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Abstract  Öz 

Identification of protein domain-domain interactions (DDIs) is an 
essential step in understanding proteins’ functional and structural roles. 
MirrorTree is a DDI prediction method that is based on the principle of 
interacting proteins’ co-evolution. However, this method is sensitive to 
taxonomic diversity and evolutionary span within the two protein 
homolog sets compared to predict DDI. In this work, we propose a new 
MirrorTree-based DDI prediction method, namely Taxonomic Diversity-
based Domain Interaction Prediction (TAXDIP). TAXDIP improves the 
MirrorTree method by adding a sampling step that favors 
representation of higher-level taxonomic ranks (e.g. family over species) 
in two protein homolog sets prior to their comparison. This additional 
step ensures increased evolutionary span within protein homolog sets. 
TAXDIP is first assessed using a set containing 6,514 positive 
(interacting) domain pairs and a negative (non-interacting) set of equal 
size containing randomly generated domain pairs with no known 
interactions. TAXDIP achieved 71.0% sensitivity and 63.0% specificity 
on this set.  Next, a benchmark-set containing 500 interacting and 500 
non-interacting domain pairs is used to compare the performance of 
TAXDIP against DDI prediction methods ME and RDFF.  TAXDIP showed 
better sensitivity and specificity than RDFF. While TAXDIP’s sensitivity 
is better than ME, its specificity remained below ME. In conclusion, 
TAXDIP, with its performance, is a viable alternative to existing 
prediction methods. Furthermore, given TAXDIP’s true predictions are 
overlapping with, and furthermore, complementing other DDI 
prediction methods, TAXDIP has a strong position in becoming part of a 
meta-DDI prediction method that combines multiple methods to build a 
consensus prediction. 

 Protein altünite-altünite etkileşimlerinin (AAE) belirlenmesi, 
proteinlerin fonksiyonel ve yapısal rollerinin anlaşılmasında önemli bir 
adımdır. MirrorTree, etkileşen proteinlerin birlikte-evrimi prensibine 
dayanan, bir AAE tahmin yöntemidir. Ancak bu yöntem, AAE tahmin 
etmek için karşılaştırılan iki protein homolog kümesindeki taksonomik 
çeşitliliğe ve evrimsel açıklığa duyarlıdır. Bu çalışmada Taksonomik 
Çeşitliliğe Dayalı Protein Altünite Etkileşimi Tahmini (TAXDIP) olarak 
adlandırılan MirrorTree tabanlı yeni bir protein AAE tahmin yöntemi 
önermekteyiz. TAXDIP, iki protein homolog kümesini karşılaştırmadan 
önce, bunlarda daha yüksek düzeydeki taksonomik sıraların (ör. Tür 
yerine Aile) temsil edilmesini destekleyen bir örnekleme adımı 
ekleyerek, protein homolog kümeleri içindeki evrimsel kapsamın 
artmasını sağlar. TAXDIP öncelikle deneysel olarak doğrulanmış 6.514 
pozitif (etkileşimli) altünite çiftini ve aynı sayıda, bilinen etkileşimleri 
olmayan, rastgele oluşturulmuş negatif (etkileşmeyen) altünite çiftini 
içeren bir küme kullanılarak değerlendirildi. TAXDIP bu kümede %71,0 
duyarlılık ve %63,0 özgüllük elde etti. Daha sonra, TAXDIP'in 
performansının ME ve RDFF adlı AAE tahmin yöntemiyle 
karşılaştırılması için, 500 etkileşimli ve 500 etkileşmeyen altünite çiftini 
içeren, bir kıyaslama kümesi kullanıldı. TAXDIP RDFF’den daha iyi 
duyarlılık ve özgüllük gösterdi. TAXDIP’in duyarlılığı ME’den daha iyi 
olsa da, özgüllüğü ME’nin altında kaldı. Sonuç olarak, TAXDIP 
göstermiş olduğu performansla mevcut tahmin yöntemlerine uygun bir 
alternatiftir. Ayrıca, TAXDIP’in diğer tahmin yöntemleriyle örtüşen ve 
dahası onları tamamlayan doğru AAE tahminleri, onu birçok yöntemi 
bir araya getiren bir meta-AAE tahmin yönteminin parçası olma 
konusunda güçlü bir konuma getirmektedir. 

Keywords: Protein domain-domain interactions, Protein co-
evolution, Protein functional analysis 

 Anahtar kelimeler: Protein altünite-altünite etkileşimleri,  
Protein birlikte evrimi, Protein fonksiyon analizi 

1 Introduction 

Proteins physically interact through domains located on them 
and these interactions are critical for their molecular functions 
and involvement in biological processes. Hence, identification 
of domain-domain interactions (DDIs) is a step towards the 
identification of protein-protein interactions (PPIs) that helps 
in understanding proteins’ functional and/or structural roles. 
Several in vivo (e.g., yeast 2-hybrid) and in vitro (e.g., X-ray 
crystallography, protein microarrays) PPI identification, 
techniques exist, they require costly and time-consuming 
experiments. Compared to in vitro and in vivo techniques, 
computational (in silico) methods are fast and inexpensive 
alternatives.  

Computational DDI and PPI prediction methods with various 
algorithmic approaches are available. Spinzak and Margalit 
developed the Association Method (AM) to predict DDIs using 
the frequency of observed protein interactions [1]. 
Alternatively, Deng and colleagues [2] proposed a method 

based on an expectation maximization (EM) algorithm and 
employs a maximum likelihood estimation (MLE) to find DDIs 
from protein interactions. Jothi et al. proposed a co-evolution 
based method, namely, Relative Co-evolution of Domain Pairs 
(RCDP) that uses sequence co-evolution to predict the domain 
pairs which are most likely to interact for a given PPI [3]. 
Gonzalez and Liao [4] employed a support vector machine 
(SVM) based computational method on interaction profile 
hidden Markov models (ipHMM) in order to predict DDIs. 
Furthermore, machine learning based algorithms (RDFF) [5], 
phylogenetic profiling [6] and probabilistic network models 
[7],[8] are also applied to predict DDI’s. In addition to these 
individual prediction methods in the literature, there are meta-
DDI/PPI prediction methods. For instance, Integrated DDI and 
protein interaction analysis system (IDDI) [9] combines several 
prediction methods in order to build a consensus prediction 
score. 

The basis of the MirrorTree method is co-evolution; interacting 
proteins evolve simultaneously and likely to have similar 
phylogenetic trees. Briefly, the steps for MirrorTree-based 
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methods are 1) finding orthologs of two domains (or proteins) 
that are candidates for interaction, 2) computing multiple 
sequence alignments for orthologs from organisms common to 
both domains, 3) computing two similarity matrices (one for 
each domain) using pairwise distances between orthologs, and 
finally 4) compute correlation coefficient between these 
similarity matrices to assess co-evolution and predict DDI (or 
PPI).  The MirrorTree-based methods are used extensively to 
predict DDI and PPIs [3],[10]-[16]. Craig and Liao [10] used 
support vector machines calculated from phylogenetic trees in 
order to predict PPIs. Gertz et al. [11] used the Metropolis 
Monte Carlo optimization algorithm to detect possible matches 
between two distance matrices. Goh and colleagues used co-
evolution for quantifying the behavior of the evolutionary 
histories of protein ligands and their receptors [12],[13]. Jothi 
et al. [14] introduced a Monte Carlo search-based method to 
detect interacting protein pairs.  Pazos and Valencia [15],[16] 
employed a MirrorTree based approach for finding physical 
interactions between protein pairs and identifying the most 
probable sequence regions for these interactions. Although the 
MirrorTree-based methods’ predictive power position them as 
competent approaches for DDI prediction, they are sensitive to 
taxonomic diversity and evolutionary span of constructed 
matrices [17]. 

In this paper, we propose an improved MirrorTree-based DDI 
prediction method, namely Taxonomic Diversity-based Domain 
Interaction Prediction (TAXDIP), that uses representative 
homologs for taxonomic ranks higher than species (e.g., genus, 
family, etc.) and consequently ensuring higher evolutionary 
span within similarity matrices prior to computation of 
correlation coefficient. TAXDIP is based on MirrorTree method 
but provides a solution to taxonomic diversity and evolutionary 
span problem of this method by adding a new taxonomy-rank 
based sampling before computing similarity matrices. This 
extra step favor representation of higher-level taxonomic ranks 
(e.g. family) over lower-level taxonomic ranks’ (e.g. species) in 
computing similarity matrices and, therefore, provides 
increased evolutionary span. 

The rest of the paper is organized as follows. Section 2 
describes the datasets used. Section 3 describes our method, 
namely Taxonomic Diversity-based Domain Interaction 
Prediction (TAXDIP), and steps towards its development 
including data preparation and experiments conducted to 
identify its parameters. Section 4 reports on the performance of 
our method and how it compares against available 
computational DDI prediction methods. Finally, Section 5 
presents our conclusions. 

2 Materials 

2.1 Taxonomy dataset  

The NCBI Taxonomy database [18] is one of the central sources 
that provides the species names and taxonomic lineage data for 
all known organisms. The NCBI Taxonomy database is 
downloaded from the NCBI FTP site 
(ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/). Species, genus, 
family, order and class level taxa for about 1.49 million possible 
organisms are computed by traversing their lineages. These 
organisms represent 1.16 million species, 78.45 thousand 
genera, 8.30 thousand families, 381 orders and 304 classes. 

2.2 Protein domain and multiple sequence 
alignment dataset 

Pfam [19] is a protein family database which contains family 
annotations and multiple sequence alignments generated using 
Hidden Markov models.  The Pfam release 30.0 is used and 
contains a total of 16,306 families that covers 17.7 million 
protein sequences. The multiple sequence alignments (MSA) 
for protein domains are downloaded using the Pfam website 
(http://pfam.xfam.org). The average number of members in a 
Pfam family for the release used is 2,667. 

2.3 Protein domain-domain interaction dataset 

DOMINE [20] is a database of DDI’s among Pfam domains. The 
DDIs are either extracted from Protein Data Bank (PDB) entries 
or predicted by at least one of the several computational 
methods including ME [21], RCDP [3], P-value [8], Interdom 
[22], DPEA [23], PE [24], GPE [25], DIPD [26], RDFF [5],  
K-GIDDI [27], Insite [28], and DomainGA [29] and DIMA [6]. The 
latest version of DOMINE has 26,219 unique DDIs involving 
5,410 unique active Pfam domains. The same DDI may be 
predicted by multiple methods. Table 1 provides the number of 
DDIs predicted by individual computational methods in 
DOMINE. A subset of DOMINE that contains 6,634 DDIs 
extracted from high-resolution 3D structures using iPfam [30] 
and 3did [31], is referred to as DOMINE gold set. The main 
reason for our use of DOMINE gold set is testing TAXDIP 
algorithm with experimentally verified true DDI’s and avoiding, 
potentially, false DDI predictions made by other in silico 
methods. 

Table 1: The number of domain-domain interactions in 
DOMINE predicted by individual computational methods. 

Method Number of DDIs 
ME 2391 

RCDP 960 
P-value 596 

Interdom 2768 
DPEA 1812 

PE 2588 
GPE 1563 

DIPD 2157 
RDFF 2475 

K-GIDDI 386 
Insite 2408 

DomainGA 459 
DIMA 8012 

3 Method 

3.1 Creation of positive and negative sets 

To assess the performance of our DDI prediction method, 
positive (interacting) and negative (non-interacting) domain 
pair sets are created. The positive set is based on the DOMINE 
gold set (see section 2.3) that contains 6,634 domain pairs.  A 
total of 6,514 DDIs positive domain pairs are obtained after 
removal of 120 domain pairs due to missing data; in 81 pairs at 
least one of the Pfam domains are no longer in Pfam database 
and in 39 pairs Pfam multiple sequence alignments are not 
available. A negative set of equal size (6,514 DDIs) is generated 
using randomly selected Pfam domain pairs that have no 
known or predicted interactions reported in the DOMINE 
database. 

ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/
http://pfam.xfam.org/
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3.2 Generation of similarity matrices 

The similarity matrices for Pfam domain pairs in positive and 
negative sets are computed using the following steps: 

i. For each Pfam domain pair, multiple sequence 
alignments are retrieved from Pfam web site, 

ii. For each taxonomic rank from species to class (the 
taxonomic ranks above the class level are not 
examined since the number of taxa common to both 
domains becomes insignificant, e.g., 5 or less.), 

a. For the selected taxonomic rank, find the list 
of taxa common to the proteins found in 
both Pfam domain’s MSAs from Step (i), 

b. Sample the intersecting taxa list from Step 
(a) using different sample sizes (10 to 100) 
and select one representative protein for 
each taxon. Figure 1 illustrates the impact of 
selection at different taxonomic ranks for 
one domain on an MSA-based phylogenetic 
tree, 

iii. Compute similarity matrices based on pairwise 
distances between representative proteins from Step 
(b) using T-Coffee suite [32]. 

 

 

Figure 1: The impact of selection at different taxonomic ranks (species to class) for one domain illustrated on an MSA-based 
phylogenetic tree. 
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3.3 Computation of correlation coefficients 

The co-evolution of domain pairs is evaluated based on 
Pearson’s correlation coefficient [33] between the domains’ 
similarity matrices (See 3.2). Pearson’s correlation coefficient 
(Equation 1) is given as: 

𝑟𝑋𝑌

=  
∑ ∑ (𝑋𝑖𝑗 − �̅�)(𝑌𝑖𝑗 − �̅�)𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1

√∑ ∑ (𝑋𝑖𝑗 − �̅�)2𝑛
𝑗=𝑗+1

𝑛−1
𝑗=𝑗+1 ∑ ∑ (𝑌𝑖𝑗 − �̅�)2𝑛

𝑗=𝑗+1
𝑛−1
𝑖=1

 (1) 

where n represents the size of similarity matrices, 𝑋𝑖𝑗 and 𝑌𝑖𝑗 

are the distances between proteins computed from MSAs. The 
value of 𝑟𝑋𝑌 ranges between -1.0 and +1.0. According to 
MirrorTree method, higher correlation coefficients indicate a 
higher level of co-evolution and, thus, an interaction between 
the domains. Figure 2 illustrates the similarity matrices and the 
correlation computed at the taxonomic rank of family for two 
Pfam domains PF00005 (ATP-binding domain of ABC 
transporters) and PF01302 (Cytoskeleton-associated Protein 
Glycine-rich domain). 

3.4 Proposed taxonomic diversity-based domain 
interaction prediction (TAXDIP) algorithm 

In the light of findings as reported in the Results section, 
TAXDIP algorithm is formulated as follows; 

i. Given a Pfam domain pair, the MSA of sequences used 
to generate domains are retrieved, 

ii. For each taxonomic rank from family to species 
(higher to lower evolutionary span), 

a. Find the taxa list common to the proteins 
containing the respective domains. If the 
intersection size is small (5 or less) proceed 
with the lower taxonomic rank, 

b. Sample the common taxa list (40 is used as 
sample size) in Step (a) and select one 
representative protein for each taxon, 

c. Generate two similarity matrices using 
proteins for both domains, 

d. Compute the Pearson’s correlation 
coefficient between the similarity matrices. 

iii. Use the threshold of 0.5 on the Pearson correlation 
coefficient computed on the highest taxonomic rank 
in Step (ii) to decide on DDI. The 0.5 threshold is based 
on the previous co-evolution based RCDP [3] method. 

3.5 Performance evaluation 

The performance of DDI predictions is computed based on a 
confusion matrix (Figure 3). There are four different outcomes 
for the DDI prediction. The number of correct DDI predictions 
on the positive and negative sets correspond to True and False 
Positives (𝑇𝑃 and 𝐹𝑃), respectively. Similarly, the number of 
incorrect DDI predictions correspond to True and False 
Negatives (𝑇𝑁 and 𝐹𝑁).  

Table 2 shows the general structure of a confusion matrix and 
the common metrics that can be calculated from it. For 
comparison with other DDI prediction methods, mutually used 
metrics true positive rate (or sensitivity) and true negative rate 
(or specificity) are used. 

The Matthews correlation coefficient (𝑀𝐶𝐶) is another 
performance metric, given by Equation 2, which measures the 
quality of binary classifications [34]. 𝑀𝐶𝐶 ranges between ±1.0 
where +1, 0 and -1 correspond to the perfect prediction, 
random prediction, and disagreement between actual and 
predicted class respectively. 

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (2) 

In addition, the area under the receiver operating characteristic 
(ROC) curve [35] (AUC); a commonly used method to reduce 
ROC performance to a single scalar value and compare classifier 
performances [36], is computed. 

 

Figure 2: The similarity matrices computed at a family taxonomic rank level for two Pfam domains; PF00005 (ATP-binding domain 
of ABC transporters) and PF01302 (Cytoskeleton-associated Protein Glycine-rich domain), and their correlation. As per MirrorTree 
method, a high correlation coefficient of 0.98 is considered as an indication of co-evolution and interaction between these domains. 
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Figure 3: True positive and true negative rates for different taxonomic levels and sample sizes using 0.5 as the correlation coefficient 
threshold. 

 

Table 2: Confusion matrix and common performance metrics 
computed based on this matrix. 

Predicted 
class\Actual Class 

Positive Negative 

Positive 
True Positives 

(TP) 
False Positives 

(FP) 

Negative 
False Negatives 

(FN) 
True Negatives 

(TN) 
Total P N 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) = 𝑇𝑃 𝑃⁄  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) = 𝑇𝑁 𝑁⁄  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) = 𝐹𝑃 𝑁⁄  

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅) = 𝐹𝑁 𝑃⁄  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) (𝑃 + 𝑁)⁄  
𝐹 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑇𝑃𝑅 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑇𝑃𝑅)⁄  

4 Results 

4.1 Evaluation of taxonomic rank and sample size 
parameters on Mirrortree-based domain-
domain interaction prediction 

The effect of taxonomic rank and sample size (number of taxa 
sampled from common taxa list at selected taxonomic rank) on 
MirrorTree method is assessed using true positive rate (TPR) 
and true negative rate (TNR) metrics. Different correlation 
coefficient thresholds from 0.4 to 0.9 are tested. The best 

performance is obtained using a correlation coefficient of 0.5 
and this corroborates with earlier MirrorTree method RCDP 
[3]. 

Figure 3 illustrates the true positive and negative rates for 
different taxonomy ranks and sample sizes using the 
correlation coefficient of 0.5. The MirrorTree method achieves 
best TPR/TNR ratios for sample sizes in 40-50 bracket. The best 
AUC value of 0.759 is for the taxonomy rank family and the 
sample size 40. 

The motivation behind the proposed TAXDIP method  
(see section 3.4) is based on findings from the above results. In 
summary: 

 A sample size corresponding to 10% of overall 
common taxa list size (mostly in 40-50 bracket) 
results in optimal DDI predictions 

 The taxonomic diversity can change by domain. For 
instance, in some cases, the great majority of domain 
family members are from the same species. 
Furthermore, diversity becomes next to none above 
the taxonomic rank of family. Hence, although DDI 
predictions are often more accurate when higher 
taxonomic ranks (e.g. family) are used, using such 
ranks may not be possible due to the limited 
evolutionary span of the domain family. 
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4.2 Comparison of TAXDIP with other methods 

Table 3 provides the number of DDIs in DOMINE gold set 
predicted by individual computational methods. ME [21] has 
the highest number of DDI predictions in DOMINE gold set as 
shown in Table 2 and better performance results on iPfam [30] 
and 3did [31] databases.  

TAXDIP’s TPR and TNR are computed as 71.00% and 63.00% 
based on DOMINE gold set.  A wide range of TPR values 
(DPEA:23.63%, PE:29.63%, DIPD:29.76%, RCDP:52.13%, 
DIMA:54.00%, ME:55.00%, RDFF:79.78%) and TNR 
(ME:55.55%, RDFF:64.38%, DIMA:99.84%) have been 
reported in their respective manuscripts, RDFF [5] has the best 
reported TPR and TNR values(79.78%/64.38%). 

Considering the real-life situation where the negatives far 
outnumber the positive interactions, a pseudo-real life 
situation is simulated by subsampling positive and negative 
DDI sets with a 1-to-10 ratio (100 positive and 1000 negative 
DDIs) from the complete DDI set and by assessing the 
performance of TAXDIP on this subset. These simulations are 
repeated 1000 times. TAXDIP shows rather consistent 
performance regardless of negative-bias, with mean TPR of 
71.00% and TNR of 63.00% for all the simulations. Hence, the 
real-life bias towards “no interaction”, is expected to have an 
insignificant impact on the overall performance of TAXDIP. 

Table 3: The number of domain-domain interactions in 
DOMINE gold set predicted by individual computational 

methods. 

Method Number of DDIs 
ME 1326 

RCDP 144 
P-value 63 

Interdom 399 
DPEA 247 

PE 328 
GPE 362 

DIPD 588 
RDFF 148 

K-GIDDI 68 
Insite 147 

DomainGA 459 
DIMA 106 

Using the benchmark set with a total of 1,000 domain pairs 
(500 interacting, 500 non-interacting), TAXDIP’s performance 
is compared with two existing DDI prediction methods 
considering two criteria. The first criterion is the reported 
performance results of these methods in their respective 
manuscripts [5],[21] and the second one is their coverage 
within or awareness of DOMINE gold set (Table 3). ME [21] is 
selected as it has the highest overlap with DOMINE gold set, and 
RDFF  is with the best-reported TPR/TNR (79.78%/64.38%). 
The benchmark set contains DDIs common to sets used by 
TAXDIP, RDFF and ME. The DDI sets for RDFF and ME are 
obtained using their manuscripts. TPR, TNR, and Matthew’s 
correlation coefficient (MCC) for all three methods’ results are 
calculated. Table 4 provides the benchmark results of these 
methods. 

Table 4: Benchmark results of TAXDIP, ME, and RDFF. 

Method TPR TNR MCC 
TAXDIP 75.40% 52.51% 0.2867 

ME 66.20% 90.60% 0.5878 
RDFF 21.00% 49.00% -0.3116 

The DDI prediction algorithms typically used in combination to 
establish a level of confidence on predictions. Thus,  to access 
how TAXDIP corroborates with other methods, the DOMINE 
gold set is used to identify overlap between TAXDIP’s DDI 
predictions and other prediction methods contributed to 
DOMINE database, namely ME[21], RCDP [3], P-value [8], 
Interdom [22], DPEA [23], PE [24], GPE [25], DIPD [26], RDFF 
[5], K-GIDDI [27], Insite [28] and DomainGA [29] and DIMA [6]. 
Table 5 provides the percentage of DDIs predicted by both 
TAXDIP and another method among all the DOMINE gold set 
DDI predictions made this other method. A percentage of 100% 
indicates all the DDIs predicted by this other method is also 
predicted by TAXDIP while a percentage of 0% indicates the 
predictions made by TAXDIP complements these other 
methods predictions by 100%. 

Table 5: The percentage of DDIs predicted by both TAXDIP 
and other prediction methods among all DDIs predicted by the 

respective method within DOMINE gold set. 

Method Percentage 
ME 74.66% 

RCDP 74.30% 
P-value 66.66% 

Interdom 71.00% 
DPEA 71.42% 

PE 75.30% 
GPE 67.96% 

DIPD 74.00% 
RDFF 73.98% 

K-GIDDI 79.41% 
Insite 51.70% 

DomainGA 67.65% 
DIMA 80.19% 

5 Discussion 

Identification of interactions between proteins is a critical step 
to better understand proteins’ roles in biological systems. Using 
computational methods to predict DDIs and, consequently, PPIs 
is a cost-effective and rapid way to complement experimental 
studies, especially, to identify and prioritize interacting protein 
candidates for experimental validation. 

In this work, we proposed a new algorithm called TAXDIP that 
is based on the MirrorTree method. TAXDIP fixes the known 
problem of MirrorTree method’s sensitivity to evolutionary 
span as previously reported [17] by introducing an effective 
taxonomic rank-based sampling prior to generation of 
similarity matrices and computation of correlation coefficients. 

Based on the reported performance results of existing DDI 
prediction methods, TAXDIP predicts DDIs with better 
sensitivity/specificity (71.00%/63.00%) than almost any other 
method. The only exception to this is RDFF [5] that has a pretty 
small coverage within DOMINE gold set (148 DDIs). TAXDIP 
predictions show overlap with other prediction methods. 

According to the benchmark set, we used to compare TAXDIP 
against RDFF and ME, TAXDIP outperformed RDFF with better 
sensitivity, specificity, and MCC score. The RDFF’s significantly 
lower performance with respect to its manuscript is 
explainable by the choice of true set’s difference from and 
limited coverage in DOMINE gold set (~2.3%). Although 
TAXDIP performed better than ME in terms of sensitivity, 
demonstrated weaker specificity. This is attributable to 
TAXDIP’s preference towards the prediction of positive DDIs 
and ME’s preference towards the prediction of negative DDIs. 
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In conclusion, TAXDIP, with its performance, is a viable 
alternative to existing prediction methods. Furthermore, given 
TAXDIP’s true predictions, not only overlapping with but also 
complementing other DDI methods in DOMINE gold set, 
TAXDIP has a strong position in becoming part of a meta-DDI 
predictor, such as IDDI [9], that combines multiple methods to 
build a consensus prediction. 

6 Availability 

The source code of the scripts to compute the TAXDIP method 
is available to academic users ‘as is’ on request. Supplementary 
data associated with this article is available from 
http://eng1.mu.edu.tr/~eturk09/TAXDIP/. 
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