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Abstract 

Propagation of an ultra-short lasers pulses in a linear optical medium consisting of free space, 

dispersive media. However, analytical methods have the limitations of not being able to handle 

arbitrary pulse profiles. Also, closed form solutions are often obtained after certain levels of 

approximations. This has motive a few studies based on the use of numerical simulation techniques 

in the analysis of pulse propagation. In view of the recent advance in ultra-short pulse propagation, 

a strong need is felt for developing a numerical formalism capable of performing such a complete 

analysis of the issues involved in pulse propagation.  

This allows us to analyze the pulse in the time-frequency domain at any arbitrary plane. With this 

tool, we investigate the spectral and temporal evolution of ultra-short pulses at any arbitrary 

propagation distance. 
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1. Introduction 

 

Recent developments in short pulse laser technology have led to significant advances in our 

fundamental understanding of ultrafast phenomena in physics, chemistry and biology, as well as 

stimulating the development of applications in fields as diverse as optical communications, 

biomedical imaging and femtosecond micromachining [1].  

 

2. Ultrashort Laser Pulses Generations 

 
The central aim of this section is to give a concise introduction to nonlinear optics and to provide 

basic information about the most-widely used tunable femtosecond laser sources, in particular 

tunable Ti:sapphire oscillators and Ti:sapphire amplifiers or optical parametric amplifiers. 

 

 
 

http://www.granthaalayah.com/
http://www.granthaalayah.com
http://www.granthaalayah.com/


[Mounir *, Vol.7 (Iss.2): February 2019]                                                ISSN- 2350-0530(O), ISSN- 2394-3629(P)  

                                                                                                                                        DOI: 10.5281/zenodo.2580513 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [59] 

 

2.1. Gaussian pulse 

 
In this subsection we would like to consider an example of Gaussian pulse, which is most 

commonly used in ultrashort laser pulse characteristics. The pulse is linearly chirped an 

represented by 

 

           𝐴(𝑡) = 𝐴0𝑒𝑥𝑝 (
−(1+𝑖𝛼)𝑡2

𝜏𝑔
2 )       with                       ∆𝜏𝑝 = √2𝑙𝑛2𝜏𝑔                                                   (1) 

 

Pulse is down-chirped for a positive chirp parameter α, for negative is upchirped and when α = 0 

then the pulse is unchirped. The spectral instensity can be derived by taking the Fourier-transform 

of eq.1, it also has the Gaussian shape [2].  

 

3. Propagation of A Light Pulse in Transparent Medium 

 
When an electromagnetic wave interacts with the bound electrons of a dielectric medium the 

medium response in general depends on the optical frequency of the wave. This property is referred 

to as chromatic dispersion. It manifests itself through frequency dependence of the refractive index 

of the medium. The frequency Fourier transform of a Gaussian pulse has already been given as  

 

                                             𝐸(𝑤) = 𝑒𝑥𝑝 (
−(𝑤−𝑤0)

2

4.𝛤
).                                                                    (2)    

 

An ultrashort Fourier limited pulse has a broad spectrum and no chirp; when it propagates a 

distance through a transparent medium, the medium introduces a dispersion to the pulse inducing 

an increase in the pulse duration. To investigate and determine the dispersion, we assume a 

Gaussian shape for the pulse. The electric field of the pulse is given as Eq.2 

 
After the pulse has propagated a distance z, its spectrum is modified to  

 

                      𝐸(𝑤, 𝑧) = 𝐸(𝑤)𝑒𝑥𝑝[±𝑖𝑘(𝑤)𝑧],        𝑘(𝑤) =
𝑛(𝑤).𝑤

𝑐
,                                       (3) 

 
where k(w) is now a frequency-dependent propagation factor. In order to allow for a partial 

analytical calculation of the propagation effects, the propagation factor is rewritten using a Taylor 

expansion as a function of the angular frequency, assuming that ∆𝑤 ≪ 𝑤0 (this condition is only 

weakly true for the shortest pulses). Applying the Taylor expansion to eq.4, the pulse spectrum 

becomes.  

 

                     𝑘(𝑤) = 𝑘(𝑤0) + 𝑘
′(𝑤 − 𝑤0) +

1

2
𝑘′′(𝑤 − 𝑤0)

2 +⋯,                                           (4)   

                                           

                             where  𝑘′ = (
𝑑𝑘(𝑤)

𝑑𝑤
)
𝑤0
. and  𝑘′′ = (

𝑑2𝑘(𝑤)

𝑑𝑤2
)
𝑤0
,  

 

    𝐸(𝑤, 𝑧) = 𝑒𝑥𝑝 [−𝑖𝑘(𝑤0)𝑧 − 𝑖𝑘
′𝑧(𝑤 − 𝑤0) − (

1

4𝛤
+

𝑖

2
𝑘′′) (𝑤 − 𝑤0)

2].                                (5) 
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The time evolution of the electric field in the pulse is then derived from the calculation of the 

inverse Fourier transform of eq.6, 

 

                          𝑒(𝑡, 𝑧) = ∫ 𝐸(𝑤, 𝑧). 𝑒−𝑖𝑤𝑡𝑑𝑤
+∞

−∞
                                                                      (6)                                                                                                

so that   

        𝑒(𝑡, 𝑧) = √
𝛤(𝑧)

𝜋
  . 𝑒𝑥𝑝 [𝑖𝑤0 (𝑡 −

𝑧

𝑉∅(𝑤0)
)] × 𝑒𝑥𝑝 [−𝛤(𝑧) (𝑡 −

𝑧

𝑉𝑔(𝑤0)
)
2

]                             (7)     

                             

Where           𝑉∅(𝑤0) = (
𝑤

𝑘
)
𝑤0
,       𝑉𝑔(𝑤0) = (

𝑑𝑤

𝑑𝑘
)
𝑤0
,    1/(𝛤(𝑧) = 1/𝛤 + 2𝑖𝑘′′ 𝑧.                    

                                   

In the first exponential term of eq.7, it can be observed that the phase of the central frequency 𝑤0 

is delayed by an amount 
𝑧

𝑉∅
 after propagation over a distance z. The second term in eq.40 shows 

that, after propagation over a distance z, the pulse keeps a Gaussian envelope. This envelope is 

delayed by an amount   𝑧 𝑉𝑔  ⁄ , 𝑉𝑔 being the group velocity. The second term in eq.7 also shows that 

the pulse envelope is distorted during its propagation because its form factor 𝛤(𝑧), defined as [2,3]     

 

                                1/(𝛤(𝑧) = 1/𝛤 + 2𝑖𝑘′′ 𝑧.                                                                           (8) 

 

Depends on the angular frequency 𝑤 through 𝑘′′(𝑤), 
 

                             𝑘′′ = (𝑑
2𝑘

𝑑𝑤2⁄ )
𝑤0
=

𝑑

𝑑𝑤
(
1

𝑉𝑔
)
𝑤0

.                                                                 (9)     

                                                                                        

This term is called the “Group Velocity Dispersion”.  The temporal width of the pulse at point z:   

 

                                   ∆𝜏𝑧 = ∆𝜏0√1 + 4. (𝛤. 𝑘′′𝑧)2.                                                                   (10)   

                                                                                                                                 

with       𝑘′′ =
𝜆3

2.𝜋.𝑐2
 
𝑑2𝑛

𝑑𝜆2
        𝛤 =

2𝑙𝑜𝑔2

∆0
2 , 

 

3.1. Application in Litharge Index SF56-A Medium   

 
In optical materials, the refractive index is frequency dependent. This dependence can be 

calculated for a given material using a Sellmeier equation, typically of the form    

 

                     𝑛2(𝑤) = 1 + ∑
𝐵𝑖𝑤𝑖

2

𝑤𝑖
2−𝑤2

𝑚
𝑖=1                                                                                         (11) 

 

• High nonlinear index coefficient (22 – 286.10-20 [m2/W] 

• Wide transmission range  (0.4𝜇𝑚~3𝜇𝑚) 
• Transition temperature (~700 °𝐶) and melting temperature (~1100°𝐶) 
• Poor electrical conductivity  

• Highest atomic number of all stable elements 
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The index of litharge SF56-A is given by the following expression (11):      

                                                        

Table 1: Parameters for litharge SF56A Glasses 

𝑩𝒊 1.70579259 0.0344223052 1.09601828  

𝝀𝒊(µ𝒎) 0.0133874699 0.0579561608    121.616024     

 

where  𝑤𝑖 is the frequency of resonance and 𝐵𝑖   is the amplitude of resonance. In the case of optical 

fibers, the parameters 𝑤𝑖 and 𝐵𝑖  are obtained experimentally by fitting the measured dispersion 

curves to eq.11 with 𝑚 = 3 and depend on the core constituents [4].     

 

3.2. Parameter of Dispersion  

 
An ultrashort Fourier limited pulse has a broad spectrum and no chirp; when it propagates a 

distance through a transparent medium, the medium introduces dispersion to the pulse inducing an 

increase in the pulse duration. We consider dispersions of orders two. The pulse broadens on 

propagation as a result of group velocity dispersion (GVD). 

 

 
Figure 1: Temporal broadening of the transform- limited pulse for different values of the 

propagation distance z. 

 

In summary, the propagation of a short optical pulse through transparent medium results in a delay 

of the pulse, a duration broadening and a frequency chirp. 

 

3.3. Group Velocity Dispersion 

 
The Group Velocity Dispersion (GVD) is defined as the propagation of different frequency 

components at different speeds through a dispersive medium. This is due to the wavelength-

dependent index of refraction of the dispersive material. GVD causes variation in the temporal 

profile of the laser pulse, while the spectrum remains unaltered. To the first place we limited only 

to the order two of the Taylor expansion of the phase.  It is noticed that the analysis of Fourier 

remains valid only for durations of pulse which are higher than ≈ 60 fs.  

P
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  ∆
𝜏𝑧
   

 in
 (

fs
) 

       Pulse duration ∆𝜏0   in  (fs) [M] 

𝜆 = 800𝑛𝑚 
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In addition, media we consider all higher order dispersion, which completely describes the physical 

processes involved in ultrashort dispersive pulse dynamics. The pulse broadens in time and 

becomes asymmetric [5] 

 

𝜑 (𝑤) = 𝜑(𝑤0) + (𝑤 − 𝑤0) 
𝑑𝜑

𝑑𝑤
| +

1

2!
(𝑤 − 𝑤0)

2 𝑑
2𝜑

𝑑𝑤2
|
𝑤=𝑤0

+

⋯ +
1

𝑛!
(𝑤 −  𝑤0)

𝑛 𝑑
𝑛𝜑

𝑑𝑤𝑛
|
𝑤=Ω

+ 𝜃(𝑤).
𝑤=𝑤0

                                                                               (12)                       

 

      

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝜑(𝜆) =

2𝜋

𝜆
𝑛(𝜆)𝑧

𝑑𝜆

𝑑𝑤
=  − 

𝜆2

2𝜋𝑐
𝑑𝜑

𝑑𝑤
=  − 

𝑧

𝑐
[
𝑑𝑛

𝑑𝜆
− 𝑛]

𝑑2𝜑

𝑑𝑤2
= + 

𝜆3

4𝜋3𝑐2
𝑑2𝑛

𝑑𝜆2
𝑧

𝑑3𝜑

𝑑𝑤3
= − 

𝜆4

4𝜋2𝑐3
[3

𝑑2𝑛

𝑑𝜆2
+ 𝜆

𝑑3𝑛

𝑑𝜆3
] 𝑧

𝑑4𝜑

𝑑𝑤4
= + 

𝜆5

8𝜋3𝑐4
[12

𝑑2𝑛

𝑑𝜆2
+ 8𝜆

𝑑3𝑛

𝑑𝜆3
+ 𝜆2

𝑑4𝑛

𝑑𝜆4
] 𝑧

𝑑5𝜑

𝑑𝑤5
= − 

𝜆6

16𝜋4𝑐5
[60

𝑑2𝑛

𝑑𝜆2
+ 60𝜆

𝑑3𝑛

𝑑𝜆3
+ 15𝜆2

𝑑4𝑛

𝑑𝜆4
+ 𝜆3

𝑑5𝑛

𝑑𝜆5
] 𝑧

𝑑6𝜑

𝑑𝑤6
= + 

𝜆7

32𝜋5𝑐6
[360

𝑑2𝑛

𝑑𝜆2
+ 480𝜆

𝑑3𝑛

𝑑𝜆3
+ 180𝜆2

𝑑4𝑛

𝑑𝜆4
+ 24𝜆3

𝑑5𝑛

𝑑𝜆5
+ 𝜆4

𝑑6𝑛

𝑑𝜆6
] 𝑧

                     (13)                     

                 
 

It seems to me that we can write 𝜑(𝑖) =
𝑑𝑖

𝑑𝑤𝑖
 as a recurrence, giving 𝜑(𝑖) based on derivatives of 

order i, the index of refraction. Matrix form, we can write  

 

                       

[
 
 
 
 
 
∅(2)

∅(3)

∅(4)

∅(5)

∅(6)]
 
 
 
 
 

= (−1)𝑛2. 𝜋. 𝑧 [
𝜆

2.𝜋.𝑐
]
𝑛























124180480360

01156060

001812

00013

00001

                                        (14) 

 
The various terms of the Taylor expansion to order n can be written in the shape of a matrix [A], 

which’s we can express various terms A ij. 

 

    ∅ (𝑤) = ∅(𝑤0) + (𝑤 − 𝑤0)∅
(1)  + ∑

1

𝑖!
(𝑤 − 𝑤0)

𝑖𝑝
𝑖=2 ∅(𝑖)|

𝑤=𝑤0
+ 𝜃(𝑤).                           (15)  

                                                                                              

                                          ∅(𝑝) = (−1)𝑝. 2𝜋. 𝑧 [
𝜆

2.𝜋.𝑐
]
𝑝
∑ 𝜆𝑗−1𝐴(𝑝 − 1, 𝑗 −𝑝
𝑗=2

1)𝑛(𝑗)   with        𝑝 > 2                                                                                                                (16) 
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Figure 2: (a) the pulse broadens on propagation as a result of group velocity dispersion (GVD) 

(b) The pulse shape is no longer Gaussian and it becomes asymmetric due to higher order 

dispersions 

 
Analytically observed propagation affects such as spectral shift, pulse broadening and asymmetry 

in dispersive media can be easily brought out in the simulation using formalism presented here. In 

addition, such studies can be extended to pulses of arbitrary temporal shape without any further 

algorithmic complexity by numerical simulation. Higher order dispersion effects can be handled 

easily in the numerical simulation unlike in the case of analytical calculation [8] 

 

4. Time-Frequency Decomposition 

 
4.1. Wavelet Theory 

 
The wavelets are very particular elementary functions, these are the shortest vibrations and most 

elementary that one can consider.  One can say that the wavelet east carries out a zooming on any 

interesting phenomenon of the signal which place on a small scale in the vicinity of the point 

considered [7]. 

 

4.2. Wavelet Techniques 

 
Starting with a signal 𝑒(𝑡), in plane 𝑧 = 0, we define wavelet centered at Ω by 

 

𝜃(Ω) = 𝐸(𝑤). 𝑒𝑥𝑝 [−
(𝑤−Ω)2

4𝛾
] ,                with           𝐸(𝑤) =

𝐸0

2.𝜋
√
𝜋

𝛤
  𝑒𝑥𝑝 [

(𝑤−𝑤0)
2

4.𝛤
],                  (17) 
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    Temporal duration ∆0 in (fs) [M] 

𝜆 = 800𝑛𝑚 
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   Temporal duration ∆0in (fs) [M] 
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Figure 3: Gaussian envelope decomposed on a number of wavelet we calculates the electric field 

associated with the wavelet  𝜃(Ω, 𝑧 = 0). 
 

                  𝜃(𝑡, 𝑧 = 0) = 𝑇𝐹{𝜃(Ω, 𝑧 = 0)}                                                                                 (18)   

             𝜃(𝑡, 𝑧 = 0) = 𝐸0√
𝛾

𝛾+𝛤
. 𝑒𝑥𝑝 [

−(𝑤0−Ω)
2

4(𝛾+𝛤)
] . 𝑒𝑥𝑝 [−

𝛾𝛤

𝛾+𝛤
𝑡2] . 𝑒𝑥𝑝 [𝑗

𝛾𝑤0+𝛤Ω

𝛾+𝛤
𝑡]                         (19)   

  

In time, the pulse is also Gaussian, of parameter 
𝜸𝜞

𝜸+𝜞
  .     

 
The maximum of amplitude of the wavelet 𝜃(𝑡, 𝑧 = 0)  vary with Ω, center frequency of analysis 

on Gaussian of parameter 𝛾 + 𝛤.  

 
The signal propagates in the positive 𝑧 direction in a linear dispersive and transparent medium, 

which fills the half space 𝑧 > 0 and whose refractive index is 𝑛(𝑤). After propagation, the wavelet 

𝜃(Ω, 𝑥) may be written as 

 

                       𝜃(Ω, 𝑧) =
𝐸0

2.√𝜋𝛾
𝐸(𝑤). 𝑒𝑥𝑝 [−

(𝑤−Ω)2

4𝛾
] . 𝑒𝑥𝑝[𝑗∅(𝑤)].                                           (20)             

                                                         

As already mentioned, 𝜏𝑤𝑎𝑣𝑒𝑙𝑒𝑡 is large enough to ensure that analyzing function has only non 

negligible values over a spectral range lying in the neighbourhood of Ω in Fig.3. Under these 

circumstances, we have    

 

∅ (𝑤) = ∅(Ω) + (𝑤 − Ω)
𝑑∅

𝑑𝑤
| +

1

2!
(𝑤 − Ω)2

𝑑2∅

𝑑𝑤2
|
𝑤=Ω

+⋯+
1

𝑛!
(𝑤 − Ω)𝑛

𝑑𝑛∅

𝑑𝑤𝑛
|
𝑤=Ω

+ 𝜃(𝑤).𝑤=Ω   

                                                                                                                                                  (21)             

                                                     

Neglecting the higher terms in eq.16: 

 

        ∅(𝑤) = ∅(Ω) + (𝑤 − Ω)
𝑑∅

𝑑𝑤
|
𝑤=Ω

+
1

2!
(𝑤 − Ω)2

𝑑2∅

𝑑𝑤2
|
𝑤=Ω

+ 𝜃(𝑤).                                   (22)      

 

𝑤   

 

 

 

 

𝐸(𝑤) 

∆𝑤0 

δw 𝜃(𝛺) 

𝑤0 𝛺 
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     𝜃(Ω, 𝑧) =
𝐸0

2.√𝜋𝛾
√
𝜋

𝛤
  𝑒𝑥𝑝 [−

(𝑤−𝑤0)
2

4𝛤
] . 𝑒𝑥𝑝 [−

(𝑤−Ω)2

4𝛾
] . 𝑒𝑥𝑝 [𝑗∅(0) + 𝑗(𝑤 − Ω)∅(1) +

                                 
1

2
𝑗(𝑤 − Ω)2. ∅(2)]                                                                                           (23)      

 

            𝜃(𝑡, 𝑧) =
1

2𝜋
∫ 𝜃(Ω, 𝑧). 𝑒𝑥𝑝(𝑗𝑤𝑡)𝑑𝑤
+∞

−∞
                                                                          (24) 

 

We calculates the temporal electric field associated with the wavelet  𝜃(Ω, 𝑧).    
 

   𝜃(𝑡, 𝑧) =
1

2𝜋

𝐸0

2.√𝜋𝛾
√
𝜋

𝛤
  𝑒

[−
(Ω−𝑤0)

2

4𝛤
]
𝑒(𝑗∅

(0)) × 𝑒
−[

1

4𝛤
 + 

1

4𝛾
 – 
1

2
 𝑗∅(2)]Ω2

. 𝑒[
(Ω−𝑤0)

2𝛤
 – 𝑗∅(1)]Ω

 

                                × (∫ 𝑒
−[

1

4𝛤
 + 

1

4𝛾
 – 
1

2
𝑗∅(2)]𝑤2

. 𝑒
[
1

4𝛤
 + 

1

4𝛾 
 − 

1

2
𝑗∅(2)]2Ω𝑤+∞

−∞
×

𝑒
[−
(Ω−𝑤0)

2

2𝛤
 −𝑗∅(1)]

. 𝑒𝑗𝑤𝑡)𝑑𝑤                      (25) 

 

The amplitude of the incident Ω wavelet is given from eq.26 by  

 

           𝜃(𝑡, 𝑧) =
𝐸0

2.√𝜋𝛾
√
𝛤(𝑧)

𝛤
 . 𝑒𝑥𝑝(𝑗∅(0))𝑒𝑥𝑝 (−𝛤(𝑧) [𝑡 +

𝑧

𝑉𝑔(Ω)
]
2

)  

                        × 𝑒𝑥𝑝 (−
(Ω−𝑤0)

2

4𝛤
[1 −

𝛤(𝑧)

𝛤
]) . 𝑒𝑥𝑝 [𝑗 (1 −

𝛤(𝑧)

𝛤
)Ω +

𝛤(𝑧)

𝛤
𝑤0] (𝑡 +

𝑧

𝑉𝑔(Ω)
).         (26) 

 

This wavelet is characterized by a Gaussian envelope. This decomposition is valid only for the 

values of  ∆𝑤 much larger than 𝛿𝑤 (∆𝑤 ≫ 𝛿𝑤 ). 

 

The delay of group of the wavelet [𝑡 +
𝑧

𝑉𝑔(Ω)
] is characterized by a Gaussian envelope which is the 

temporal width.   

 
The delay of group of the wavelet is inversely proportional to the velocity of group its envelope 

propagates without deformation (Khelladi, 2008).   

 

4.3. Simulations     

 
Parameters of the Simulations  

Pulse initial:                ∆𝜏0 = 10 𝑓𝑠    
Wavelength:              𝜆 = 800 𝑛𝑚 

Pulse of the wavelet:  ∆𝜏𝑤𝑎𝑣𝑒𝑙𝑒𝑡 = 1000 𝑓𝑠  
Longer of the medium:  𝑧 = 20 𝑐𝑚                                                                                                             

 

Fig.21.(a) Initial pulse, (c) pulse after propagation of the 20 cm in litharge medium, 

           (e) Contour of the wavelet, (g) the wavelet Representation,  

                  (b) Initial pulse, (d) pulse after propagation of the 20 cm in the silica medium,  

                  (f) Contour of the wavelet, (h) the wavelet Representation [6]. 
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5. Conclusion   

 
Finally, we have demonstrated here the possible decomposition of an ultrashort pulse into an 

infinite number of longer Fourier transform limited wavelets which propagate without any 

deformation through a dispersive medium. After propagation through the medium, the pulse may 

be visualized in a three-dimensional representation by the locus of the wavelet maxima. This 

representation permits the evaluation of the broadening suffered by the pulse. For a transparent 

medium, the propagation of the Ω wavelet is described by the convolution of the incident Ω 

wavelet with a 𝜃(Ω) distribution centered at the group delay relative to Ω. 

 

The application to absorbing media is relatively straightforward and will be presented in a further 

publication, as well as a generalization to nonlinear media. The time-frequency representation is 

peculiarly suitable to the latter case for which the refractive index is phenomenological time 

dependent. Although this technique represents a vast improvement in our ability to describe such 

pulses, they require additional effort, both in the apparatus and in the extraction of the pulse 

intensity and phase from the experimental trace. 
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