 M solution of TBAH in isopropyl alcohol, which is widely used in the titration of acids, was used as titrant. The mV values obtained on the pH meter were recorded. Finally, HNP values were determined by plotting the volume (mL) (TBAH)-mV graph.

General procedure for the synthesis of 1,3,5-tri-\{4-[(3-alkyl/aryl-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl)-azomethin]-phenoxycarbonyl\}-benzenes (4a-h)
4-Hydroxybenzaldehyde (0.03 mol) dissolved in ethyl acetate (15 mL) was treated with $1,3,5$-benzenetricarbonyl chloride $(0.01 \mathrm{~mol})$, and to this solution was added triethylamine $(0.03 \mathrm{~mol})$ slowly with stirring at $0-5{ }^{\circ} \mathrm{C}$. Stirring was continued for 2 h ; then the mixture was refluxed for 3 h and filtered. The filtrate was evaporated in vacuo and the crude product was washed with water and recrystallized from ethanol to afford compound 1, yield 89%, mp $218.5^{\circ} \mathrm{C}$; IR (KBr) ($\mathrm{v}, \mathrm{cm}^{-1}$): 2827 and $2739(\mathrm{CHO}) ; 1741,1693(\mathrm{C}=\mathrm{O}) ; 1198(\mathrm{COO})$. The corresponding compound $3(0.003 \mathrm{~mol})$ was dissolved in acetic acid $(15 \mathrm{~mL})$ and treated with 1,3,5-tri-(4-formylphenoxycarbonyl)-benzene $1(0.001 \mathrm{~mol})$. The mixture was refluxed for 1.5 h and then evaporated at $50-55$ ${ }^{\circ} \mathrm{C}$ in vacuo. Several recrystallizations of the residue from $\mathrm{DMSO}-\mathrm{H}_{2} \mathrm{O}(1: 3)$ gave pure compounds 1,3,5-tri-\{4-[(3-alkyl/aryl-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl)-azomethin]-phenoxycarbonyl $\}$-benzenes (4) as colorless crystals.

1,3,5-Tri-\{4-[(3-methyl-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl)-azomethin]-phenoxycarbonyl\}-benzene (4a): Yield: 99%, m.p. $280^{\circ} \mathrm{C}$. IR (KBr, $v, \mathrm{~cm}^{-1}$): $3175(\mathrm{NH}), 1740,1694(\mathrm{C}=\mathrm{O}), 1596(\mathrm{C}=\mathrm{N}), 1197$ (COO), 808 (1,4disubstituted benzenoid ring). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 2.29\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 7.52(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.40 \mathrm{~Hz})$, $7.96(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.80 \mathrm{~Hz}), 9.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}), 9.78(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{~N}=\mathrm{CH}), 11.83(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$): $\delta 11.06\left(3 \mathrm{CH}_{3}\right)$, [122.53 (6 CH), $\left.129.04(6 \mathrm{CH}), 129.61(3 \mathrm{CH}), 130.36(3 \mathrm{C}), 131.78(3 \mathrm{C}), 151.22(3 \mathrm{C})\right]$ (arom-C), $144.27\left(3\right.$ triazole $\left.\mathrm{C}_{3}\right), 152.48(3 \mathrm{~N}=\mathrm{CH}), 152.50\left(3\right.$ triazole $\left.\mathrm{C}_{5}\right), 162.85(3 \mathrm{COO})$.

1,3,5-Tri-\{4-[(3-ethyl-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl)-azomethin]-phenoxycarbonyl\}-benzene (4b): Yield 95%, m.p. $267^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3179 (NH), 1741, 1702 ($\mathrm{C}=\mathrm{O}$), 1596 (C=N), 1191 (COO), 809 (1,4disubstituted benzenoid ring). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 1.23\left(\mathrm{t}, 9 \mathrm{H}, 3 \mathrm{CH}_{2} \mathrm{CH}_{3} ; J=7.60 \mathrm{~Hz}\right.$), $2.70(\mathrm{q}, 6 \mathrm{H}$, $\left.3 \mathrm{CH}_{2} \mathrm{CH}_{3} ; J=7.60 \mathrm{~Hz}\right), 7.54(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.40 \mathrm{~Hz}), 7.96(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.80 \mathrm{~Hz}), 9.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}), 9.77(\mathrm{~s}, 3 \mathrm{H}$, $3 \mathrm{~N}=\mathrm{CH}), 11.86(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 10.04\left(3 \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 18.50\left(3 \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, [122.55 $(6 \mathrm{CH}), 129.01(6 \mathrm{CH}), 129.58(3 \mathrm{CH}), 130.36(3 \mathrm{C}), 131.76(3 \mathrm{C}), 151.36(3 \mathrm{C})]$ (arom-C), 148.05 (3triazole C_{3}), $152.49(3 \mathrm{~N}=\mathrm{CH}), 152.56\left(3\right.$ triazole $\left.\mathrm{C}_{5}\right), 162.86(3 \mathrm{COO})$.

1,3,5-Tri-\{4-[(3-n-propyl-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl)-azomethin]-phenoxycarbonyl\}-benzene (4c): Yield 98%, m.p. $284^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): $3180(\mathrm{NH}), 1741,1703(\mathrm{C}=\mathrm{O}), 1597(\mathrm{C}=\mathrm{N}), 1193$ (COO), 809 (1,4disubstituted benzenoid ring). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 0.97\left(\mathrm{t}, 9 \mathrm{H}, 3 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} ; J=7.60 \mathrm{~Hz}\right.$), 1.70 (sext, $\left.6 \mathrm{H}, 3 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} ; J=7.60 \mathrm{~Hz}\right), 2.66\left(\mathrm{t}, 6 \mathrm{H}, 3 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} ; J=7.60 \mathrm{~Hz}\right), 7.55(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.40 \mathrm{~Hz}), 7.97(\mathrm{~d}, 6 \mathrm{H}$, $\mathrm{ArH} ; J=8.80 \mathrm{~Hz}), 9.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}), 9.79(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{~N}=\mathrm{CH}), 11.87(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta$ $13.47\left(3 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 18.91\left(3 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 26.69\left(3 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, [122.60(6CH), $129.02(6 \mathrm{CH}), 129.58(3 \mathrm{CH})$, 130.39 (3C), $131.83(3 \mathrm{C}), 151.30(3 \mathrm{C})$] (arom-C), 146.92 (3triazole C_{3}), 152.51 ($3 \mathrm{~N}=\mathrm{CH}$), 152.61 (3triazole C_{5}), 162.69 (3COO).

1,3,5-Tri-\{4-[(3-benzyl-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl)-azomethin]-phenoxycarbonyl\}-benzene (4d):

 Yield 95%, m.p. $311^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): $3188(\mathrm{NH}), 1741$, 1703 (C=O), 1598 (C=N), 1219 (COO), 815 (1,4disubstituted benzenoid ring). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 4.08\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.21-7.25(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.30-$ $7.36(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH}), 7.54(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.80 \mathrm{~Hz}), 7.94(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.80 \mathrm{~Hz}), 9.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}), 9.75(\mathrm{~s}, 3 \mathrm{H}$, $3 \mathrm{~N}=\mathrm{CH}), 12.00(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 31.07\left(3 \mathrm{CH}_{2} \mathrm{Ph}\right)$, [122.60(6CH), $129.09(6 \mathrm{CH})$, $129.46(3 \mathrm{CH}), 130.21(3 \mathrm{C}), 131.78(3 \mathrm{C}), 151.22(3 \mathrm{C})]$ (arom-C), [126.71(3CH), $128.44(6 \mathrm{CH}), 128.79(6 \mathrm{CH})$, $135.80(3 \mathrm{C})]$ (Ar-C linked C3), 146.24 (3triazole C_{3}), $151.22(3 \mathrm{~N}=\mathrm{CH}), 152.54$ (3triazole C_{5}), 162.72 (3COO).
1,3,5-Tri-\{4-[(3-p-methylbenzyl-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl)-azomethin]-phenoxycarbonyl\}-

benzene (4e): Yield 88%, m.p. $306^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): $3196(\mathrm{NH}), 1749,1715(\mathrm{C}=\mathrm{O}), 1592(\mathrm{C}=\mathrm{N}), 1206(\mathrm{COO})$, 833, 808 (1,4-disubstituted benzenoid ring). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 2.25\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{PhCH}_{3}\right), 4.02(\mathrm{~s}, 6 \mathrm{H}$, $3 \mathrm{CH}_{2}$), $7.12(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.00 \mathrm{~Hz}), 7.23(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.00 \mathrm{~Hz}), 7.54(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.40 \mathrm{~Hz}), 7.94(\mathrm{~d}, 6 \mathrm{H}$, $\mathrm{ArH} ; J=8.40 \mathrm{~Hz}), 9.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}), 9.75(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{~N}=\mathrm{CH}), 12.00(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): \delta$ $20.56\left(3 \mathrm{PhCH}_{3}\right), 30.67\left(3 \mathrm{CH}_{2} \mathrm{Ph}\right),[122.55(6 \mathrm{CH}), 129.05(6 \mathrm{CH}), 129.63(3 \mathrm{CH}), 130.39(3 \mathrm{C}), 131.77(3 \mathrm{C}), 151.27$ (3C)] (arom-C), [128.65 (6CH), $128.99(6 \mathrm{CH}), 132.65(3 \mathrm{CH}), 135.78(3 \mathrm{C})]$ (Ar-C linked C3), 146.38 (3triazole C ${ }_{3}$), $152.32(3 \mathrm{~N}=\mathrm{CH}), 152.50\left(3\right.$ triazole $\left.\mathrm{C}_{5}\right), 162.67(3 \mathrm{COO})$.

1,3,5-Tri-\{4-[(3-p-methoxybenzyl-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl)-azomethin]-phenoxycarbonyl\}-
benzene (4f): Yield 84%, m.p. $296^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): $3195(\mathrm{NH}), 1748,1715(\mathrm{C}=\mathrm{O}), 1592(\mathrm{C}=\mathrm{N}), 1207(\mathrm{COO})$, 834, 814 (1,4-disubstituted benzenoid ring). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 3.70\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{OCH}_{3}\right), 4.00(\mathrm{~s}, 6 \mathrm{H}$, $\left.3 \mathrm{CH}_{2}\right), 6.88(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.00 \mathrm{~Hz}), 7.26(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.00 \mathrm{~Hz}), 7.53(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.40 \mathrm{~Hz}), 7.96(\mathrm{~d}, 6 \mathrm{H}$, $\mathrm{ArH}, J=8.00 \mathrm{~Hz}), 9.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}), 9.75(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{~N}=\mathrm{CH}), 11.97(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6}): δ $30.21\left(3 \mathrm{CH}_{2} \mathrm{Ph}\right), 55.01\left(3 \mathrm{OCH}_{3}\right),[122.60(6 \mathrm{CH}), 129.09(6 \mathrm{CH}), 129.85(3 \mathrm{CH}), 130.77(3 \mathrm{C}), 131.83(3 \mathrm{C}), 151.23$

The Pharmaceutical and Chemical Journal

(3C)] (arom-C), [113.89 (6CH), 127.56 (3C), 130.42 (6CH), 158.11 (3C)] (Ar-C linked C3), 146.55 (3triazole C ${ }_{3}$), $152.39(3 \mathrm{~N}=\mathrm{CH}), 152.53$ (3triazole C_{5}), 162.71 (3COO).

1,3,5-Tri-\{4-[(3-p-chlorobenzyl-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl)-azomethin]-phenoxycarbonyl\}benzene ($\mathbf{4 g}$): Yield 95%, m.p. $297^{\circ} \mathrm{C}$. IR (KBr, $v, \mathrm{~cm}^{-1}$): $3194(\mathrm{NH}), 1743,1706(\mathrm{C}=\mathrm{O}), 1593(\mathrm{C}=\mathrm{N}), 1193(\mathrm{COO})$, 812 (1,4-disubstituted benzenoid ring). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 4.09\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.38(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH})$, $7.55(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.40 \mathrm{~Hz}), 7.94(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.40 \mathrm{~Hz}), 9.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}), 9.75(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{~N}=\mathrm{CH}), 12.03(\mathrm{~s}, 3 \mathrm{H}$, $3 \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 30.39\left(3 \mathrm{CH}_{2} \mathrm{Ph}\right),[122.59(6 \mathrm{CH}), 129.11(6 \mathrm{CH}), 129.66(3 \mathrm{CH}), 130.73$ (3C), 131.72 (3C), 151.19 (3C)] (arom-C), [128.26 (6CH), 130.61 (6 CH), 131.44 (3C), 134.76 (3C)] (Ar-C linked C3), 145.91 (3triazole C_{3}), $152.49(3 \mathrm{~N}=\mathrm{CH}), 152.60\left(3\right.$ triazole $\left.\mathrm{C}_{5}\right), 162.70(3 \mathrm{COO})$.

1,3,5-Tri-\{4-[(3-m-chlorobenzyl-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl)-azomethin]-phenoxycarbonyl\}benzene (4h): Yield 85%, m.p. $296^{\circ} \mathrm{C}$. IR (KBr, $v, \mathrm{~cm}^{-1}$): 3192 (NH), 1744, 1705 ($\mathrm{C}=\mathrm{O}$), 1595 ($\mathrm{C}=\mathrm{N}$), 1191 (COO), 841 (1,4-disubstituted benzenoid ring), 812 and 702 (1,3-disubstituted benzenoid ring). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta 4.11\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.32-7.51(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH}), 7.53(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.40 \mathrm{~Hz}), 7.93(\mathrm{~d}, 6 \mathrm{H}, \mathrm{ArH} ; J=8.40 \mathrm{~Hz})$, $9.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}), 9.75(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{~N}=\mathrm{CH}), 12.05(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) : $\delta 30.69\left(3 \mathrm{CH}_{2} \mathrm{Ph}\right)$, [122.49 (6CH), $129.05(6 \mathrm{CH}), 129.64(3 \mathrm{CH}), 130.26(3 \mathrm{C}), 131.70(3 \mathrm{C}), 151.18(3 \mathrm{C})]$ (arom-C), [126.65 (3CH), $127.57(3 \mathrm{CH}), 128.96(3 \mathrm{CH}), 130.21(3 \mathrm{CH}), 132.97(3 \mathrm{C}), 138.12(3 \mathrm{C})$] (Ar-C linked C3), 145.69 (3triazole C_{3}), $152.51(3 \mathrm{~N}=\mathrm{CH}), 152.57$ (3triazole $\left.\mathrm{C}_{5}\right), 162.62(3 \mathrm{COO})$.

1,3,5-Tri-\{4-[(3-phenyl-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl)-azomethin]-phenoxycarbonyl\}-benzene (4i): Yield 93%, m.p. $311^{\circ} \mathrm{C}$. IR (KBr, $v, \mathrm{~cm}^{-1}$): 3174 (NH), 1739, 1695 ($\mathrm{C}=\mathrm{O}$), 1595 ($\mathrm{C}=\mathrm{N}$), 1195 (COO), 835 (1,4disubstituted benzenoid ring), 762 and 692 (monosubstituted benzenoid ring). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): δ 7.52-7.57 (m, 15H, ArH), 7.91-7.96 (m, 12H, ArH), $9.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}), 9.72(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{~N}=\mathrm{CH}), 12.40(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{NH})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$): δ [122.69 (6CH), $129.28(6 \mathrm{CH}), 129.92(3 \mathrm{CH}), 130.35(3 \mathrm{C}), 131.58(3 \mathrm{C}), 151.33$ (3C)] (arom-C), [126.62 (3CH), $128.24(6 \mathrm{CH}), 128.52(6 \mathrm{CH}), 130.09$ (3C)] (Ar-C linked C3), 144.58 (3triazole C ${ }_{3}$), 152.69 (3triazole C_{5}), $155.43(3 \mathrm{~N}=\mathrm{CH}), 162.64(3 \mathrm{COO})$.

Results and Discussion

In this study, the structures of nine new 1,3,5-tri-\{4-[(3-alkyl/aryl-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl)-azomethin]-phenoxycarbonyl\} benzenes (4a-i) were characterized with IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral data. Then, synthesized 4 type compounds were titrated potentiometrically with TBAH in four non-aqueous solvents, the mV values from each titration were plotted against TBAH volumes used (mL) , and the potentiometric titration curves were formed for all the cases. From the titration curves, the HNP values were measured, and the corresponding $\mathrm{p} K_{\mathrm{a}}$ values were calculated. As an example, the potentiometric titration curves for 0.001 M solutions of 1,3,5-tri-\{4-[(3-methyl-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl)-azomethin]-phenoxy-carbonyl\}-benzene (4a) titrated with 0.05 N TBAH in isopropyl alcohol, tert-butyl alcohol, DMF and acetone are presented in Figure 1.
The half-neutralization potential values and the corresponding $\mathrm{p} K_{\mathrm{a}}$ values of the compounds $\mathbf{4}$, obtained from the potentiometric titrations with 0.05 M TBAH in isopropyl alcohol, tert-butyl alcohol, DMF and acetone are presented in Table 1.
The pH of weak acids can be calculated using the following equation:

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}]
$$

where $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}$ when $\left[\mathrm{A}^{-}\right]$is equal to $[\mathrm{HA}]$ at the half-neutralization points. Therefore, the pH values at the halfneutralization points were taken as $\mathrm{p} K_{\mathrm{a}}$. Taking into consideration the dielectric permittivity of the solvents, the acidity ranking might be expected to be as follows: N, N-dimethylformamide $(\varepsilon=37)>$ acetone $(20,6)>$ isopropyl alcohol $(\varepsilon=19.4)>$ tert-butyl alcohol $(\varepsilon=12.0)$. As seen in Table 1 , in isopropyl alcohol only for compounds $\mathbf{4 d}$ and $\mathbf{4 i}$, in tert-butyl alcohol only for compounds $\mathbf{4 a}$ and $\mathbf{4 d}$, in acetone only for compound $\mathbf{4 i}$ the HNP values and the corresponding $\mathrm{p} K_{\mathrm{a}}$ values were obtained. For compound $\mathbf{4 d}$ and $\mathbf{4 i}$ in DMF the HNP values and the corresponding
$\mathrm{p} K_{\mathrm{a}}$ values have not been obtained. In addition, the $\mathrm{p} K_{\mathrm{a}}$ values bigger than 20.00 have not been determined due to the fact that this value is outside the range of the pH meter.
As it is well known, the acidity of a compound depends on several factors. The two most important ones are the solvent effect and molecular structure [1-4, 12]. Table 1 and Figure 1 show that the HNP values and corresponding $\mathrm{p} K_{\mathrm{a}}$ values obtained from the potentiometric titrations depend on the non-aqueous solvents used and the substituent's at C-3 in 4,5-dihydro-1 H -1,2,4-triazol-5-one ring.

Figure 1: Potentiometric titration curves of 0.001 M solutions of compound 4 a titrated with 0.05 M TBAH in four non-aqueous solvents at $25^{\circ} \mathrm{C}$

Table 1: The HNP and the corresponding $p K_{a}$ values of compounds 4 in isopropyl alcohol, tert-butyl alcohol,
DMF and acetone

Comp.	Isopropyl alcohol		tert-Butyl alcohol		DMF		Acetone	
	$\begin{aligned} & \text { HNP } \\ & (\mathbf{m V}) \end{aligned}$	$\mathrm{p} \mathrm{K}_{\mathrm{a}}$	$\begin{aligned} & \mathrm{HNP} \\ & (\mathrm{mV}) \end{aligned}$	$\mathrm{p} \mathrm{K}_{\mathrm{a}}$	$\begin{aligned} & \text { HNP } \\ & (\mathrm{mV}) \end{aligned}$	$\mathrm{p} \mathrm{K}_{\mathrm{a}}$	$\begin{aligned} & \mathrm{HNP} \\ & (\mathbf{m V}) \end{aligned}$	$\mathrm{p} K_{\mathrm{a}}$
4a	-	-	18,30	-608	12,54	-275	-	-
4b	-	-	-	-	11,89	-252	-	-
4c	-	-	-	-	10,05	-137	-	-
4d	9,44	-103	8,30	-36	-	-	-	-
4 e	-	-	-	-	10,36	-156	-	-
4 f	-	-	-	-	11,16	-200	-	-
4 g	-	-	-	-	13,29	-322	-	-
4 h	-	-	-	-	12,90	-305	-	-
4i	8,31	-35	-	-	-	-	15,42	-439

Conclusion

In this study, 1,3,5-tri-\{4-[(3-alkyl/aryl-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl)-azomethin]-phenoxycarbonyl\} benzenes (4a-i) were titrated potentiometrically with tetrabutylammonium hydroxide in four non-aqueous solvents such as isopropyl alcohol, tert-butyl alcohol, N,N-dimethylformamide and acetone, the half- neutralization potential values and the corresponding $\mathrm{p} K_{\mathrm{a}}$ values were determined for all cases.

References

1. Kol, O. G., Yuksek, H., \& Islamoglu, F. (2013). Synthesis and in vitro antioxidant activities of novel 4-(3-methyl-2-thienylmethyleneamino)-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives with their acidic properties. Journal of the Chemical Society of Pakistan, 35(4), 1179-1190.
2. Yüksek, H., Akyıldırım, O., Yola, M. L., Gürsoy-Kol, Ö., Çelebier, M., \& Kart, D. (2013). Synthesis, in vitro antimicrobial and antioxidant activities of some new 4,5-dihydro-1 H -1,2,4-triazol-5-one derivatives. Archiv Der Pharmazie, 346(6), 470-480.
3. Yüksek, H., Koca, E., Gürsoy-Kol, Ö., Akyıldırım, O., \& Çelebier, M. (2015). Synthesis, in vitro antioxidant activity, and physicochemical properties of novel 4,5-dihydro-1 H -1,2,4-triazol-5-one derivatives. Journal of Molecular Liquids, 206, 359-366.
4. Yüksek, H., \& Gürsoy-Kol, Ö. (2008). Preparation, characterization, and potentiometric titrations of some new di-[3-(3-alkyl/aryl-4,5-isophthalate/terephthalate derivatives. Turkish Journal of Chemistry, 32, 773-784.
5. Demirbaş, A., Kula, I., Erdoğan, Y., Aslan, A., Yaylı, N., \& Karslıoğlu, S. (1998) Non-aqeous medium titration of some acidic compounds. Energy Education Science and Technology, 1, 13-16.
6. Frey, P. A., Kokesh, F. C., \& Westheimer, F. H. (1971) A reporter group at active site of acetoacetate decarboxylase. I. Ionization constant of the nitrophenol. Journal of the American Chemical Society, 93, 7266-7269.
7. Putun, A. E., Bereket, G., \& Keskin, E. (1995) Potentiometric titrations of some 2-substituted 5nitrobenzimidazole derivatives in nonaqueous solvent. Journal of Chemical \& Engineering Data, 40, 221-224.
8. El-Emam, A., Al-Abdullah, E., Asiri, H., Lahsasni, S., Habib, E., \& Ibrahim, T. (2014). Synthesis, antimicrobial, and anti-inflammatory activity, of novel S-substituted and N -substituted 5-(1-adamantyl)-1,2,4-triazole-3-thiols. Drug Design, Development and Therapy, 8, 505-518. http://doi.org/10.2147/DDDT.S62465
9. Li, W., Yang, Z.-H., Hu, A.-X., Yan, X.-W., Ding, N., \& Ye, J. (2015). Design, synthesis, and antitumor activity of (E,Z)-1-(dihydrobenzofuran-5-yl)-3-phenyl-2-(1,2,4-triazol-1-yl)-2-propen-1ones. Chemical Biology \& Drug Design, 86(6), 1339-1350.
10. Ikizler, A., \& Un, R. (1979). Reactions of ester ethoxycarbonylhydrazones with some amine type compounds. Chimica Acta Turcia, 7, 269-290.
11. Ikizler, A., \& Yüksek, H. (1993). Acetylation of 4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones. Organic Preparations and Procedures International, 25(1), 99-105.
12. Gündüz, T. (1998). Susuz Ortam Reaksiyonları, Gazi Büro Kitabevi Tic. Ltd. Şti. Ankara, Turkey.
