
 
 

Pamukkale Univ Muh Bilim Derg, 25(9), 1041-1049, 2019 
(LMSCM’2018-16. Uluslararası Lojistik ve Tedarik Zinciri Kongresi Özel Sayısı) 

 

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 

 Pamukkale University Journal of Engineering Sciences 

 

1041 
 

A constraint programming approach for the pickup and delivery problem 
with time windows 

Zaman pencereli toplama ve dağıtım problemi için kısıt programlama 
yaklaşımı 

Mustafa KÜÇÜK1 , Şeyda TOPALOĞLU YILDIZ2*  

1,2Department of Industrial Engineering, Engineering Faculty, Dokuz Eylul University, İzmir, Turkey. 
mustafa.kucuk218@ogr.edu.edu.tr, seyda.topaloglu@deu.edu.tr 

Received/Geliş Tarihi: 15.06.2019, Accepted/Kabul Tarihi: 28.11.2019 
* Corresponding author/Yazışılan Yazar 

doi: 10.5505/pajes.2019.56804 
Special Issue Article / Özel Sayı Makalesi 

 
Abstract  Öz 

The pickup and delivery problem with time windows (PDPTW) is 
studied in this paper. It is referred to as the single-commodity 
capacitated vehicle routing problem with pickups and deliveries, in 
which a fleet of vehicles meet a group of customer demands. Each 
customer demand includes the usage of only one vehicle for both 
loading a specified quantity of one type of commodity at one place and 
delivering them to another place. All the demands of customers must 
be satisfied without exceeding the vehicle capacity and the pickup or 
delivery places time windows specified for each place. In this study, we 
introduce a novel Constraint Programming (CP) model for the PDPTW. 
CP is an exact solution approach that is popular for its performance to 
state complicated relationships and to achieve high-quality solutions 
within acceptable computational times for combinatorial optimization 
problems with complicated constraints such as the PDPTW. The 
performance of the proposed CP model is tested with well-known 
benchmark instances from literature. The results of computational 
analysis indicate that our CP model is very effective in finding high-
quality solutions for even large size problems. 

 Bu makale zaman pencereli toplama ve dağıtım problemini (ZPTDP) 
ele almaktadır.  Problem, müşteri taleplerinin bir araç filosu 
tarafından karşılandığı, tek  ürünlü, toplama ve dağıtımlı araç 
rotalama problemi olarak adlandırılmaktadır. Her müşteri talebi belli 
miktardaki tek tip ürünün bir lokasyondan yüklenmesini ve başka bir 
lokasyona teslim edilmesini içermektedir. Müşteri talepleri araçların 
kapasitesi ve her bir lokasyon için belirlenmiş toplama ve dağıtım 
zaman pencereleri ihlal edilmeden karşılanmalıdır. Bu çalışmada, 
ZPTDP için yeni bir kısıt programlama (KP) modeli sunmaktayız. KP, 
ZPTDP gibi zor kısıtlı kombinatorik optimizasyon problemlerinin 
karmaşık ilişkilerinin tanımlanmasında ve kabul edilebilir hesaplama 
süresi içinde yüksek kaliteli çözümler bulmada yeterliliği iyi bilinen, 
kesin bir çözüm yaklaşımıdır. Önerilen KP modelini literatürde sıkça 
kullanılan karşılaştırma örneklerine uyguladık. Aldığımız sonuçlar KP 
modelimizin büyük boyutlu problemlerde bile yüksek kaliteli sonuçlar 
verebilecek kadar etkili olduğunu göstermiştir. 

Keywords: Constraint programming, Pickup and delivery problem, 
Time windows 

 Anahtar kelimeler: Kısıt programlama, Toplama ve dağıtım 
problemi, Zaman pencereleri 

1 Introduction 

Vehicle routing problem (VRP) is a very popular research area 
owing to its benefits for transportation and logistics 
applications. In recent times, numerous new constraints have 
been added to this problem to meet real-life demands. Some of 
these constraints are related with capacity, service times, time 
windows, loading, transshipment etc. One of the useful 
extensions of the VRP is the pickup and delivery problem 
which includes capacity and time windows constraints. The 
pickup and delivery problem occurs for a single vehicle or a 
group of vehicles to meet a group of customer demands. Each 
customer demand enforces the usage of a single vehicle both 
to load a quantity of goods at one place and to deliver them to 
another place. All customer demands are met within the 
customer time window restriction specified for each place and 
considering the vehicle capacity limitations. The objective of 
the classic pickup and delivery problems with time windows 
(PDPTW) is to minimize the number of vehicles employed or 
to minimize the sum of travel distances of vehicles. 

Different variants of the PDPTW are studied in literature and 
classified according to their configurations, the pickup and 
delivery activities in the nodes, commodity types and the 
number of employed vehicles. For example, in one-to-one 

PDPTW, each vehicle has pairs of one pickup point and one 
delivery point. The vehicles visit any place as an origin or as a 
destination in the many-to-many type [1]. Solving the PDPTW 
contributes to various logistics applications such as forward or 
reverse logistics, shipping cars, home delivery, collection and 
distribution of empty cans and bottles, bike repositioning 
activities, school bus routing, airline scheduling etc. [2] 

In this study, we introduce a novel constraint programming 
(CP) model for the PDPTW. The performance of the proposed 
CP model is evaluated for small size problems against the 
mixed integer programming (MIP) formulation over randomly 
generated problem instances. The CP model is also 
implemented to solve the well-known benchmark instances 
from the related literature. The results of computations show 
that the suggested CP model is very effective in finding good 
quality feasible solutions. 

The remainder of this paper is arranged as following: in 
Section 2 literature review is given. Problem description and 
formulation of model are provided in Section 3. In Section 4, 
the developed CP model for the PDPTW is presented. In 
Section 5, the computational results are illustrated. Eventually, 
in Section 6, conclusion and future research considerations are 
given. 
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2 Literature review 

The pickup and delivery problem with time windows 
(PDPTW) was for the first time defined by Lenstra et al. [3]. It 
has arisen from the vehicle routing problems with time 
windows (VRPTW), in which a quantity of vehicles with 
specified capacities located at a depot give service to 
dispersed customers within specified time windows. After this 
study, numerous studies have been issued in literature using 
various techniques such as exact methods, heuristics and 
meta-heuristics, with focus on solving benchmark instances of 
the PDPTW.  

In most of the studies, the objective functions are either to 
minimize the cumulated cost of the vehicles or to minimize the 
cumulated distance traveled by all the vehicles. The most 
frequently used PDPTW constraints can be categorized as 
vehicle capacity constraints (identical or non-identical vehicle 
fleets), coupling constraints (the usage of the same vehicle for 
visiting the pickup and delivery places), precedence 
constraints (pickup place scheduled before the respective 
delivery place), depot constraints (start and end of travel), 
resource constraints (availability of drivers and vehicles), 
visiting constraints ( exactly one visit to each pickup and 
delivery places), and time window constraints [4]. 

Solomon and Desrosiers [5] issued a significant review of the 
VRPTW and related problems such as traveling salesman 
problems (TSPTW) and PDPTW. Savelsbergh and Sol [6] 
discussed various characteristics of the pickup and delivery 
problems (PDP) and gave an overview of the solution 
approaches about the PDPs. They also classified the PDP into 
cases, with vehicle numbers and time windows. In addition, 
Toth and Vigo [7] introduced a very successful survey of the 
vehicle routing problems that included methods for solving 
the PDPTW. 

Li and Lim [8] introduced a tabu-embedded simulated 
annealing based solution approach and asserted that their 
approach is the first efficient one to solve large size PDPTW 
problem instances. Bent and Van Hentenryck [9] introduced a 
two-stage hybrid algorithm for the PDPTW, where in the first 
stage a simulated annealing algorithm is used to minimize the 
number of vehicles, and in the second stage the travel cost is 
decreased by a large neighborhood search. Ropke and Pisinger 
[10] developed an extension to the large neighborhood search 
and the ruin-and-recreated heuristic and named it as the 
adaptive large neighborhood search heuristic (ALNS). Until 
2008, for a detailed survey on the pickup and delivery 
problems and their variants, see Parragh et al. [11]. Nagata 
and Kobayashi [12]  presented a guided ejection search 
algorithm to the PDPTW. Nalepa and Blocho [13] studied on a 
parallel guided ejection search algorithm to minimize the 
number of vehicles in the PDPTW. In their study, parallel 
processes cooperate sporadically to increase the quality of 
results and to decrease the convergence time of computations. 

Furthermore, many variants of the PDPTW stimulated by real-
life problems are studied in literature.  Xu et al. [14] proposed 
a column generation-based solution approach for the PDPTW 
with many real-life complications, in which customer orders 
and vehicle types must satisfy the compatibility constraints, 
and an order cannot be unloaded until all the previously 
loaded orders into the vehicle are unloaded.  Qu and Bard [15] 
introduced an extension to the PDP with non-identical fleet in 
which the capacity of each vehicle can be changed to satisfy 

different types of customer demands. Bettinelli et al. [16] 
proposed a branch and price algorithm to tackle PDPs with 
soft time windows. In their study, a penalty is attributed when 
a time window is violated. Mannel and Borthfeld [17] 
extended the classical PDP to an integrated routing and three-
dimensional loading problem. They developed a hybrid 
algorithm that combined the large neighborhood and the tree 
search heuristic. They also tested their algorithm on PDPTW 
benchmark instances. Tchoupo et al. [18] evolved a Bender’s 
decomposition algorithm for the PDPTW with non-identical 
fleet to decrease the cumulated routing cost. For the identical 
case, their introduced approach was able to solve the large 
size problems optimally in acceptable computational time. 
Györgyi and Kis [19] studied a dynamic and stochastic PDP via 
an effective solution method based on an attentive analysis of 
the transfer probability between the customers. Lu and Yang 
[20] proposed a hybrid approach, called iterative logistics 
solution planner.  

In this paper, we introduce a novel solution method for the 
PDPTW. We develop a formulation in which all the constraints 
and the objective function are combined within the framework 
of CP, and we call this model as CP-PDPTW. We use IBM ILOG 
CPLEX Optimizer for implementing CP-PDPTW. 

3 Problem statement and formulation 

The PDPTW can be described on graph theory terms as 
following: Let 𝐺(𝑁, 𝐴) be a graph having the point set 𝑁 and 
the arc set 𝐴. For 𝑖 and 𝑗 ∈ 𝑁, we indicate the arc from 𝑖 to 𝑗 as 
(𝑖, 𝑗)  ∈  𝐴. We use the term ‘‘network’’ to mean a graph having 
additional data on its nodes and arcs. 𝑁 = {0,1,2, .  .  . , 𝑛 + 1} 
is the set of places (nodes), in which 0 represents the initial 
depot and  𝑛 + 1 represents the final depot. Each customer 
{1,2, . . . , 𝑛} requires a non-negative delivery quantity 𝑑𝑖  and a 
non-negative pickup quantity 𝑝𝑖. 𝑃 and 𝐷 represent the set of 
pickup and delivery places (nodes), respectively. Let 𝑟 denote 
the number of customer demands (requests) to satisfy. Each 
customer request  𝑟 ∈ 𝑅 includes a pickup node 𝑃(𝑟) and a 
delivery node 𝐷(𝑟). Additionally each node 𝑖 ∈ 𝑁 has a load 
𝑞𝑖  and a positive service duration 𝑑𝑖 . The loads and durations 
of the depots are equal to 0 (𝑞0  =  𝑞𝑛+1 =  0,  𝑑0  =  𝑑𝑛+1 =
 0).  A limitless fleet of distinct or identical vehicles with 
capacity 𝐶𝑘 is ready to meet the customer demands. Every arc 
(𝑖, 𝑗) ∈ 𝐴 has a travel cost 𝑐𝑖𝑗 connected to travel time 𝑡𝑖𝑗. 

Moreover every node  𝑖 ∈ 𝑃 ∪ 𝐷  has also a time window[𝑒𝑖 , 𝑙𝑖], 
where 𝑒𝑖  and 𝑙𝑖  indicate the possible first and last service time, 
respectively. The pickup or delivery service may start between 
these times at node 𝑖. The depot usually has time windows 
represented by [𝑒0, 𝑙0] and [𝑒𝑛+1, 𝑙𝑛+1]. The objective function 
of this problem is to find out a set of vehicle routes that makes 
the total cost minimum, while satisfying all customer 
demands.  

The presented mixed integer programming model for the 
PDPTW (MIP-PDPTW) is adapted from the related models in 
Ropke et al. [21], Parragh et al. [11] and Rais et al. [22]. The 
triangle inequality is valid for travel costs and times. The 
notation for MIP-PDPTW is given as follows: 

Sets: 

𝑁 set of all nodes, {0,1,2, … , 𝑛 + 1} 

𝑉 set of all vehicles, {1,2, … , 𝑚} 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 25(9), 1041-1049, 2019 
(LMSCM’2018-16. Uluslararası Lojistik ve Tedarik Zinciri Kongresi Özel Sayısı) 

M. Küçük, Ş. Topaloğlu Yıldız 

 

1043 
 

𝑃 set of all pickup nodes 

𝐷 set of all delivery nodes 

𝑅 set of customer requests (demands) 

Parameters: 

𝐶𝑘  capacity of vehicle 𝑘 ∈ 𝑉 

𝑐𝑖𝑗 traveling cost between nodes 𝑖 and 𝑗, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 

𝑡𝑖𝑗 traveling time between nodes 𝑖 and 𝑗, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 

𝑑𝑖  service duration of customer 𝑖 ∈ 𝑁 

𝑞𝑖  load amount of customer 𝑖 ∈ 𝑁 

𝑀𝑖𝑗 
𝑘  big number for beginning time of arc 𝑖, 𝑗 ∈ 𝑁 and 

vehicle 𝑘 ∈ 𝑉 

𝑊𝑖𝑗
𝑘 big number for load of arc 𝑖, 𝑗 ∈ 𝑁 and vehicle 𝑘 ∈ 𝑉 

Decision variables: 

𝑥𝑖𝑗
𝑘  1 if arc(𝑖, 𝑗) is traveled by vehicle 𝑘 ∈ 𝑉, 0 otherwise 

𝐵𝑖
𝑘  beginning service time of vehicle 𝑘 ∈ 𝑉 at node  𝑖 ∈

𝑁  

𝑄𝑖
𝑘 load of vehicle 𝑘 ∈ 𝑉 when leaving node  𝑖 ∈ 𝑁  

According to the above notation, the MIP-PDPTW formulation 
can be given as follows: 

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗 

𝑗∈𝑁𝑖∈𝑁𝑘∈𝑉

𝑥𝑖𝑗
𝑘  (1) 

Subject to: 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁𝑘∈𝑉

= 1          ∀𝑖 ∈ 𝑁 (2) 

∑ 𝑥0𝑗
𝑘

𝑗∈𝑁

    = 1             ∀𝑘 ∈ 𝑉 (3) 

∑ 𝑥𝑖(𝑛+1)
𝑘

𝑖∈𝑁

 = 1           ∀𝑘 ∈ 𝑉 (4) 

∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑁

 − ∑ 𝑥𝑗𝑖
𝑘

𝑖∈𝑁

  = 0                ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝑉 (5) 

∑ 𝑥𝑃(𝑟)𝑗
𝑘

𝑗∈𝑁

 − ∑ 𝑥𝐷(𝑟)𝑗
𝑘

𝑗∈𝑁

  = 0    ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝑉 (6) 

𝐵𝑗
𝑘 ≥ 𝐵𝑖

𝑘 + 𝑑𝑖 +  𝑡𝑖𝑗−𝑀𝑖𝑗𝑘(1 − 𝑥𝑖𝑗𝑘)    

 ∀𝑖, 𝑗 ∈ 𝑁,    ∀𝑘 ∈ 𝑉 
(7) 

𝐵𝑃(𝑟)
𝑘 ≤ 𝐵𝐷(𝑟)

𝑘       ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝑉 (8) 

𝑒𝑖 ≤ 𝐵𝑖
𝑘 ≤ 𝑙𝑖             ∀𝑖 ∈  𝑁, ∀𝑘 ∈ 𝑉 (9) 

𝑄𝑗
𝑘 ≥ 𝑄𝑖

𝑘 + 𝑞𝑖 − 𝑊𝑖𝑗
𝑘(1 − 𝑥𝑖𝑗𝑘)      ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝑉 (10) 

𝑚𝑎𝑥(0, 𝑞𝑖) ≤ 𝑄𝑖
𝑘 ≤ 𝑚𝑖𝑛(𝐶𝑘 , 𝐶𝑘 + 𝑞𝑖)  ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑉 (11) 

𝑥𝑖𝑗
𝑘 ∈ {0,1}    ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝑉 (12) 

The objective function (1) minimizes total traveling cost. 
Constraints (2) state that each node has to be served only 
once. Constraints (3) and (4) ensure that each vehicle starts at 
the initial depot, and after visiting a set of nodes in its tour, it 
returns to the final depot, but these constraints do not enforce 
that each vehicle has to be used. If a vehicle uses only arc 
(0, 𝑛 + 1), it means that the vehicle is not used in the pickup 
and delivery activities. Constraints (5) ensure flow 
conservation. Constraints (6) enforce that the same vehicle 
must serve both origin and destination of a demand. 
Constraint (7) eliminates subtours by using time variables, 
given that (𝑡 𝑖𝑗 +  𝑑𝑖)  >  0 for all ∀𝑖, 𝑗 ∈ 𝐴.  According to 

constraints (8), delivery can only occur after pickup. 
Constraints (9) prohibit violation of time windows. 
Constraints (10) and (11) ensure that a vehicle’s capacity 
must not be exceeded during its tour. The validity of 

Constraints (7) and (10) is ensured by setting 𝑀𝑖𝑗
𝑘 ≥  𝑚𝑎𝑥{0,

𝑙𝑖  +  𝑑𝑖 + 𝑡𝑖𝑗  −  𝑒𝑗} and 𝑊𝑖𝑗𝑘  ≥ 𝑚𝑖𝑛 {𝑄𝑖𝑘, 𝑄𝑖𝑘 + 𝑞𝑖} [23]. 

4 Proposed constraint programming model 
(CP-PDPTW) 

Constraint programming (CP) is considered as a robust 
technique for solving combinatorial search problems, and it is 
based on various techniques employed from artificial 
intelligence, operations research and graph theory [24]. In this 
paper, we use CP as a solution method to solve the PDPTW. CP 
formulates this problem as a constraint satisfaction problem 
which is to assign a convenient value to every variable in 
order to satisfy all constraints. In usual way of solving a CP 
model, the user states the real-life problem like this 
represented in terms of decision variables and constraints, 
and a CP solver is used to solve them. 

In literature, there are various studies related to CP. Some of 
these have emerged very recently; for instance, Gedik et al. 
[25] utilized CP to solve the team orienteering problem. 
Rahimianet et al. [26] proposed a hybrid algorithm which 
integrates integer programming and CP to efficiently solve the  
nurse scheduling problem with a large number of constraints. 
Hojabri et al. [27] developed a CP-based adaptive large 
neighborhood search (ALNS) for solving the VRP with time 
windows. They proved that CP was very useful for a number of 
vehicle routing problem variants and the presence of 
synchronization constraints made this problem more 
convenient for a CP-based approach. Laborie et al. [28] 
indicated that the CP optimizer is continuously improving and 
that they will continue to increase the performance of the 
search strategies. 

Considering the effectiveness of CP, we developed a CP model 
for the PDPTW in this part of the study (CP-PDPTW). While 
developing this model, we used interval variables that 
represent an interval of time between the start and end of an 
activity and its position in timeline is an unknown part of the 
problem [29]. The interval variable is featured by a start time 
and an end time value, a length and a size. There are several 
advantages of interval variables [30]. In cases where the 
activities are represented by those interval variables with the 
optionality feature defined explicitly, no additional constraint 
is needed to ensure the binary correlation for the absence or 
presence of an activity in the schedule. Subsequently, when 
some optional interval variables are not observed in the last 
solution, it can be inferred that their related domains are 

https://www.sciencedirect.com/topics/mathematics/constraints
https://www.sciencedirect.com/topics/mathematics/graph-theory


 
 
 
 

Pamukkale Univ Muh Bilim Derg, 25(9), 1041-1049, 2019 
(LMSCM’2018-16. Uluslararası Lojistik ve Tedarik Zinciri Kongresi Özel Sayısı) 

M. Küçük, Ş. Topaloğlu Yıldız 

 

1044 
 

empty, and they do not exist in the final schedule. In the CP 
formulation, final status of interval variable can be queried by 
using the  𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒) function. The 
domains of the interval variables in the proposed CP model 
are the possible time intervals that represent the start and end 
times of a place visit. The duration of the visit that 
corresponds to the size of interval variable is equal to the 
difference between the end and start times of the visit [25]. 

Interval variables’ start time and end time remark service 
beginning and finishing time of a visit, respectively. It does not 
mean that start time is exactly the vehicle’s arrival time to 
pickup or delivery point because the vehicle needs to wait 
until the time window for customer service initiates. A visit is 
performed by only one vehicle, that is why the utilization rate 
is equal to “one” and this visit is represented by an interval 
variable that also represents the service start and end time as 
seen in Figure 1. 

 

Figure 1: Representing interval variable. 

The 𝑥𝑖𝑘  is an interval variable representing visit of node 𝑖 ∈
𝑁, using vehicle 𝑘 ∈ 𝑉, and duration time of this visit is 𝑑𝑖 . 
Because  all of the  customers’ demands must be satisfied, 
interval variables for all customers must exist  in the solution. 
The start time and the end time are specified according to time 
windows constraints.  

𝑄𝑘 = {𝑥0𝑘 , 𝑥1𝑘 , 𝑥2𝑘 , … , 𝑥𝑖𝑘 , … , 𝑥(𝑛+1)𝑘} is a collection of optional 

interval variables for each vehicle 𝑘 that represents visits to 
each node 𝑖 ∈ 𝑁. This collection of interval variables is called 
as an interval sequence variable for each vehicle 𝑘 and it 
examines the feasibility of a visits’ sequence for each vehicle 
[25].  

In this study, we used several global constraints such as 
𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒, 𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝, 𝑃𝑢𝑙𝑠𝑒 etc. They are generated by 
IBM’s CP Optimizer. The 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 {𝑦𝑖 , {𝑥𝑖1, .  .  . , 𝑥𝑖𝑚} global 
constraint chooses a single alternative between interval 
variables {𝑥𝑖1, .  .  . , 𝑥𝑖𝑚}[31]. This constraint enforces that only 
one of the decision variables from the collection of 
{𝑥𝑖1, .  .  . , 𝑥𝑖𝑚} is obtained if the decision variable 𝑦𝑖  is 
obtained. Furthermore, 𝑦𝑖  starts and ends together with the 
chosen from the collection of {𝑥𝑖1, .  .  . , 𝑥𝑖𝑚}. This constraint is 
used to assign a visit to each node by only one vehicle. 
𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑖𝑗) is a function that creates a two-

dimensional array which stores the distances between all 
pickup and delivery points. This function is used with another 
global constraint that is called 𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 {𝑥𝑖1, .  .  . 𝑥𝑖𝑚}. The 
𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 constraint featured with 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑡𝑖𝑗) 

function obtains a sequence of interval decision variables that 
do not overlap and has minimum time or distance between 
each consecutive variable in the collection of {𝑥𝑖1, .  .  . 𝑥𝑖𝑚}. 
Thus, the 𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 constraint featured with 
𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒( 𝑡𝑖𝑗) matrix ensures that a vehicle does 

not visit more than one node at any certain time and also 
ensures that if a vehicle visits a node with fixed velocity, the 
time to visit the next node has to be obtained after the 
computed travel time between the nodes elapses. 
Furthermore, 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 is another global constraint that 
tracks the cumulated utilization of the resources by the visits 

as a function of time. A visit to the pickup node naturally 
boosts the cumulated resource utilization by one unit, 
whereas a visit to a delivery node by the same vehicle 
decreases it by one unit.  

For analyzing the impact of each interval variable during the 
activity time, several elementary cumulative functions can be 
used. For example, 𝑆𝑡𝑒𝑝 is used to obtain the rate of resource 
level. In this study, the 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 constraint with the 𝑆𝑡𝑒𝑝 
function is applied to limit the capacity of vehicles during the 
travel. 

Finally, let 𝑐 denote the total cost of each vehicle 𝑘 which 
starts to visit nodes starting from the initial depot and ends at 
the final depot. This decision variable may depend on total 
time or distance. Considering the global constraints and 
interval decision variables given before, CP-PDPTW model can 
be introduced as follows:  

𝑀𝑖𝑛 𝑐 (13) 

Subject to:  

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 (𝑦𝑖 , {𝑥𝑖1, 𝑥𝑖2 … 𝑥𝑖𝑚})              ∀𝑖 ∈ 𝑁, 𝑖 ≠ 0,  

𝑖 ≠ 𝑛 + 1  
(14) 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 (𝑆𝑡𝑒𝑝(𝑥𝑖𝑘 , 𝑞𝑖|𝑖 ∈ 𝑁))  ∀𝑘 ∈ 𝑉 (15) 

𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑄𝑘, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑖𝑗|𝑖, 𝑗 ∈ 𝑁))  

                                                                      ∀𝑘 ∈ 𝑉 
(16) 

𝑄𝑘. 𝐹𝑖𝑟𝑠𝑡(𝑦0)       ∀𝑘 ∈ 𝑉  (17) 

𝑄𝑘 . 𝐿𝑎𝑠𝑡(𝑦𝑛+1)         ∀𝑘 ∈ 𝑉      (18) 

𝑆𝑡𝑎𝑟𝑡𝑂𝑓(𝑥𝐷(𝑟)𝑘) ≥ 𝑆𝑡𝑎𝑟𝑡𝑂𝑓(𝑥𝑃(𝑟)𝑘)           ∀𝑘 ∈ 𝑉  (19) 

The objective function of CP-PDPTW minimizes the sum of 
traveling cost of each vehicle (13). Constraints (14) assure 
that each place, except the initial and final depots, is visited by 
exactly one vehicle. The 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 global constraints make 
it possible by ensuring that 𝑦𝑖  must be in the solution if only 
one of the 𝑥𝑖𝑘  interval variables is in the solution.  The 
𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒  global constraints (15) provide a consistent 
control of the utilization of each vehicle 𝑘 during the visits. 
They guarantee that the total quantity loaded on each vehicle 
during the tour cannot be more than the capacity of vehicle 𝑘. 
The vehicle usage during the activity time is computed using 
the sub-function 𝑆𝑡𝑒𝑝(𝑥𝑖𝑘). It changes the total utilization of 
each vehicle by loading and unloading at the pickup and 
delivery nodes of interval decision variable 𝑦𝑗 , respectively.  

The specified time windows for each node are given in the 
related interval variables as start and end times. The  
𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 constraints (16) ensure that the interval decision 
variables in sequence 𝑄𝑘 indicate the possible visits of vehicle 
𝑘 without overlapping each other. Besides, with the help of 
𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑖𝑗), the 𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 global constraints 

obtain a minimum travel time (𝑡𝑖𝑗) between the end and start 

times of interval decision variables 𝑥𝑖𝑘  and 𝑥𝑗𝑘 , respectively 

which represent the consecutive visits to node 𝑖. Constraints 
(17) and (18) make the initial depot the first (𝑦𝑜)  and the 
final depot (𝑦𝑛+1) the last node to be visited by each vehicle 𝑘. 
Finally, constraints (19) ensure that both origin and 
destination of a demand is served by the same vehicle and 
delivery action can only perform after pickup.  
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𝑐 = ∑ 𝑒𝑛𝑑𝑂𝑓(𝑥(𝑛+1)𝑘)

𝑘∈𝑉

− ∑ 𝑑𝑢𝑟𝑖

𝑖∈𝑁

 (20) 

𝑐 = ∑ ∑ 𝑡𝑖(𝑡𝑦𝑝𝑒𝑂𝑓𝑁𝑒𝑥𝑡(𝑄𝑘,𝑥𝑖𝑘,𝑖,𝑖)

𝑖∈𝑁𝑘∈𝑉

 (21) 

𝑐 = ∑ 𝑒𝑛𝑑𝑂𝑓(𝑥(𝑛+1)𝑘
′ )

𝑘∈𝑉

 (22) 

In the proposed CP formulation, for solving the PDPTW, we 
have tried three types of expressions for 𝑐; in the first type, 
same as in Laborie et al. [28], we employed the 𝑒𝑛𝑑𝑂𝑓( ) 
expression (20) that represents the end time of interval 
variable to find the total time for vehicles’ usage, but if we 
need to minimize the total distance, this expression is 
ineffective because of time windows. So in the second type, we 
utilized the 𝑡𝑦𝑝𝑒𝑂𝑓𝑁𝑒𝑥𝑡( ) function (21) that returns the type 
of the next interval in a given sequence to find out consecutive 
nodes in a tour. The sum of the distances between these nodes 
give us the total distance that is performed by all vehicles. 
Note that, if the presence of 𝑥𝑖𝑘 is “0”, that is, vehicle 𝑘 does 
not visit node 𝑖, then the function gives 𝑡𝑖𝑖 as equal to “0”. In 
the last type of 𝑐 expression (22), we utilized additional 
interval variable 𝑥𝑖𝑘

′  (𝑖 ∈  𝑁, 𝑘 ∈  𝑉)  which has no size 
(duration) and no time windows, and also we utilized 
additional sequence interval variable 𝑄𝑘

′   that indicates 
possible permutations of 𝑥𝑖𝑘

′ . Thereafter, we linked the two 
sequence interval variables 𝑄𝑘 and  𝑄𝑘

′  with the  
𝑠𝑎𝑚𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒( ) constraint. In this way, 𝑐 calculates the sum 
of times that elapses only between the visited nodes by 

vehicle 𝑘 using the 𝑒𝑛𝑑𝑂𝑓(𝑥(𝑛+1)𝑘
′ ) function to derive the last 

node’s visit time [24]. In this type 𝑐 expression, we need to 
multiply 𝑐 by vehicles’ velocity in order to get the total 
distance traveled. 

For tuning the performance, there are some useful ways to 
make the CP Optimizer application more efficient such as 
using multiple data sets, examining the tolerance of the 
objective function, using expertise from the problem, 
optimizing propagation and search and finally, considering 
whether removing symmetry [29].  

Mostly, a direct model of the real-life problems has 
symmetries. For example, these symmetries can be attributed 
to a fleet of identical vehicles, a set of identical containers and 
engineers with identical skills [29].  Given a fleet of identical 
vehicles or containers, it is normal to describe an arbitrary 
sequence among them by numbering them. After that, they are 
not technically identical anymore and symmetries rising from 
their original interchangeability are thus eliminated. In our 
model there are also symmetric solutions and for eliminating 
these solutions, we have added symmetry breaking 
constraints (23) that ensure sorting the identical vehicles by 
the number of visits. Equivalent feasible solutions owing to 
arbitrary repeats, as seen in Figure 2, are eliminated by 
symmetry breaking constraints which do not have any impact 
on the objective function.  

There are various search algorithms in the IBM’s CP Optimizer 
for rapid convergence towards good solutions while solving 

the CP models. In some cases, it can be obtained better 
performance by tuning the search that includes setting 
parameters, selecting search types, specifying search phases 
and so on. A search phase defines an instantiation strategy to 
improve the search process [29]. Mainly there are two ways in 
determining search phases. First of these ways is designed 
upon the interval variables, which works either on a unique 
interval variable or on an array of interval variables. This 
search phase fixes the values of interval variables in the one-
way style, starting to fix from the initial intervals to the last 
one. The search phase on sequence variables is the second 
way which fixes the value of the specified unique sequence 
variable or array of sequence variables. During this phase each 
sequence variable is assigned an entirely ordered sequence of 
executed interval variables. It must be noted that this search is 
useful only if interval variables have limited values especially 
for start and end times. Consequently, the decision interval 
variables and their potential values can be sorted so that the 
optimizer can fix the key decision interval variables in the 
beginning of the process. 

 
 

 

Figure 2: Illustration of symmetric solutions. 

 

∑ 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑥𝑖𝑘)

𝑖∈𝑁

  ≥  ∑ 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑥𝑖(𝑘+1))  

𝑖∈𝑁

  

                                                                                    ∀𝑘 ∈ 𝑉 

(23) 
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5 Computational results 

Initially, we tested the performance of CP-PDPTW using small 
size problem instances in relevance to MIP-PDPTW. From the 
datasets of Li and Lim [8]  including 100 nodes and 50 
demands, we generated problems by randomly picking those 
data sets including between 16 to 30 nodes, and then pairing 
these nodes in one-to-one correspondence to form pickup and 
delivery demands of customers. 

The number of nodes is assumed to be even when excluding 
the initial and final depots. For computational analysis, the 
models were implemented in C#, and executed though IBM 
ILOG CPLEX Optimization Studio V12.9.0, using the MIP 
optimizer for MIP-PDPTW and CP Optimizer for CP-PDPTW. 
All problem instances were solved on an Intel Core i5-7400 
processor at 3.0 GHz using 12 GB of RAM. The execution of the 
modelsended after the optimal solution was found. All 
computational results reported in the comparison of CP-
PDPTW and MIP-PDPTW were obtained by default settings 
except the settings on CP parameters which are 𝑠𝑒𝑎𝑟𝑐ℎ𝑡𝑦𝑝𝑒 
and 𝑙𝑜𝑔𝑝𝑒𝑟𝑖𝑜𝑑. Additionally, we identified search phases to 
specify the sequence of the search movements and the values 
to be tried during the computation. We obtained the best 
solutions from 𝑠𝑒𝑎𝑟𝑐ℎ𝑡𝑦𝑝𝑒 = 𝑟𝑒𝑠𝑡𝑎𝑟𝑡, 𝑙𝑜𝑔𝑝𝑒𝑟𝑖𝑜𝑑 =  10000 
and 𝑠𝑒𝑎𝑟𝑐ℎ𝑝ℎ𝑎𝑠𝑒(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒). We show the optimal 
solution values and the required solution times for each 
problem in Table 1. The last column in the table gives the 
solution time gap between the models. Accordingly, CP-
PDPTW requires in average 29.15% less time compared to 
MIP-PDPTW to find the optimum solution.  

Following, the performance of CP-PDPTW has been also 
compared in regard to related solution methods in literature 
with the well-known problem instances of Li and Lim [8] 
which are derived from the instances of Solomon [32]. The 
travel time is assumed to be as same as the distance in these 
instances and the instances represent different classes of 
problems. In the first class of instances, LR, the nodes are 
randomly located; in the second class of instances, LC, the 
nodes are clustered, and finally in the third class of instances, 
LRC, the nodes are both randomly located and clustered. 
Furthermore, there are two types for these problem classes 
which are named as Type 1 and Type 2, respectively. The 
instances of Type 1 have small service time windows, whereas 
those of Type 2 have large service time windows. Since Type 2 
problems are less constrained, and they increase the 
computational complexity of CP, we retained our 
computational analysis to Type 1 instances. The datasets and 
best-known solutions (BKNs) are available at 
http://www.sintef.no/Projectweb/TOP/PDPTW/. We 
compared our CP-PDPTW with the best known methods in 
related literature which are respectively ALNS of Ropke and 
Pisinger [10] and hybrid algorithm of Mannel and Borthfeld 
[17]. We adjusted timelimit parameter of CP-PDPTW for three 
hours. As shown in Table 2, there are 36 instances for 
comparison and the problem characteristics are given in the 
first three columns. In the fourth column, the BKNs are given, 
whereas the fifth, sixth, and seventh columns show the 
solution values found by the referenced works and CP-
PDPTW, respectively. In the eighth and last columns, the 
computational time required by CP-PDPTW and the gap values 
between the BKNs and the solutions of our model are given, 
respectively.  

To deal with infinite domain ranges, the fractional distance 
values between the nodes in the problem instances have been 
multiplied by 100. Also, this multiplier has been used for time 
window start and end times and service time. For adjustment, 
after computation the obtained solution values have been 
divided by 100. 

Additionally, in our experiments we have observed that CP-
PDPTW converges to the best solutions in relatively short 
computation times, as seen in Figure 3. According to the 
results, CP-PDPTW model has found 22 BKNs out of 36 
instances, and it has improved one BKN. It is of notice that the 
average solution gap of CP-PDPTW is only 1.32% compared to 
the BKNs. On the other hand, CP-PDPTW has found better 
solution values for the LC instances in which the nodes are 
clustered, compared to the LR and LRC instances in which the 
nodes are randomly located, and both randomly located and 
clustered, respectively.  The difficulty of CP in solving LR and 
LRC instances lies behind the fact that searching in randomly 
placed nodes set, compared to the clustered nodes set, is like 
searching in a wide area which makes constraint propagation 
less effective, and the cost of getting a better solution may be 
relatively great. 

 

Figure 3: The convergence graph of CP for the objective value. 

6 Conclusion 

In this paper, we developed a new CP model for the PDPTW 
and compared our model with a MIP model adapted from the 
existing literature. The novel model CP-PDPTW is shown to be 
very competitive with MIP-PDPTW and can be a reference 
model for solving the variations of vehicle routing problems. 
CP-PDPTW was also compared with the proposed algorithms 
in related literature on the well-known existing problem 
instances. The results of computation show that CP-PDPTW 
performs very well to find out satisfying solutions. It is 
optimistic to say that CP as an exact algorithm competes with 
the metaheuristics for solution times; however, it can obtain 
high-quality solutions in reasonable computation times using 
a rather simple model formulation when compared to the 
complex design of metaheuristic approaches. 

Future work on this topic can be related to the formulation of 
effective and efficient CP models for different types of the 
pickup and delivery problems by adding new redundant, 
symmetric and global constraints, and devising problem 
specific search strategies. 
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Table 1: Comparison of CP and MIP model solutions for the PDPTW. 

Instances 
Number Of 
Customers 

Number of 
Demands 

MIP-CPDTW CP-PDPTW 
Solution Time 

Gap (% ) Solution 
Values 

CPU Times 
(s) 

Solution 
Values 

CPU Times 
(s) 

LC01 

LC02 

LC03 

LC04 

LC05 

LC06 

LC07 

LC08 

LC09 

LC10 

LC11 

LC12 

LC13 

LC14 

LC15 

LC16 

LC17 

LC18 

LC19 

LC20 

LC21 

LC22 

LC23 

LC24 

LC25 

LC26 

LC27 

LC28 

LC29 

LC30 

LC31 

LC32 

LC33 

LC34 

LC35 

LC36 

AVG 

16 

18 

18 

18 

18 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

22 

22 

22 

22 

22 

22 

22 

22 

22 

24 

24 

24 

24 

24 

26 

26 

26 

28 

28 

30 

- 

8 

9 

9 

9 

9 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

11 

11 

11 

11 

11 

11 

11 

11 

11 

12 

12 

12 

12 

12 

13 

13 

13 

14 

14 

15 

- 

197 

193 

101 

173 

226 

160 

184 

303 

232 

194 

223 

198 

253 

195 

217 

204 

279 

158 

264 

105 

256 

195 

140 

108 

184 

317 

284 

182 

111 

249 

220 

324 

217 

165 

193 

160 

- 

1.36 

1.62 

0.48 

3.28 

21.11 

2.14 

24.74 

16.24 

0.65 

2.14 

0.74 

5.34 

24.09 

25.09 

23.26 

6.53 

60.22 

5.96 

71.21 

0.78 

0.73 

6.64 

6.03 

6.14 

1636.43 

1.06 

5.17 

9.25 

0.79 

0.98 

1.25 

24.09 

1.28 

29.95 

34.9 

24.97 

57.96 

197 

193 

101 

173 

226 

160 

184 

303 

232 

194 

223 

198 

253 

195 

217 

204 

279 

158 

264 

105 

256 

195 

140 

108 

184 

317 

284 

182 

111 

249 

220 

324 

217 

165 

193 

160 

- 

0.45 

0.55 

0.29 

0.43 

0.36 

0.25 

2.31 

10.8 

0.89 

0.52 

0.55 

0.37 

1.9 

0.83 

2.08 

0.51 

2.08 

2.08 

276 

0.41 

2.66 

0.39 

1.75 

2.26 

10.71 

1.12 

1.75 

11.32 

0.49 

2.95 

1.87 

0.41 

3.95 

2.01 

9.14 

4.31 

10.02 

-66.91 

-66.05 

-39.58 

-86.89 

-98.29 

-88.32 

-90.66 

-33.50 

36.92 

-75.70 

-25.68 

-93.07 

-92.11 

-96.69 

-91.06 

-92.19 

-96.55 

-65.10 

287.59 

-47.44 

264.38 

-94.13 

-70.98 

-63.19 

-99.35 

5.66 

-66.15 

22.38 

-37.97 

201.02 

49.60 

-98.30 

208.59 

-93.29 

-73.81 

-82.74 

-29.15 
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Table 2: Comparison of CP-PDPTW model and related algorithms. 

Instances 
Number of 
Customers 

Number 
of 

Demands 

#BKNs 
Männel and 

Bortfeldt [17] 
Ropke and 

Pisinger [10] 
CP-PDPTW 

Time 
(s) 

Solution 
Values Gap 

(%) 

LC101 106 53 828.94 828.94 828.94 828,94 96 0.00 

LC102 106 53 828.94 828.94 828.94 828.94 2080 0.00 

LC103 104 52 1035.35 1035.35 1035.35 827.87 2337 -20.04a 

LC104 106 53 860.01 860.01 860.01 818.60 7450 -4.82a 

LC105 106 53 828.94 828.94 828.94 828.94 152 0.00 

LC106 106 53 828.94 828.94 828.94 828.94 737 0.00 

LC107 106 53 828.94 828.94 828.94 828.94 487 0.00 

LC108 106 53 826.44 826.44 826.44 826.44 75 0.00 

LC109 106 53 1000.60 1000.60 1000.60 827.82 1749 -17.27a 

LC201 102 51 591.56 591.56 591.56 591.56 20 0.00 

LC202 102 51 591.56 591.56 591.56 591.56 296 0.00 

LC203 102 51 591.17 585.56 591.17 591.17 1512 0.00 

LC204 102 51 590.60 590.60 590.60 590.60 551 0.00 

LC205 102 51 588.88 588.88 588.88 588.88 215 0.00 

LC206 102 51 588.49 588.49 588.49 588.49 67 0.00 

LC207 102 51 588.29 588.29 588.29 588.29 141 0.00 

LC208 102 51 588.32 588.32 588.32 588.32 54 0.00 

LR101 106 53 1650.80 1650.80 1650.80 1650.80 206 0.00 

LR102 110 55 1487.57 1487.57 1487.57 1487.57 9580 0.00 

LR103 104 52 1292.68 1292.68 1292.68 1343.89 108000 3.96 

LR104 104 52 1013.39 1013.39 1013.39 1013.39 439 0.00 

LR105 106 53 1377.11 1377.11 1377.11 1384.60 10800 0.54 

LR106 104 52 1252.62 1252.62 1252.62 1252.61 651 0.00 

LR107 104 52 1111.31 1111.31 1111.31 1159.62 10800 4.35 

LR108 100 50 968.97 968.97 968.97 968.96 701 0.00 

LR109 106 53 1208.96 1208.97 1208.97 1237.71 10800 2.38 

LR110 104 52 1159.35 1159.35 1159.35 1213.66 10800 4.68 

LR111 108 54 1108.90 1108.90 1108.90 1161.53 10800 4.75 

LR112 106 53 1003.77 1003.77 1003.77 1106.39 10800 10.22 

LRC101 106 53 1708.80 1708.80 1708.80 1703.21 282 -0.33 

LRC102 106 53 1558.07 1558.07 1558.07 1558.07 367 0.00 

LRC103 106 53 1258.74 1258.74 1258.74 1272.97 10800 1.13 

LRC104 108 54 1128.40 1128.40 1128.40 1128.40 406 0.00 

LRC105 108 54 1637.62 1637.62 1637.62 1698.44 10800 3.71 

LRC106 106 53 1424.73 1424.73 1424.73 1536.63 10800 7.85 

LRC107 106 53 1230.14 1230.15 1230.15 1230.15 1334 0.00 

AVG - - 1032.44 1032.29 1032.44 1035.36 1639.80 1.32b 

a Solution values are given when the number of cars used is 10, instead of 9; bThe average gap for the solution values is calculated excluding instances 
LC103, LC104 and LC109. 
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